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1. I

When one talks about the connection between logic and language then the first thing
that comes to mind is semantics. In fact, many distinguished logicians have concerned
themselves quite intensively with the questions of meaning in natural languages, for ex-
amples Russell, Carnap, Church, and Montague. Their reflections have led to the devel-
opment of Type Theory and Categorial Grammar. This is a rather fruitful area of research.
Yet, there is another field of application of formal logic to language that has been sparked
off by the trend in the 80ies to view grammars not as production devices but as theories
about language — where the word ‘theory’ is used here in the logical sense. The ex-
act meaning of this statement will become clear later on. One should say here that this
view has been the result of a confluence of trends. One was the fact that transformational
grammar was struggling to get rid of its plethora of transformations by trying to isolate
a few abstract principles. The task of these principles is to constrain the transformations
in such a way that all and only the ‘natural’ transformations would be allowed by the
principles. This finally led to the elimination of all variety in the transformational ker-
nel (there was only one transformation left, called Move–α). It was then only a small
step to a purely descriptive theory of language, which has in that time been advocated
by [Koster, 1986]. Another trend that brought up the descriptive approach to grammars
was the change from imperative programming languages to so–called logical program-
ming languages, in particular P. Many linguists got persuaded that the best method
of developing computer software for natural language manipulation (and here I mean for
example analysis, generation and translation) was to use logical programming languages.
The hope was that they would liberate the linguist from questions of program execution
and allow to just develop a database that would contain simply the linguistic facts. So the
linguist would be able to concentrate on the development of this database rather than wor-
rying about lousy details of implementation. This led in turn to the creation of grammar
formalisms that were highly reminiscent of the target implementation language. The peak
of this development are  (Head Driven Phrase Structure Grammar) and  (Lexical
Functional Grammar), both based on feature–value formalisms. It is interesting to note
here that the pendulum has already returned to the other side. Transformational grammar
has radically abandoned any use of descriptive principles in favour of a purely procedural
approach. In computer science other programming languages and other paradigms (for
example functional programming) have eclipsed P. In linguistics it is not exactly
clear what the future will bring but as a matter of fact the grammar formalisms of the
eighties, rather than sheding new light on old problems have often enough simply created
many internal problems, mainly caused by an improper understading of the nature of the
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symbolism. The hazy propaganda behind P has done its part in mystifying the new
tools rather than clarifying their potential and their limits.

In this paper I will speak about some applications of logic, in particular modal logic, to
the field of syntax. Several people have contributed to this enterprise, and they will all be
named in due course. However, as this title suggests, the outline will be quite a personal
one.

2. T L V  G

For a logician it is perhaps quite easy to understand the following description of a
grammar. A theory about L is a set T such that if T ` ϕ then ϕ holds of all structures of
L. A grammar of a language L is a theory T such that T ` ϕ iff ϕ is true in all structures
of L. So, a grammar is such that its consequences are all and only the L–valid sentences.
Structures are either strings, syntactic trees, or pairs 〈~x, σ〉, where ~x is a string and σ is
the meaning of ~x. A run of the mill grammar of English, for example, can be seen as a
theory about English. Hardly can they claim to be grammars in the technical sense above.
To give some examples: a theory of English may contain statements such as the order of
the main constituents in a declarative sentence is subject–verb–object, the verb agrees in
number with the subject and so on. Of course, they have to be suitably coded into some
logical language, and we have to define many notions such as subject and object, but these
are problems of execution rather than principle.

The problem with the logical definition of grammar is that it does not tell us how the
sentences of a language can be generated and how they can be analyzed. Hence a large
part of our language activity is left unaccounted for. Moreover, still today it is not clear
whether what we have in our mind is some knowledge of the syntax in descriptive terms
such as the statements above or whether language as we see it is simply an artefact of a
rather complex language generator–analyser whose structure we yet have to find. Chom-
sky has over and over iterated the point that in his view collecting facts about how the
sentences of the language look like is not to do lingustics at all. It is like collecting but-
terflies rather than doing biological research. He has introduced the distinction between
E–language — this is what we see at the surface — and I–language — this is the manifes-
tation of the language in the brain. While theories about E–language are easy to develop,
studying I–language is still today hopelessly difficult, and all we have at the moment are
hypotheses.

Chomsky has also always been against descriptions and in favour of procedures. He
has defined a generative grammar of a language L to be an algorithm that generates all
and only the correct structures of L. This definition has been quite popular in the 70ies. It
defines languages by means of a generating device. The generative grammar already tells
us how the structures are generated. In order to account for our analytic facility we also
need to have a recognizing device for the language. Fortunately, many language classes
not only have a characterization in terms of a generating device but also in terms of an
automaton. For example, recall that a language is called regular if it can be generated by
a right–regular grammar, that is, a grammar with rules of the form X → aY, or X → a,
a a terminal symbol and X and Y nonterminal symbols. On the other hand, a language
is regular iff it can be recognized by a finite state automaton. Hence, given any regular
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language, there exists a generating device (a right–regular grammar) and an analysing
device (the finite state automaton). Moreover, one can construct one from the other.

Formal language theory has pretty much remained faithful to this approach. Many lan-
guage classes have been defined by means of generating devices (= generative grammars)
and analysing devices (= automata) have been found. There is, however, a problem: we
hardly ever have a complete description of a natural language. Our knowledge even of
the best studied languages — such as English — is still incomplete. However, we would
not like to wait until our knowledge is perfect before we write a grammar of it. And,
furthermore, even though it may be enough to describe English in terms of some gener-
ative grammar and an automaton, the working linguist as much as the individuum trying
to learn English nevertheless have to work with descriptions of it, that is to say, theories.
What we are therefore ideally like to have is some way of mediating between these three
ways of defining a language: the descriptive, the generative and the analytic definition.
There is an additional reason for trying to develop such tools. Grammar formalisms and
theories are very often substantially different in the way they describe language. Cate-
gorial grammar,  and transformational grammar represent different extremes and still
at present it is not really understood how to translate between a grammar presented in
categorial form and one that is presented in  or transformational grammar. But if one
would know how to do that then we would be able to see what in the different formalisms
is mere change of notation and what is a substantial difference, and we would be able to
compare different theories even if they were presented in highly different form.

Matters are however not that simple. We will see shortly that many problems turn out to
be undecidable. Therefore, only part of the project can at all be carried out to satisfaction.
However, to see that matters are this way requires some logical analysis to which we now
turn.

We will discuss mainly two approaches, one based on monadic second order logic
(MSO) and the other on Propositional Dynamic Logic (PDL). We recall here only the
necessary basic facts. MSO is an extension of predicate logic by means of variables over
unary predicates and quantifiers over such variables. Clearly, MSO can have any number
of constants for predicates, functions and individuals. The sets of variables are {xi : i ∈ ω}
and {Pi : i ∈ ω}.

