Übungen zur Vorlesung Mathematik II für Studierende der Chemie und Biochemie

- 1. Entwickeln Sie die Funktion $f(x, y, z) = \sin(x+y)\cos(y+z)$ in eine Taylorreihe um den Punkt $(x_0, y_0, z_0) = (0, 0, 0)$ bis zur dritten Ordnung.
- 2. Bestimmen Sie die Taylor-Entwicklung (beliebiger Ordnung) von

$$f(x,y) = \frac{e^x}{1-y}$$
 (|y| < 1)

im Nullpunkt.

- 3. Gegeben sei die Funktion $f:\mathbb{R}^2\to\mathbb{R}$, $f(x,y)=e^{(-x^2+y^2)}-2x^2+y^2$.
 - (a) Bestimmen Sie die Richtungsableitung in Richtung $\frac{1}{\sqrt{2}}(1,1)^T$ an den Punkten (x,y)=(0,0) und (x,y)=(1,0).
 - (b) Bestimmen Sie Lage und Art der stationären Punkte von f.
- 4. Für die Punkte $a_1, a_2, \ldots, a_N \in \mathbb{R}^n$ bestimmen Sie den Punkt $x \in \mathbb{R}^n$, für den $\sum_{j=1}^N \langle x a_j | x a_j \rangle$ den kleinsten Wert annimmt.

Zusatzaufgaben:

- 5. Gegeben sei $f(x,y)=2x^2-3xy^2+y^4$. Bestimmen Sie Lage und Art der stationären Punkte von f.
- 6. Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = xy \exp\left(\frac{x^2}{4} + \frac{y^2}{4}\right)$.
 - (a) Bestimmen Sie den Gradienten von f, d.h. ∇f .
 - (b) Berechnen Sie die Hesse-Matrix \mathbf{H}_f der Funktion f.
 - (c) Bestimmen Sie Lage und Art der stationären Punkte der Funktion f.
 - (d) Bestimmen Sie die Taylorentwicklung der Funktion f um den Punkt (1,0) bis zur zweiten Ordnung.
 - (e) Bestimmen Sie die Richtungsableitung in Richtung $\frac{1}{\sqrt{5}}(2,-1)^T$ am Punkt (x,y)=(0,1).