## A solution to a problem of Urquhart

In [4], Urquhart gives an example of a modal logic which has the finite model property, is recursively axiomatizable but not decidable. He poses the problem of finding such a logic containing **S4**. We will solve this problem by constructing a logic which in addition to the required properties also defines a locally finite variety of modal algebras. (Recall that a variety is said to be locally finite if all finitely generated algebras in that variety are finite.) This also gives an example of a locally finite variety  $\mathcal{V}$  such that  $Eq(\mathcal{V})$  is recursively enumerable but not recursive.

The key to the solution is provided in [1]. Let  $\mathbf{S4.J}_3$  be the logic of  $\mathbf{S4}$ -frames of depth  $\leq 3$ . Define the frames  $b_n = \langle b_n, \triangleleft \rangle$  by letting



The picture shows  $b_3$ . The diagram or frame formula  $D(b_n)$  of  $b_n$  is

$$D(b_n) = \Box \bigwedge \langle p_s \to \neg p_t | s \neq t \rangle$$
  
 
$$\land \Box \bigwedge \langle p_s \to \Diamond p_t | s \triangleleft t \rangle$$
  
 
$$\land \Box \bigwedge \langle p_s \to \neg \Diamond p_t | s \triangleleft t \rangle$$
  
 
$$\land \Box \bigvee \langle p_s | s \in b_n \rangle$$
  
 
$$\land p_n$$

where s and t range over all points of  $b_n$ . For a set  $X \subseteq \omega$  we define  $\mathbf{S4.J_3/X} = \mathbf{S4.J_3}(\{\neg D(b_n)|n \in X\})$ .  $\mathbf{S4.J_3/X}$  is the (iterated) splitting of  $\mathbf{S4.J_3}$  by all  $b_n$  for which  $n \in \omega$ , to use the terminology and notation of [2]. As is shown in [1],  $b_n$  is a frame for  $\mathbf{S4.J_3/X}$  iff  $n \notin X$ . Hence, let X be a recursively enumerable subset of  $\omega$  which is not recursive. Then  $\mathbf{S4.J_3/X}$  is not decidable; for  $D(b_n)$  is consistent iff  $n \in \omega - X$ , the latter being not recursively enumerable. However, by a result of [3], the variety of  $\mathbf{S4.J_3}$ -algebras is locally finite and so is the variety of  $\mathbf{S4.J_3/X}$ -algebras. It follows that  $\mathbf{S4.J_3/X}$  has the finite model property; it is recursively axiomatizable by construction and contains  $\mathbf{S4}$ .

## **References:**

- [1] Fine, K.: An ascending chain of S4 logics, Theoria 40(1974)
- [2] Rautenberg, W.: Splitting lattices of logics, Archiv Math. Logik 20(1980)
- [3] Segerberg, K.: An essay in classical modal logic, Mimeograph, Uppsala, 1971
- [4] Urquhart, A.: Decidability and the finite model property, JPL 10(1981)

Marcus Kracht, II. Department of Mathematics, Arnimallee 3, 1000 Berlin 33, Germany