Now, PDL or rather PDL with converse, has two sorts of expressions: programs and
formulae. Programs are formed by means of program composition (;), nondeterministic
union (∪), iteration (∗) and converse (`). The set of propositional variables is {pi : i ∈ ω}.
Formulae are composed by means of the usual boolean connectives. If α is a program
and ϕ a formula, then 〈α〉ϕ and [α]ϕ is a formula. If ϕ is a formula then ϕ? is a program.
The set of basic programs is denoted by Π0. There are the following equations for the
converse

R`` = R
(R; S )` = S `; R`

(R ∪ S )` = R` ∪ S `

(R∗)` = (R`)∗

Therefore, PDL with converse is expressively equivalent to PDL over a set Π′0 of basic
operators which contains for every ζ ∈ Π0 both ζ and its converse. There is a canonical
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translation of PDL–formulae into MSO:
p‡i := Pi(x)
(ϕ ∧ ψ)‡ := ϕ‡ ∧ ψ‡

(¬ϕ)‡ := ¬ϕ‡

([α]ϕ)‡ := ∀y.(α(x, y)† → ϕ‡[y/x])

In the last clause y is a variable not occurring in ϕ‡. Now (α(x, y))† is defined as follows.
Pick for each ζ ∈ Π0 a constant ζ◦ denoting a binary relation. Now put

α(x, y)† := α◦(x, y) if α ∈ Π0

(α; β)(x, y)† := (∃z)(α(x, z)† ∧ β(z, y)†)
(α ∪ β)(x, y)† := α(x, y)† ∨ β(x, y)†

(ϕ?)(x, y)† := x � y ∧ ϕ‡

(α∗)(x, y) := (∀S )((∀zz′)(S (z) ∧ α(z, z′)† → S (z′)) ∧ S (x)→ S (y))

Here again some precautions concerning the choice of variables must be made. We will
freely switch between viewing a structure as a structure for PDL (with converse) and
the corresponding MSO–structure. Furthermore, there will appear a number of linguistic
structures (strings, trees, and so on). We will usually only sketch how they can be turned
into models for the languages under discussion. A reader with only little experience in
logic will however already be able to fill in the details.

3. R L

Let A = {ai : i < n} be some finite set, called the alphabet. A finite sequence over
A is called a string. ε is called the empty string. A∗ is the set of all strings over A. A
(string) language over A is a subset of A∗. We denote by ~x~y the result of concatenating
~x and ~y. Furthermore, for sets R, S ⊆ A∗ we put R · S := {~x~y : ~x ∈ R, ~y ∈ S } and call it
the complex product of R and S . We define R0 := ε and Rn+1 := R · Rn. Finally, we put
R∗ :=

⋃
n∈ω Rn and call it the iteration of R. Instead of {~x} we simply write ~x. A language

over A∗ is regular if it is empty or can be produced from ai, i < n, and ε by means of
complex products, unions and iteration.

A context–free grammar over A is a triple G = 〈N, S,R〉 where N is a finite set disjoint
from A, S ∈ N, and R ⊂ N × (N ∪ A)? a finite set. (One writes X → ~x rather than 〈~X, ~x〉
for a rule. Moreover, lower case letters denote symbols from A while upper case letters
are reserved for symbols from N. For general reference on context–free grammars and
languages see [Harrison, 1978].) N is called the set of nonterminal symbols, S the start
symbol and R the set of rules. Given some strings ~x, ~y ∈ (N ∪ A)?, we say that ~y is one–
step derivable from ~x if there are ~u, ~v, ~w and X such that (1) ~x = ~uX~v, (2) ~y = ~u~w~v and
(3) X → ~w ∈ R. ~y is derivable from ~x if ~y can be derived from ~x by a series of one–step
derivations. Finally, G generates ~y if ~y is derivable from S. We write L(G) for the set
of all strings generated by G. A language L is context–free if there is some context–free
grammar G such that L = L(G). A context–free grammar is right–regular if all rules have
the form X→ aY or X→ a.

A finite–state automaton over A is a quadruple A = 〈Q, q0, F, δ〉, where Q is a finite set,
the set of states, q0 ∈ Q a distinguished state, the initial state, F ⊆ Q a subset of Q of
so–called final or accepting states, and finally δ : Q × A→ ℘(Q) the so–called transition
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function. We write q
a
→ q′ if q′ ∈ δ(q, a). Furthermore, we write q

~x~y
→ q′ iff there is a

q′′ ∈ Q such that q
~x
→ q′′

~y
→ q′. We say that A accepts ~x if there exists a q ∈ F such

that q0
~x
→ q. We write L(A) for the set of all strings accepted by A. The following is a

well–known theorem.

Theorem 3.1 (Kleene). The following are equivalent for any finite set A and any language
L over A.

(1) L is regular.
(2) There is a right–regular grammar G such that L = L(G).
(3) There is a finite–state automaton A such that L = L(A).

We note here that there are algorithms that construct G given A and vice versa. This
theorem fully describes the connection between the generative and the analytic aspect
of regular languages. Moreover, there is a description of regular languages by means
of regular terms. A regular term is a term built from the symbols of A using complex
product, union and iteration. For example, (a2 ·b)∗∪a is a regular term. It is also possible
to construct such terms given G, and to construct G given the regular term.

For many purposes, however, the regular terms are not strong enough. They are rather
clumsy and we wish to replace them by some higher order language. For example, take
monadic second order logic using the following non–logical symbols: a binary relation
symbol < and a unary predicate Pi for each i < n. A string is a model for this language
in the following sense. Take the string ~x = x0x1 . . . xn−1. Now let n := {0, 1, . . . , n − 1}
and m(~x) := 〈n, <, 〈P~x

i : i < n〉〉, where P~x
i ( j) iff ~x j = ai. In this way we obtain for each

language L ⊆ A∗ a monadic second order theory MSO(L), namely the common logic of
all structures m(~x) such that ~x ∈ L. In particular, let T0 := MSO(A∗) be the logic of all
string models. It is finitely axiomatizable and contains eg sentences expressing that < is a
discrete total ordering with endpoints and that for each element x, exactly one Pi is true at
x. Further, given a theory T , we let L(T ) be the set of all strings ~x such that m(~x) |= T . L is
MSO–definable if MSO(L) is finitely axiomatizable and L = L(MSO(L)). The following
now holds.

Theorem 3.2 (Büchi). The following are equivalent for any finite alphabet A and any
language L over A.

(1) L is regular.
(2) L is MSO–definable.
(3) L is definable in MSO by means of a Σ1

1–sentence.

This state of affairs is quite satisfactory. It is again possible to pass from a generating
grammar to a MSO–sentence and back.

