Praktikum Computational Chemistry

Als Beispiel eines mehratomigen Moleküls soll H_2O mittels Hartree–Fock-Rechnungen in der $6\text{-}31G^{**}$ Basis untersucht werden. Gehen Sie hierzu von der für die H_2 -Rechnungen verwendeten Eingabedatei aus. Fügen Sie zu den Zeilen, die die Position der H-Atome spezifizieren, ein weitere Zeile hinzu, die die Position des O-Atoms angibt. Dadurch sollte die Eingabedatei Zeilen der Form

\$DATA Wasser CN 1 O 8. X Y Z H 1. X Y Z H 1. X Y Z \$END

enthalten, wobei X, Y und Z die kartesischen Koordinatenwerte der jeweiligen Atome bezeichnen. Die Spezifikation der in der Gamess-Basisbibliothek vorhandenen 6-31G** Basis in der Eingabedatei erfolgt wie schon in Übung 10 dargestellt.

- 1. Bestimmen Sie durch Nutzung der Optimierungsoption ("RUNTYP=optimize") die Gleichgewichtsgeometrie des Wassermoleküls.
- 2. Bestimmen Sie die elekronische Energie des H₂O an der Gleichgewichtsgeometrie.
- 3. Die Gleichgewichtsgeometrie des Wassermoleküls zeigt C_{2v} -Symmetrie. Verifizieren Sie dieses anhand der Ergebnisse aus Teilaufgabe 1. Diese Symmetrie kann bei quantenchemischen Rechnungen ausgenutzt werden. Eine entsprechende Eingabedatei finden Sie als

/raid/home/exchange/manthe/uebung13/muster.inp

Vergleichen Sie diese Eingabedatei mit der bisher von Ihnen genutzten. Wiederholen Sie die Rechnungen aus Teilaufgabe 1 und 2 unter Nutzung der Symmetrie.

4. In der Ausgabedatei finden Sie die bei der HF-Rechnung erhaltenen Orbitalenergien, deren Symmetriebezeichnung und die Entwicklungskoeffizienten der entsprechenden Einteilchenwellenfunktionen in der genutzten Basis hinter den Zeilen

MOLECULAR ORBITALS

Betrachten Sie nun die Orbitale, die sich nach Ende der Geometrieoptimierung für die Gleichgewichtsenergie ergeben haben. Interpretieren Sie das Ergebnis qualitativ.