Übungen zur Vorlesung Theoretische Chemie I

1. Gegeben sei der Vektorraum

$$\mathbb{V} = \{ f : [0, 2\pi] \to \mathbb{C}; f(x) = c_1 + c_2 \sin(x) + c_3 \sin(2x); c_1, c_2, c_3 \in \mathbb{C} \}.$$

(Im Unterschied zu Blatt 1 sind hier komplexe Zahlen c_1, c_2, c_3 zugelassen.) Auf dem Vektorraum \mathbb{V} wird durch

$$\langle f|g\rangle := \int_0^{2\pi} dx \ f^*(x) \ g(x)$$

ein Skalarprodukt definiert.

(a) Zeigen Sie, dass für alle $f,g,h\in\mathbb{V}$ und $\alpha,\beta\in\mathbb{C}$ die folgenden Eigenschaften eines Skalarprodukts erfüllt sind

Linearität:

$$\langle f | \alpha g + \beta h \rangle = \alpha \langle f | g \rangle + \beta \langle f | h \rangle$$
$$\langle \alpha f + \beta g | h \rangle = \alpha^* \langle f | h \rangle + \beta^* \langle g | h \rangle$$

Symmetrie:

$$\langle f|g\rangle = (\langle g|f\rangle)^*$$

(b) Zeigen Sie, dass die Funktionen

$$f_1(x) = \frac{1}{\sqrt{2\pi}}, \qquad f_2(x) = \frac{\sin(x)}{\sqrt{\pi}}, \qquad f_3(x) = \frac{\sin(2x)}{\sqrt{\pi}}$$

ein Orthonormalsystem bilden (d.h. $\langle f_i | f_i \rangle = \delta_{ij}$).

(c) Die Basisdarstellung eines Vektors $|g\rangle \in \mathbb{V}$ bezüglich der Orthonormalbasis $\{|f_1\rangle, |f_2\rangle, |f_3\rangle\}$ ist gegeben durch $|g\rangle = \sum_{j=1}^3 |f_j\rangle\langle f_j|g\rangle$. Bestimmen Sie die Komponenten $\langle f_j|g\rangle, j=1,2,3$, der Funktion $g(x)=1+i\sin(x)$.

Hausaufgabe:

2. Wir betrachten den Vektorraum \mathbb{V} aus Aufgabe 1 mit dem dort definierten Skalarprodukt $\langle g \mid h \rangle$ und der Basis $\{|f_1\rangle, |f_2\rangle, |f_3\rangle\}$:

$$V = \{ f : [0, 2\pi] \to \mathbb{C}; f(x) = c_1 + c_2 \sin(x) + c_3 \sin(2x); c_1, c_2, c_3 \in \mathbb{C} \}$$

$$\langle f|g\rangle := \int_0^{2\pi} dx \ f^*(x) \ g(x)$$

$$f_1(x) = \frac{1}{\sqrt{2\pi}}, \qquad f_2(x) = \frac{\sin(x)}{\sqrt{\pi}}, \qquad f_3(x) = \frac{\sin(2x)}{\sqrt{\pi}}$$

- (a) Bestimmen Sie die Wirkung des Operators $\Delta := \frac{d^2}{dx^2}$ auf eine beliebige Funktion $f \in \mathbb{V}$, also Δf mit $f(x) = c_1 + c_2 \sin(x) + c_3 \sin(2x)$.
- (b) Liegt Δf in \mathbb{V} ?
- (c) Bestimmen Sie die Matrixdarstellung

$$D = \begin{pmatrix} d_{11} & d_{12} & d_{13} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33} \end{pmatrix}$$

des Operators Δ bezüglich der Basis $\{|f_1\rangle, |f_2\rangle, |f_3\rangle\}$. Dabei ist

$$d_{nm} = \langle f_n \mid \Delta \mid f_m \rangle = \int_0^{2\pi} dx \ f_n^*(x) \ \frac{d^2}{dx^2} f_m(x).$$