An alternative to monadic second order is modal logic. The string models may also
be viewed as models of some polymodal logic. There are several choices with respect
to the modal operators. The simplest choice is the following. We will introduce boolean
constants, ai, i < n, and two modal operators, ^ and ^. Both are tense duals of each
other and satisfy alt1. A string ~x = x0x1 . . . xn−1 is made into a model for this language
as follows. We put F(~x) := 〈n,C,B, 〈a~xi : i < n〉〉, where i C j iff j = i + 1, i B j iff
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j C i and a~xi := { j : x j = ai}. It turns out however that this logic admits unintended
models, namely infinite ones. We therefore add the transitive closure ^

∗ and ^
∗. Both

shall satisfy G, by which we successfully eliminate all finite models. Given a language
L ⊆ A∗ we define ML4(L) to be the common logic of all F(~x), where ~x ∈ L. Given a
modal logic Θ containing ML4(A∗) we put L(Θ) := {~x : F(~x) |= Θ}. Using the above
theorem we deduce that L(Θ) is always regular. However, not all regular languages give
rise to different logics, and so in contrast to the case of monadic second order logic, this
modal logic is actually not faithful. Therefore we strengthen our logic once more. This
time we take the full power of Propositional Dynamic Logic with converse, PDL`. In our
case, one program is sufficient, so we put Π0 := {ζ}. The interpretation of ζ coincides
with that of ^, and so ^ corresponds to ζ`, ^

∗ with ζ∗ and ^
∗ with (ζ`)∗. Notice that the

interpretation of the composite programs can be defined by means of MSO–sentences, so
that PDL` is a fragment of monadic second order logic. Therefore, any logic containing
the logic of strings over A defines a regular set of strings. The converse also holds, as we
will show. The idea is the following. Start with a right–regular grammar G = 〈N, S,R〉
and introduce for every nonterminal symbol X a constant c(X).

X† := c(X)↔
∨
〈a ∧ 〈ζ〉c(Y) : X→ aY ∈ R〉

G† :=
∨
〈X† : X ∈ N〉

Here, the idea is that c(X) is true at a point if that point is the left periphery of a constituent
of type X. The logic defined by this axiom together with those defining all strings is de-
noted by ΘG. The frames for ΘG are not really strings over A since we have the additional
constants as well. The aim is therefore to eliminate these constants. This can be done
rather easily as follows. First, observe that G† is a system of equivalences of the form
p↔ ψ(p) where ψ(p) contains p only embedded in 〈ζ〉. Now the following holds.

Lemma 3.3. In the logic of finite strings, the formula ϕ(p) := p↔ α∨ β∧ 〈ζ〉p, where α
and β do not contain p, is a global implicit definition of p. That is to say, it holds that if
in some model ϕ(p) and ϕ(q) holds everywhere then p↔ q holds everywhere as well.

The proof is a simple induction on the depth of a point in the frame. Now, an explicit
definition on p is a formula ψ in which p does not occur such that if in some model ϕ(p)
holds globally, then p ↔ ψ holds globally as well. In the present circumstances such a
formula exists. It is

〈(β?; ζ)∗〉α

Using this, we can step by step eliminate the constants c(X) and replace G† by a constant
formula that does not make use of them any more. In that way, the regular language is
shown to be axiomatically definable in PDL`. Notice that we have actually produced an
algorithm to convert a regular grammar into an axiom. Furthermore, the axiom is easily
translated into monadic second logic, so that all transitions here are constructive.

Theorem 3.4. The following are equivalent for any finite alphabet A and any language L
over A.

(1) L is regular.
(2) L is PDL`–definable.
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We remark here that instead of PDL with converse, we could have taken standard PDL
based on two operators which are tense duals of each other. However, these two are
expressively equivalent, as remarked above.

4. C–F L

The results of the previous section showed how we can translate between various ways
of defining the same set of objects, in this case finite strings over A. The only problem
is that regular languages are not powerful enough. Even programming languages are not
regular languages. They are — with some small exceptions — context–free. Fortunately,
context–free languages turn out to have a theory that is almost as favourable as that of the
regular languages. The following is the correspondence between the generative and the
analytic view. (We will not define here the notion of a pushdown automaton.)

Theorem 4.1 (Chomsky). Let A be a finite alphabet and L a language over A. Then
following are equivalent.

(1) There is a context–free grammar G such that L = L(G).
(2) There is a pushdown automaton A such that L = L(A).

Next we will aim to extend our results on definability. For that we must abandon our
model structures. They are too poor that we can define anything non–regular even by
using monadic second order logic. (However, second order logic would be enough if
we use binary relations, for example. But that is far too powerful.) Therefore, rather
than talking about strings we shall now talk about trees. Recall that each derivation of
a string ~x in a context–free grammar also defines a so–called parse or analysis tree of ~x
(which usually depends on the derivation). This tree is a pair 〈T, `〉, where T ⊂ ω∗ is a
tree domain and ` : T → A ∪ N a labelling function. Here, a tree domain is a set T of
finite sequences of natural numbers such that (i) if ~x ∈ T and ~y is a prefix of ~x then also
~y ∈ T and (ii) if ~xi ∈ T and j < i then also ~x j ∈ T . The tree ordering is taken to be the
converse of the prefix ordering. (So the empty sequence is the maximal element.) For
future reference a constituent of T is a subset of the form ↓ x := {y : y ≤ x}. If the tree
is labelled, the constituent will also be a labelled tree, with the appropriately restricted
labelling function.

We give an example. The following is a context–free set of rules.

S → S S S → A B

S → B A A → S A

A → A S A → a

B → S B B → B S

B → b

The start symbol is S and the terminal alphabet is {a, b}. The following is a derivation of
ababab.

S, AB, ASB, ASSB, aSSB, aSSb, aBASb, abASb, abaSb, abaBAb, abaBab, ababab
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F 1. An analysis tree
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This grammar generates the set of all strings over a and b which contain the same number
of a’s and b’s. A derivation defines a so–called parse–tree or analysis–tree (see ([Harri-
son, 1978]) if details are needed). In the case of the previous derivation we get the tree
shown in Figure 1.

Now take monadic second order logic again, with two binary relations < (daughter
of) and @ (left of) and unary predicates Pa for each a ∈ A and PX for each X ∈ N.
We can axiomatize the theory of all labelled trees over A and N. This can be done for
any context–free set of trees. In fact, for this we hardly need the power of MSO. But
now notice the following. We may remove from the signature any number of predicates
PX. (The resulting structures are trees in which the labelling function is only partially
defined.) If S is a set of structures that is obtained in this way we say that S is the
projection of a context–free set of trees. Any projection of a context–free set of trees
is also MSO–definable. For the predicates for the nonterminals can be eliminated by
existential quantification. The converse also holds, and this is the first result we note.
Here, a set S is boundedly branching if there is a number n such that each tree of S is at
most n–branching.

Theorem 4.2 (Doner, Thatcher, Rogers). Let A be a finite alphabet and S some set of
finite trees over A. Then the following are equivalent.

