
Some Remarks on Zipf’s Law

Marcus Kracht, UCLA

Zipf’s Laws make connections between three things: the length of a word, its
probability and the probability rank. In this paper I shall be concerned with the
connection between these in languages generated by a probabilistics context free
grammar.

Recall that a probabilistics context free grammar is a context free grammar
G = 〈A,N,S,R,PG〉, whereA is the alphabte of terminal symbols,N the alophabet
of nonterminal symbols,S ∈ N the start symbol,R = {ρ(i) : i < p} the set of
rules, andPG a function which assigns probabilities to rules in such a way that
the probabilities for rules that expand a given nonterminal sum to 1. Trees are
in biunique correspondence with leftmost derivations. Probabilities for trees are
assigned to their leftmost derivations as follows. Let~ρ = ρ(i1)ρ(i2) · · · ρ(in) be a
derivation, then the probability of the derivation is

∏n
j=1 PG(ρ(i j)). The probability

of a string is the sum of the probabilities for all its leftmost derivations.
The leftmost derivations can also be generated by a PCFG in the following

way. For convenience we assume that the grammar rules are either of the form
X→ ~x, where~x is a terminal string, or of the formX→ ~Y, where~Y is a string of
nonterminals. PutAd := R, Nd := N, andSd := S, and let the new set of rules be

(1)
Rd := {X→ ρ(i)~Y : i < p andρi = X→ ~Y}

∪ {X→ ρ(i) : i < p andρ(i) = X→ ~x}

The rules of the new grammar are in biunique correspondence with the rules of
the old grammar, and we assign the probabilities accordingly. The rulePGd(X →
ρ(i)~Y) := PG(ρ(i)), andPGd(X → ρi) := PG(ρ(i)). The new grammar isGd =

〈Ad,Nd,Sd,Rd,PGd〉. There is an obvious map from strings generated byGd to
strings generated byG. It is defined by induction on the derivation inGd (which
is again a different object than the strings ofGd). SinceGd produces strings in
Polish Notation, one can also do induction on the string qua term:

(2)

δ(X) := X

δ(ρ) := ~x (ρ = X→ ~x)

δ(ρ~σ1 · · · ~σn) := δ(~σ1) · · · δ(~σn) (ρ = X→ ~Y)

Of particular interest are the terminal strings ofGd. These correspond to the ter-
minal strings ofG in a biunique way, since the first clause of the definition above
is not used.

Let A be an alphabet. The spaceRA can be endowed with operations that turn
it into a vector space with unit vectorsa, a ∈ A. Similarly, we can form the setNA

and endow it with an operation of addition and linear multiplication.NA ⊆ RA.
These spaces shall be endowed with the so–called1–norm: let x =

∑
a∈A axa.

Then

(3) |v| :=
∑
a∈A

|xa|

If ~x is a string,|π(~x)| is simply the length of~x. A subsetS of NA is calledlinear if
there are vectorsv, wi, i < p, such that

(4) S =

v+ p∑
i=1

kiwi : for all i < p:ki ∈ N


A finite union of linear sets is called asemilinear set. TheParikh–map π from
A∗ toNA is given as follows.

(5)
π(a) := a

π(~xa~y) := π(~x) + π(~y)

If L ⊆ A∗ is generated by a context free grammar thenπ[L] is a semilinear set.
(The converse is false.)

Now, the Parikh–map conflates many strings into the same vector. Therefore,
let fL : Nn→ N be defined byfL(v) := |{~x : π(~x)|. We say that the numberfV(v) is
thepopulation of v. Let κL denote the number of strings of length≤ n in L. We
can derive the following formula.

(6) κn =
∑
|v|≤n

fL(v)

We shall ask: how fast does this number grow? The upper limit is given by∑
i≤n gi = (gn+1 − 1)/(g − 1), g := |A|, thus an exponential growth. On the other

hand, the sets of vectors of lengthn are bounded by a polynomial. Basically, we
expect two types of languages: those that grow exponentially and those that grow
polynimally.

Definition 1 A language L is calledsparseif κn is O(nq) for some q. This means
that there is a polynomial f of degree q such that for almost all n,κL ≤ f (n).

2

Theorem 2 Let L be a context free language. Then if L is not sparse, there isα
and a constant c such that for almost all n:κn ≥ cαn.

(Awaits proof.)
Now we shall look into the problem of the probabilities depending on rank. We

shall make the assumption that there is an unambiguous probabilistic grammar for
L. (If L is regular and accepted by a probabilities FSA, this is certainly the case.)
Then the probabilty for a given string~x is the probability of its unique leftmost
derivation. This allows us to replace the original grammar byGd.

The set of complete derivations is a semilinear subset ofRR. Consider the
following map from complete derivations toR.

(7) g(ρ1 · · · ρn) :=
n∑

i=1

− logPG(ρi)

(The base of the logarithm is unimportant.) Since probabilities are numbers strictly
between 0 and 1,g(~ρ) > 0. g(~ρ) is actually the negative logarithm of the probabil-
ity of the derivation, since the probabilities multiply, so that the logarithms add.
Moreover, notice thatg factors through the Parikh–map. Namely, we can define
the following map fromRR toR:

(8) h(k1ρ(1)+ · · · knρ(n)) :=
n∑

i=1

−ki logPG(ρ(i))

Theng(~ρ) = h(π(~ρ)), because the probability is independent of the order in which
the rules appear.

Now consider Zipf’s Second Law. Aprobabilistic language is a pair〈L, p〉
such that

∑
~x∈L p(~x = 1. Suppose the language is infinite, and thatL is enumerated

by a functionr such thatpr(k)) ≤ p(r(m)) wheneverk > m. Such a function is
called arank function . Then the law asserts thatp(r(m)) ≈ c ·m−α, whereα > 1.
Thus, if the strings are aligned in decreasing probability, the probabilities go down
in a polynomial fashion.

Now let us establish a rank function for the languageL generated by an unam-
biguous PCFGG. We have established a map fromπ(~x) to the negative logarithm
of the probabilitiy. Now, ifr < s then− log r > − log s, so in order to order the
elements according to decreasing rank, we may also order them with increasing
negative logarithm of probability. Leto(x) = |{v ∈ NR : h(v) ≤ x}|. The numbers
o(x) grow polynomially withx (they measure the volume of the preimage of the

3

cube of vectors of length≤ x; the latter is polynomial inx, andh is a linear map).
Now, what we actually want to know is another number, namely

(9) p(x) := |{~ρ ∈ L(Gd) : − logPGd(~ρ) ≤ x}|

We distinguish two cases. First, assume thatL is sparse. Thenp(x)/o(x) is a
polynomial. Let thenb be a given rank. Thenx is of the magnitudeγb1/w for some
numbersγ andw. So, the probability ise−γb

1/w
. Thus, the probabilities decrease

not in polynomial fashion, but in an exponential fashion (though the function is
more exactly an exponential of thewth root of the rankb).

Now let us assume thatL is not sparse; thenp(x)/o(x) is exponential. In this
case, ifb is the rank,x is of the magnitudeγ + δ logb for some constantsγ andδ.
So, if− log p(r(b)) = x ≈ γ + δ logb, we havep(r(b)) = e−γ−δ logb = e−γ · e−δ logb.
Putϑ := e−γ; furthermore, observe thate−δ logb = (elogb)−δ = b−δ. So we arrive at
the following theorem.

Theorem 3 Let 〈L, p〉 be a probabilistic language generated by an unambiguous
PCFG. Suppose further that L is not sparse. Then the function from rank b to
probability is given in the limit by p(b) = ϑb−δ with ϑ > 0, δ > 1.

4

