Übungen zur Vorlesung Mathematik II für Studierende der Chemie und Biochemie

1. Betrachten Sie den Vektorraum \mathbb{C}^3 mit dem Skalarprodukt $\langle \mathbf{x} | \mathbf{y} \rangle$ und der Norm $||\mathbf{x}|| = \sqrt{\langle \mathbf{x} | \mathbf{x} \rangle}$. Gegeben seien $\mathbf{a_1}, \mathbf{a_2}, \mathbf{a_3}, \mathbf{a_4} \in \mathbb{C}^3$ mit deren Komponentendarstellung in einer Orthonormalbasis:

$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{a}_3 = \begin{pmatrix} 1 \\ 0 \\ i \end{pmatrix} \text{ und } \mathbf{a}_4 = \begin{pmatrix} 2i \\ 0 \\ 2 \end{pmatrix}.$$

- (a) Bestimmen Sie für jeden dieser Vektoren den Betrag und normieren Sie den Vektor.
- (b) Berechnen Sie den Winkel φ_{12} zwischen den Vektoren \mathbf{a}_1 und \mathbf{a}_2 .
- 2. Ein Vektor ${\bf a}$ kann in seine bezüglich des Vektors ${\bf b} \neq 0$ parallelen ${\bf a}_{\parallel}$ und orthogonalen Teil ${\bf a}_{\perp}$ gemäß

$$\mathbf{a}_{\parallel} = \lambda \mathbf{b}, \quad (\lambda \in \mathbb{C}), \qquad \mathbf{a}_{\perp} = \mathbf{a} - \mathbf{a}_{\parallel}$$

zerlegt werden.

- (a) Bestimmen Sie den Wert von λ aus der Forderung, das \mathbf{a}_{\perp} orthogonal zu \mathbf{b} ist.
- (b) Betrachten Sie nun das konkrete Beispiel $\mathbf{a} = (-2, 2, 2)^T$ und $\mathbf{b} = (1, 2, 2)^T$. Bestimmen sie hierfür \mathbf{a}_{\perp} und \mathbf{a}_{\parallel} .
- 3. Gegeben seien die linear unabhängigen Vektoren $\mathbf{v_1}, \mathbf{v_2}$ und $\mathbf{v_3} \in \mathbb{C}^4$ mit deren Komponentendarstellung in einer Orthonormalbasis:

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix} \quad \text{und } \mathbf{v}_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$

Bestimmen Sie aus $\mathbf{v_1}, \mathbf{v_2}$ und $\mathbf{v_3}$ mittels des Gram-Schmidtschen Orthonormierungsverfahrens eine Orthonormalbasis für den Untervektorraum, der von $\mathbf{v_1}, \mathbf{v_2}$ und $\mathbf{v_3}$ aufgespannt wird.

- 4. Im Skript werden 4 Bedingungen an die Norm gestellt:
 - a) $\|\mathbf{v}\| \ge 0$
 - b) $\|\mathbf{v}\| = 0 \iff \mathbf{v} = \mathbf{0}$
 - c) $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$
 - d) $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|,$

wobei $\mathbf{v}, \mathbf{w} \in \mathbb{K}^n, \alpha \in \mathbb{K}$ und \mathbb{K} der zugrundeliegende Körper ist. Zeigen Sie, dass Axiom a) direkt aus den anderen Axiomen folgt. Tipp: $\mathbf{v} - \mathbf{v} = \mathbf{0}$.

Zusatzaufgaben:

- 5. Zeigen Sie, dass für beliebige Vektoren \mathbf{a}, \mathbf{b} und $\mathbf{c} \in \mathbb{R}^3$ gilt: $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \langle \mathbf{a} | \mathbf{c} \rangle \mathbf{b} \langle \mathbf{a} | \mathbf{b} \rangle \mathbf{c}$.
- 6. Im Rahmen der Hückel-Theorie lassen sich die vier π -Molekülorbitale des Cyclobutadiens durch vier orthonormale Vektoren $\mathbf{x}_i \in \mathbb{R}^4$ darstellen. Deren k-te Komponente beschreibt den Beitrag des p_z -Orbitals am k-ten C-Atom zum Molekülorbital. Drei dieser Vektoren seien gegeben durch

$$\mathbf{x}_1 = N_1 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}_2 = N_2 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \quad \mathbf{x}_3 = N_3 \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}.$$

- (a) Bestimmen Sie die Konstanten N_i so, dass die Vektoren \mathbf{x}_i euklidisch normiert sind.
- (b) Zeigen Sie, dass die Vektoren $\mathbf{x}_1, \mathbf{x}_2$ und \mathbf{x}_3 orthogonal sind.
- (c) Welche Bedeutung kommt den Komponenten zu?
- (d) Bestimmen Sie einen vierten Vektor \mathbf{x}_4 , so dass $\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4\}$ eine orthonormale Basis ist.

(Hinweis: Sie können Teile des Gram-Schmidtschen Orthonormierungsverfahren und den Vektor $\mathbf{y}_4 = (1, 0, 0, 0)^T$ verwenden.)