(1) S is the projection of a context–free, boundedly branching set.
(2) S is MSO–definable.
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The modal analysis can likewise be boosted up to the context–free case. We take two
basic operators, ζ (interpreted as immediate left sister of ) and η (interpreted as immedi-
ately below of ). For each symbol of A and N we add constants. The logic of n–branching
trees where each constant is true at exactly one node is denoted by Oltn. Consider now an
extension of Oltn by a constant axiom χ. Then the set of finite trees satisfying Oltn ⊕ χ is
a context–free set. We say that a set of finite n–branching trees is PDL`–definable if it is
the model set of a logic Oltn ⊕ χ, where χ is a constant formula.

Theorem 4.3. Let A be a finite alphabet and S some set of finite trees over A. Then if S
is PDL`–definable, S is the projection of a context–free, n–branching set.

The use of these theorems is the following. Suppose that we have a rather high order
principle on syntactic structures, such as every trace is 1–subjacent to its antecedent —
you do not need to know here what that exactly means — then we have established that
if this principle can be codified using either monadic second order logic or PDL with
converse, it actually defines a set of context–free structures (modulo projection). In this
way both [Rogers, 1994] and [Kracht, 1995] have shown that various theories of grammar
(locality theory by [Manzini, 1992] and relativized minimality by [Rizzi, 1990]) predict
that English is context–free since it does not participate in unbounded head–movement,
which has been isolated as the only source of non–context–freeness.

5. M S O L  D L?

The preceding discussion seems to imply that there is actually no difference between
the monadic second order logic and PDL (with or without converse). However, in the
context of trees one can show that MSO is actually expressively stronger. (This is why
in the last theorem we have an implication and not an equivalence.) The example is the
following. Take all homogeneously ternary branching trees of finite depth. Let S be the
set of these trees decorated with boolean labels P and Q such that (a) P is true along a
binary branching subtree and (b) Q is true at all leaves at which P is true. The following
context–free grammar generates these trees.

P ∧ ¬Q → P P ¬P

P ∧ ¬Q → P ¬P P

P ∧ ¬Q → ¬P P P

Now consider the projection of this set onto the language containing only Q. Then this set
is not PDL–definable, but it is MSO–definable. The proof is given in ([Kracht, 1999]).

The choice between the two language is therefore one of expressivity. It seems there-
fore to be just a matter of convenience which one we chooses. However, there is more
to that. Let F be a finite set. An F–tree is a pair 〈T, `〉, where T is a tree domain and
` : T → ℘(F) a function. Define an F–grammar to be a pair 〈L, F,Φ〉, where F is a finite
set, the set of features, L is an F–lexicon and Φ a (finite) set of theorems in some language
for trees containing constants for the features from F. L consists of a finite set of pairs
λ = 〈a, E〉, where a is a member of the alphabet and E ⊆ F a set of features. We call
χλ :=

∧
f∈E f ∧

∧
f∈F−E ¬ f the characteristic formula of λ. The disjunction of all χλ where

the first component of λ is a is called the characteristic formula of a. We say that a has
the feature f ∈ E but that it lacks the feature g ∈ F − E. Φ accepts a string ~x = a0 . . . an−1
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iff there exists an F–tree T with yield x0 . . . xn−1 such that T |= Φ and for each i < n the
label of xi satisfies the characteristic formula of ai.

Let T = 〈T, `〉 be an F–tree and G ⊆ F. Then TG := 〈T, `G〉, where `G(x) := `(x) ∩G
is a G–tree and called the projection of T onto G. Now call a feature f ∈ F inessential
in a set S of F–trees if any tree in S F− f is the projection of exactly one tree from S .
This means that if we already know how the features distinct from f are distributed, we
know how f itself is distributed. Call f eliminable if there is a formula ϕ using only the
constants for features distinct from f such that

Th S |= f ↔ ϕ

It follows that if f is eliminable it is also inessential, but the converse need not hold, as
the above example shows. In MSO, however, every inessential feature is also eliminable.
Therefore, whether or not an inessential feature is actually eliminable depends on the
logical language. We may however also turn this around and use the strength of the
logical language to define the complexity of languages. A language S (a set of F–trees)
has complexity at most Θ, where Θ is some logical language, if (a) S is Θ–definable and
(b) every inessential feature of S is Θ–eliminable. We have seen above that there are
languages whose complexity is MSO but not PDL. It has been shown in ([Kracht, 1997])
that the logic with four modal operators introduced earlier is strictly weaker than PDL
and still stronger than boolean logic. (There is some maneuvering involved to adjust the
definitions to the last two cases for we also have to satisfy (a). The interested reader is
referred to the paper.)

6. B C–F L

As we have seen, all logics presented here define some restricted class of languages,
namely context–free languages, although they define them not via their strings but via
their structure trees. In fact, for some years it has been the consensus among many lin-
guists that natural languages are in fact context–free. G (Generalized Phrase Structure
Grammar) was built on this assumption. However, in the mid eighties rather firm evi-
dence appeared that there exist non–context–free languages. The evidence was based on
data from Züritüütsch (see [Shieber, 1985]). To appreciate these results, let us give some
examples from three languages, English, German and Dutch. (The examples are transla-
tions of each other.)

(1E) that the children swim.
(2E) that Mary teaches the children to swim.
(3E) that Peter lets Mary teach the children to swim.

(1G) daß die Kinder schwimmen.
(2G) daß Maria die Kinder schwimmen lehrt.
(3G) daß Peter Maria die Kinder schwimmen lehren läßt.

(1D) dat de kinderen zwemmen.
(2D) dat Maria de kinderen laat zwemmen.
(3D) dat Peter Maria de kinderen laat leren zwemmen.
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These examples can be continued ad libitum. The word order schemata of these languages
are remarkably different. To see this more clearly, let us abbreviate the word order as fol-
lows. We write Vi for the ith verb and S i for the subject of the ith verb. Then we have

English : S 1 V1 S 2 V2 S 3 V3 . . .
German : S 1 S 2 S 3 . . .V3 V2 V1

Dutch : S 1 S 2 S 3 . . .V1 V2 V3 . . .

We say that in German the dependencies between verbs and their subjects are nested
while they are crossed in Dutch. Now, this suffices to show that Dutch cannot be strongly
context–free since one cannot get the right constituent analysis using a context–free gram-
mar. Yet, the data above do not show that no context–free grammar can generate the Dutch
language as a string language. Namely, we can simply generate the crossed dependencies
as nested ones. Yet, a proof that Dutch is not weakly context–free has been found by Huy-
bregts, see [Huybregts, 1984]. He showed that there are verbs which require certain types
of subjects, and so generating the dependencies nested rather than crossed would mean
that one looses control over the restrictions on subjects. Shiebers proof on Züritüütsch
uses a similar argument. Züritüütsch allows for the Dutch type word order and moreover
there are raising verbs assigning dative case and those assigning accusative case. Since
case marking is distinct, this proves the claim. 1

It has of course always been felt that even if some languages are context–free as string
languages, the corresponding set of analysis trees in many cases is not. An example for
which this has been argued is German. (The standard analysis within transformational
grammar is that all lower verbs raise to the highest verb to form a single complex verb.)
Also, recently it has been shown that German is most likely not weakly context–free
either (see [Groenink, 1997]). These intuitions however were rather difficult to condense
into real proofs, so one should say that linguists hoped rather than feared that one would
be able to find non context–free–string languages. After their discovery matters became
rather complex. On the one hand, transformational grammar has always been able to
handle such languages, and no change was called for; similarly for , which was built
on non–cf structures anyway. However, surface based approaches had to adapt to the new
situation. Several recipes have been tried. One was the introduction of string vectors to
enhance the power of manipulation, another was the introduction of stacks of indices in
the nonterminals, a third was the use of adjunction. These approaches are by no means
identical; typically they lead to different structural analyses. For a survey of different
approaches see [Joshi et al., 1991] and [Groenink, 1997].

We have earlier quoted results to that Government and Binding (GB) predicts that lan-
guages are strongly context–free if they have no unbounded head movement. A case in
point is English. In that case it was possible to eliminate movement by a mechanism that
is known as gap–threading, which has first been proposed in  (see [Gazdar et al.,
1985]). It allows to dispense with movement in favour of passing on some finite amount
of information on the displaced element to its corresponding gap. If we want to analyse
the whole theory however we cannot hope to eliminate head movement in a similar way.

1Notice that the verbs teach, let and so on on the one hand take an object (which in Züritüütsch can be
either direct or indirect object) and on the other hand also an infinitive, whose subject is the object of the
higher verb. This is why these noun phrases behave both as objects and as subjects.
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Züritüütsch is known to be not context–free. Yet there is a straightforward analysis in
GB using head movement. It follows that head movement adds some complexity to the
theory. It is therefore indispensable to analyse in detail the structures created by GB.

7. A O  G  B T

Let us now take a look at the standard GB theory. GB is part of the tradition called
transformational grammar, which takes its name from the fact that it uses transforma-
tions. A transformation is an operation on trees, typically a unary operation. The basic
idea has been that the structures of a language are created in two stages. In the first stage a
so–called deep structure is generated by a rather simple grammar (a context–free grammar
of some sort). In the next stage, transformations successively operate and transform the
deep–structure into the surface structure. This surface structure is a tree and may contain
phonetically empty elements. However, if all these things are stripped off we obtain the
sentence in its official form. Here is an example from German. The verb anvertrauen
has three arguments, a subject (S), a direct object (DO) and an indirect object (IO). At
deep–structure these come in the order S–IO–DO, with the verb being last. From this
basic order the surface sentence is derived by a series of transformations, which consist in
simply moving around certain constituents. To be able to track the derivation the notation
of traces with indices is used. A t is put at the place where the string originates, and give
it an index. The displaced constituent also gets this index. Notice that only constituents
may move and therefore they are the bearers of indices. Some constituents are highlighted
by brackets.

der König seinem Minister diese Geheimnis anvertraute. (deep structure)
[dieses Geheimnis]1 der König seinem Minister t1 anvertraute.
vertraute2 [dieses Geheimnis]1 der König seinem Minister t1 an t2.
[der König]3 vertraute2 [dieses Geheimnis]1 t3 seinem Minister t1 an t2. (surface structure)
der König vertraute dieses Geheimnis seinem Minister an. (phonetic form)
The king confided this secret to his minister.

This model has been reformed a number of times. In GB, it is assumed that there are four
so–called levels of representation, D–structure (the former deep structure), S–structure
(the former surface–structure), LF (logical form) and PF (phonetic form). A derivation
is a pair ∂ = 〈~S, j〉 where ~S = 〈Si : i < p〉 is a sequence of structures and j < p. We
say that S0 is the D–structure of ∂, S j its S–structure or surface form and Sp−1 its logical
form. The phonetic form is derived from the surface form by means of some processes
that were rarely studied in GB. For our purposes we may think of the PF simply as the
string associated with the surface form (together will all empty elements deleted). Each
Si+1, i < p − 1, is derived from Si by means of applying the rule Move–α. We will
specify its action later. It is assumed that for each level there is a set of principles that
defines well–formedness at this level. In fact, a level of representation is one at which
such conditions are operative beyond the mere fact that the sequence is a derivation. To
give an example, at S–structure each noun phrase must have case. This need not hold at
D–structure. So the situation is like this. We start with a structure S0. For it to be a le-
gitimate start, we must satisfy the conditions of D–structure. Next we successively apply
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Move–α. If the conditions for S–structure are met for Si, we may call the structure the
S–structure and derive the phonetic form from it. (Also PF has a set of well–formedness
conditions associated for it.) After that we continue to apply Move–α until the conditions
of LF are met. If we succeed, we have a well–formed derivation.

 - S1 { S2 { S3 . . . { Si



?

@
@

@
@R

~x -

{ Si+1 . . . { S j �

Now, what is this rule of Move–α? It consists in taking some constituent of type X in
the tree, and moving it to some other place, and coindexing the two elements. This is
illustrated in Figure 2. 2 By a conjuration of the various principles at the levels of rep-
resentation it turns out that the set of places to which the constituent X can be moved as
well as the set of constituents that are eligible for movement in the first place are quite
restricted. We will note here that the constituent Xi must in particular c–command ti. 3

This is defined as follows.

Definition 7.1. Let 〈T, <〉 be a tree and x, y ∈ T. x c–commands y iff x is the root or there
is a node z immediately above x and z ≥ y.

Another condition, explained later, says that ti must be subjacent to Xi. The use of
the term movement is actually inaccurate. What happens is rather complex. At the place
where X has been we insert a so–called trace, which gets an index that is identical to the
index of X. (So, we need to assume that constituents get equipped with an index at D–
structure. But there are other solutions.) In the received terminology we say that there is
a chain–link between the new X and the trace just inserted, and we call Xi the antecedent
of the trace ti, and the trace is in some circumstances also referred to as the gap with filler
Xi. Of course, Xi may be displaced from its new position as well, so that we get a series
of connected chain links for a single D–structure constituent, called a chain. Notice that
when Xi is moved to a new position, it leaves a trace t′i of identical index, which now
c–commands the original trace ti. 4

2Actually, in the linguistic literature one talks of the constituent X when one actually means a particular
constituent of category X. We will also use this kind of talk here hoping that it causes no confusion.

3Talk of Xi as if it uniquely identifies a constituent is justified in this context, since there is always only
one full constituent with a given index.

4In the standard literature, one uses notations such as t′i , t′′i etc to distinguish the various traces of the
same constituent Xi. However, the actual representation just contains occurrences of ti at different places.
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F 2. A Movement Step
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F 3. A Linking Step
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8. M S

For many linguists of different background it has always been an alternative to view
movement simply as adding another daughter link. In the special jargon one speaks of
structure sharing. Consider the following configuration, where Y is immediately above
X, which has been displaced and received some index i. Let Z immediately dominate the
trace of X, ti.

. . . [. . . Xi . . . [. . . ti . . .]Z . . .]Y . . .
Then we assume that Xi and ti are represented by one and the same structure (isomorphic
to X), which is immediately below Y and Z. We say that Y and Z share the structure X.
For example, rather than proceeding from (a) to (b) as in Figure 2 we now proceed from
(a) to (c), as shown in Figure 3. In  this idea has been made the leading philosophy.
Within transformational grammar this move has always been resisted, for reasons that are
actually not so clear. For some brief period in the 90ies Chomsky has revived an older
idea that what we analyse as movement is actually a combination of copying and deletion,
though the deletion is done at some level of representation rather than immediately after
the copying. Hence, we rather generate the following structure

. . . [. . . X . . . [. . . X . . .]Z . . .]Y . . .

This is exemplified in Figure 4. The absence of indices is actually fully intentional. The
corresponding structure is written out in a string as follows.

[[a man] [was [seen [a man]]]].
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F 4. A Copying Step
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A empty sequence is marked by underlining it. It was believed — wrongly, I think — that
copying makes the formation of chains superfluous.

Even if transformational grammarians have never proposed the use of reentrancy and
would probably even reject them as legitimate syntactic objects, it is shown by [Kracht,
2001] that the reentrant syntactic structures have certain advantages over the correspond-
ing trace structures from a linguistic point of view. Here we will point out a different
advantage of these structures. [Rogers, 1994] has argued that the addition of indices or
the ability to talk about isomorphic constituents require logical tools that easily yield un-
decidability. If one is careless enough, one ends up with a variant of third order logic
over trees, a rather strong logical system indeed. However, there is no need to do things
like that. We may simply use reentrant structures instead of the standard ones. In what
is to follow in this paper we will actually show that with the help of reentrant structures
we can give a full logical analysis of GB–theories without assuming too much power.
Namely, a fragment of the monadic second order theory corresponding to PDL is with
high probability already enough. This means in particular that we make no use of deriva-
tions at all (and this seems to be the reason why reentrant structures are so unpopular with
transformational syntacticians). We will outline this approach here. Let 〈T,≺〉 be a tree.
A pre–chain is a set of constituents of the tree which is linearly ordered by c–command.
A pre–chain is a pre–trace chain if all but one constituents is a trace. If we are given a
syntactic structure in a derivation (see the previous section), then the chains are the sets
of all constituents with the same index. We define a pre–trace chain structure (preTCS)
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to be a pair 〈T,C〉 where T is a tree and C a set of pre–trace chains subject to certain
conditions that are of no immediate concern here.

A pairG = 〈G,≺〉, where ≺⊆ G2 is called a rooted acyclic graph if the transitive closure
of ≺ is acyclic and has a unique maximal element, called the root.

Definition 8.1. A pre–multidominance structure (preMDS) is pair M = 〈M,≺〉 such
that (1) M is a rooted acyclic graph, (2) for each x ∈ M the set M(x) := {y : x ≺ y} is
linearly ordered by ≺+, which is denoted by <. M is a tree if ]M(x) ≤ 1 for all x ∈ M.

Here, ≺ is the relation is immediately dominated by and < the relation is dominated by.
A pair 〈x, y〉 where x ≺ y is called a link. If y is the maximal element of M(x) with respect
to <, 〈x, y〉 is called the surface link of x. From a preMDS we can construct a movement
structure as follows. Call a sequence I ∈ M+ an identifier if its first element is the root
and if I = J; x; y; K for some sequences J,K then y ≺ x (ie 〈y, x〉 is a link). We write
J ≺ I if J = I; x for some x. It is easy to see that the set of identifiers forms a tree with ≺
the relation of immediate domination. (This is the standard unravelling technique.) Now
call a link of I a pair 〈x, y〉 such that I = J; y; x; K for some sequences J and K. I is a
surface identifier if for all links of I are surface links. I is a trace identifier if it has the
form J; x; y where (a) J; x is a surface identifier and (b) 〈y, x〉 is a non–surface link. Let
T (M) be the set of surface identifiers and T(M) := 〈T (M),≺〉. Then T(M) is a tree. Now
say that I identifies x if x is the last element of I. Pick an element x ∈ M. C(x) will
consist of all constituents of T(M) that are of the form ↓ I, where I identifies x. The pair
〈T(M), {C(x) : x ∈ M}〉 is a preTCS. One can also pass easily from a preTCS T = 〈T,C〉
to a preMDS. Let x ≈ y if there is a chain C such that ↓ x, ↓y ∈ C. Put [x] := {y : y ≈ x} and
[x] ≺ [y] if there exists x′ ∈ [x] and y′ ∈ [y] such that x′ ≺ y′. Finally, [T ] := {[x] : x ∈ T }
andM(T) := 〈[T ],≺〉. M(T) is a preMDS.

These constructions show that it is possible to pass back and forth between the original
structures of GB (in the guise of preTCSs) and the reentrant structures, called preMDS.
A derivation is a sequence of preTCSs whose initial member is a tree and in which each
noninitial member is derived from the previous member by means of movement. The
analogous operation on preMDSs is called a link extension.

Definition 8.2. Let M = 〈M,≺〉 be a preMDS. An element x is an unmoved element if x
is the root or M(x) = {z}, where z is an unmoved element.

Definition 8.3. LetM = 〈M,≺M〉 and N = 〈N,≺N〉 be preTCSs. N is called a 1–step link

extension ofM if N = M and ≺N = ≺M ∪ {〈x, y〉}, where 〈x, y〉 < ≺M and y is an unmoved
element. A derivation of preMDSs is a sequence 〈Mi : i < p〉 such that M0 is a tree and
Mi+1 (i < p − 1) is a 1–step link extension ofMi.

Lemma 8.4. LetM = 〈M,≺〉 be a preMDS. Then there is a derivation 〈Mi : i < p〉 such
thatM = Mp−1 and 〈Mi+1, <i+1〉 = 〈Mi, <i〉 for all i < p−1. In particular, 〈M, <〉 is a tree.

It turns out that the operations defined earlier not only translate preTCSs into preMDSs
and back but they translate derivations into derivations:

Theorem 8.5. For each derivation on preTCS the analogous sequence of preMDSs is a
derivation. Conversely, for every derivation of preMDSs the corresponding sequence of
preTCSs is a derivation. This correspondence is bijective.
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This theorem allows to switch freely between these two representations. Let us say
that we have simplified things at least at three points: (A) we have omitted the level
of logical form, (B) the structures are unordered and (C) there is no adjunction, only
substitution. All this can be remedied. However, the details are lengthy and unrevealing.
The interested reader is referred to the abovementioned paper. We will continue with this
simplified model.

9. A G  B T

Now that we have introduced the new structures let us attack the question whether it is
possible to write for some given GB theory an equivalent logical theory over preMDSs.
The main obstacle is the notion of a derivation. We wish that the logical theory says
directly, given a structureM, whether or not it is a legitimate structure without taking re-
course to the derivational history. That this is at all possible can be motivated from the fact
that the logical form (which in our simplified model is already the S–structure) contains a
record of the derivational history in form of the traces (alias chains). Although the deriva-
tional history cannot be uniquely recovered, the chains alone give as much information as
we need. For example, we can easily see how long the derivation was. (Simply count the
number of traces.) Yet, the details are still quite involved. We will begin by noting that
the class of preMDS is PDL`–definable in a language using one primitive program, up.
We write down for its dual, up`. Furthere, write ^ for 〈up〉, ^ for 〈down〉, ^

+ for 〈up+〉
and ^

+ for 〈down+〉.

(a) �
+(�

+p→ p)→ �
+p (b) �

+(�
+p→ p)→ �

+p
(c) �

+
^
+p→ ^

+
�
+p (d) ^p ∧ ^q→ ^(p ∧ (q ∨ �

+q ∨ �
+q))

(a) and (b) together force that the structures are finite and that up is irreflexive and cycle–
free. The existence of a root is a consequence of (c). That M(x) is linearly ordered by <
is the content of (d).

Next we wish to implement the various principles operative at the levels. The difficulty
that we face here is that if ϕ is a condition for D–structures, we cannot check ϕ at S–
structure, since the two structures are in general not isomorphic. The D–structure can
be reconstructed as follows. Call a link 〈x, y〉 a base link if y is the lowest element of
M(x). The D–structure is that part of the S–structure that is constituted by the root and
all base links. The idea is therefore to substitute the formula ϕ expressing a condition
on D–structure by a formula ϕ• such that the S–structure satisfies ϕ• iff the D–structure
satisfies ϕ. So, rather than using up and down by which we may follow any link we must
use the relation ≺•:= {〈x, y〉 : 〈x, y〉 is a base link} and its converse. It is not possible to
do that using some program construct, we have to introduce a new relation up• into Π0

together will the following axioms.

(e) 〈up•〉p→ [up•]p ( f ) 〈up•〉p→ ^p
(g) ^q→ 〈up•〉^

∗q

These axioms correspond to the following conditions. up• is a partial function (by (e)),
whose graph is contained in ≺ (by ( f )) and which picks out the least element from M(x)
for given x (by (g)). We now enrich the preMDS by a second accessibility relation, ≺•,
which encodes the D–structure. M is a tree iff ≺•=≺. Therefore, M = 〈M,≺M,≺

•
M〉 is
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derived from N = 〈N,≺M,≺
•
M〉 iff M = N, ≺•M=≺

•
N and ≺M⊇≺N (cf Lemma 8.4). Now let

ϕ be a formula. Then let ϕ• be the result of replacing up by up•.

Lemma 9.1. Let M = 〈M,≺,≺•〉 be a preMDS and N its D–structure. Then M |= ϕ• iff
N |= ϕ.

The proof straightforward. ϕ• uses only relations defined over up• and down•. So
〈M,≺,≺•〉 |= ϕ• iff 〈M,≺•〉 |= ϕ• iff N |= ϕ•. Notice that it is immaterial whether or not
ϕ contains occurrences of up• and down•, though by construction it does not. Hence, on
condition that the D–structure conditions are PDL`–definable, we can define them also
as S–structure conditions in an extended language.

Now for the last part, the well–formedness of the derivation. The main condition is the
following. If Xi is the antecedent of ti then

(1) Xi c–commands ti but does not dominate ti and
(2) ti is subjacent to Xi.

Our structures are such that condition (1) is automatically fulfilled. Condition (2) must
be enforced by some axiom, however. It is defined as follows. There is a notion of a bar-
rier, which can be defined by means of some constant formula b. We will not go into the
details of that here. Let u be the node immediately dominating Xi. Then ti is subjacent to
Xi if the open interval ]ti, u[ in the tree contains at most one barrier. This is the definition
for trees. To be able to translate this into a condition on preMDSs, we must analyze the
relationship between preMDSs and its derivations. The problem is that a given preMDS
(or given a preTCS) there are alternative analyses. We may illustrate this with split–DPs
in German. (We annotate each step with the type of movement, for those in the know.)

Diese Bücher hatte ich damals alle meinem Chef gegeben. (phonetic form)
I had then given all these books to my boss.
damals ich meinem Chef alle diese Bücher gegeben hatte. (d–structure)

First Derivation:
[alle diese Bücher]1 damals ich meinem Chef t1 gegeben hatte. (Scrambling)
ich2 [alle diese Bücher]1 damals t2 meinem Chef t1 gegeben. (Scrambling)
hatte3 ich2 [alle diese Bücher]1 damals t2 meinem Chef t1 gegeben t3. (V2)
[diese Bücher]4 hatte3 ich2 [alle t4]1 damals t2 meinem Chef t1 gegeben t3. (Topicalization)

Second Derivation:
[diese Bücher]1 damals ich meinem Chef [alle t1] gegeben hatte. (Topicalization)
[diese Bücher]1 [alle t1]2 damals ich meinem Chef t2 gegeben hatte. (Scrambling)
[diese Bücher]1 ich3 [alle t1]2 damals t3 meinem Chef t2 gegeben hatte. (Scrambling)
[diese Bücher]1 hatte4 ich3 [alle t1]2 damals t3 meinem Chef t2 gegeben t4. (V2)

We see that up to renumbering the structures are the same. However, in the first deriva-
tion the phrase die Bücher first takes a free ride up inside the quantified phrase alle diese
Bücher and then moves further up to the sentence initial position. In the second deriva-
tion, it moves in one step into the final position. One can see that the distance of the
movement (in terms of nodes) is larger.
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How is the difference between these derivations accounted for? The answer is not clear,
in fact. There are two competing principles for derivations that select different derivations.
The first is called Freeze. A derivation satisfies Freeze if no constituent is moved out of
a derived constituent (ie one that has been moved before). The first derivation does not
satisfy Freeze, but the second does. Another principle is that of Shortest Steps. It says
that a derivation must the shortest possible movement steps. The first derivation satisfies
Shortest Steps, but the second does not. There are structures which have derivations
that satisfy neither principle. It can be shown that Freeze–derivations always choose the
longest possible path. It turns out that these paths have rather unique properties that make
them suitable for our purposes.

Let x, y ∈ M and x < y. A path from x to y is a subset Π of M that has x as lowest
element, y as maximal element and which is connected via ≺ and linearly ordered by <.
The length of Π is its ]Π − 1. The barrier count is the number of barriers in Π − {x, y}.

Lemma 9.2. LetM be a preMDS, x, y ∈ M and x < y. There is a unique longest path Λ
from x to y. Moreover, every path from x to y is a subset of Λ.

For a proof, notice that by Lemma 8.4, M is s derived from a preMDS 〈M,≺0〉 that is
also a tree. Hence, 〈M, <〉 is a tree and <=≺+0 . So, take x < y. Now set Λ := [x, y]. This
set is linearly ordered by <. It is also maximal. We have to show that it is connected via ≺.
But <=≺+0 by Lemma 8.4. So, Λ is ≺0–connected and therefore also ≺–connected, since
≺0⊆≺.

Now consider an element x. Let y ∈ M(x) and let z be the minimal element of M(x) such
that z > y. Then a pathΠ from y to z is called movement link of x at y. Π is called maximal
if it is of maximal length, and minimal if it is of minimal length. Now, informally stated,
the situation is as follows. Given a preMDSM, a Freeze derivation satisfies Subjacency iff
all maximal movement links have barrier count ≤ 1. In this reformulation we can modally
define those preMDSs which are generated from trees by means of Freeze derivations
respecting Subjacency.

U(p) := �
∗
�
∗(p→ �

+
¬p ∧ �

+
¬p)

U(p) holds at x iff the set of points satisfying p is an antichain.

K(p, q, r) := p ∧ U(p) ∧ U(q) ∧ U(r) ∧ ^q ∧ ^(r ∧ ^q) ∧ �
∗(^

+q→ ¬^r)

K(p, q, r) holds at x if there are y and z such that y > x, x ∈ M(z), q holds at y, r at z, the
set of points for p, q and r are antichains, and y is the smallest element > x which is also
in M(z).

∇ := up; (¬b?; up)∗; b?
σF := K(p, q, r)→ [∇2]^

+q

Theorem 9.3. M |= σF iff it has a Freeze–derivation satisfying Subjacency.

10. S S

Now, we wish to extend this result to Shortest Steps derivations. Our candidate is
σS . It says that for each element we can design a sequence of minimal movement steps
satisfying subjacency.

σS := K(p, q, r)→ 〈∇2〉^
+q
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Obviously, if there exists a unique minimal path then this formulation would suffice. For
then a Shortest Steps derivation satisfies Subjacency iff all minimal movement links have
barrier count ≤ 1 iff there always exists some path from x to y which has barrier count
≤ 1. However, matters are more difficult here. For there need not exist a unique smallest
path. A conterexample is as follows. Let M be the set natural numbers < 5 and ≺=
{〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, 〈0, 3〉, 〈1, 4〉}. Then ≺+=<. Let x := 0 and y := 4. The longest
path from x to y is the whole interval. However, there exist two minimal paths: {0, 3, 4}
and {0, 1, 4}. Moreover, there exist structures in which the minimal path is actually not
eligible, that is, it does not correspond to an actual derivation. This is exemplified in
Figure 5. In this derivation it is the constituent marked A that moves first. After that B
moves and in the third step C jumps out of the landing site of A. However, the shortest
path would definitely be the one from D. However, D is empty, since its content has been
moved out of B at the very first step. So, D is not eligible. The problem that we see here is
that one cannot have all elements optimize their journey independently.

What can be done? In [Kracht, 2001] it is proposed that a path is a shortest path if its
links are the highest possible.

Definition 10.1. Let 〈u, v〉 be a link. 〈u, v〉 is maximal for y if there is no v′ > v such that
〈u, v′〉 is a link and v′ ≤ y. Let x and y be points such that x < y and Π a path from x to y.
Π is called contracted if all links are maximal for y.

Lemma 10.2. For each x and y such that x < y there exists exactly one contracted path
from x to y.

The contracted paths are not necessarily the shortest paths and this is the reason that
we cannot employ a definition of subjacency using σS . Notice that in order to define the
notion of maximality we need to compare the link 〈u, v〉 with an alternative link 〈u, v′〉.
Such definitions are generally beyond the capacity of PDL. Hence, in general we cannot
define Shortest Steps derivations. However, structures in which contracted paths are not
minimal are rather contrived. It would therefore seem that if there are additional principles
that conjure to exclude such pathological structures, we can actually define Subjacency
for derivations satisfying Shortest Steps.

We note that while Freeze is something that can be checked on a derivation by checking
each step separately, Shortest Steps can only be checked by comparing alternative deriva-
tions from the same structure. For example, suppose that in the second derivation of the
preceding section there is no other place where to move the phrase die Bücher. Then
this step is the shortest one available at that moment. This derivation would therefore sat-
isfy Shortest Steps. The crux is however that there is an alternative derivation that saves
the phrase die Bücher to move that long. Shortest Steps is therefore a transderivational
economy principle in the sense of the Minimalist Program.

11. D I

The use of formal analytic tools can lie among other in nontrivial technical results, such
as decidability results. Indeed, there are certain rather satisfying results concerning de-
cidability of systems. However, the balance between expressivity on the one hand and the
wish to maintain decidability is rather difficult to keep. A very early result is [Peters and
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F 5. The Shortest Steps Paradox
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Ritchie, 1973], who have shown that transformational grammars with a regular grammar
generating the deep–structures using very elementary transformations can generate any
given recursively enumerable languages. This has been seen as a negative fact, since the
claim that certain languages are generable by transformational grammars is then nearly
vacuous. We will argue below that GB is different in this respect, though probably too
weak to generate all human languages.

The optimal case is provided by regular languages.

Theorem 11.1. It is generally decidably, given two regular grammars G and H, whether
L(G) = L(H).

The proof is not difficult. It uses certain constructions on automata. This property is
lost already when we move to context–free languages.

Theorem 11.2. It is in general undecidable, given two context–free grammars G and H,
whether L(G) = L(H).

In fact, there is also a rather powerful theorem on context–free languages, which is as
follows. A homomorphism of languages is a map h : A∗ → B∗, where A and B are the
respective alphabets of the languages, which commutes with concatenation. Moreover,
h(ε) = ε.

Theorem 11.3. Any recursively enumerable language is the homomorphic image of an
intersection of two context–free languages.
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There are linguistic theories which assume that sentences have two different analysis
trees. Examples are Lexical Functional Grammar and Autolexical Grammar; for the latter
see [Sadock, 1991]. Let us call them dual analysis grammars. If these analysis trees are
individually generated by context–free grammars G and H, respectively, then call such a
grammar context–free. If we additionally assume that there may be empty categories, then
any recursively enumerable language possesses a context–free dual analysis grammar. 5

This shows how powerful certain theories may become. However, we have from [?] the
following result.

Theorem 11.4 (Rabin). The MSO theory of any projection of a context–free set of trees is
decidable.

It follows that if we have just any two finitely axiomatized theories of projections of
context–free sets, we can decide whether or not they define the same set. So, while on the
string level matters are hopeless, on the structure level they are again as nice as we can
hope for. One can also show that for two context–free grammars it is decidable whether
they generated the same parenthesized strings (this is due to [McNaughton, 1967]).

Now let us move into the non context free case. Here matters are still unclear. [Rogers,
1994] warns us that unlimited use of higher order devices can yield undecidability. How-
ever, the structures that we have defined are rather constrained and we wish the launch the
following

Conjecture 11.5. The MSO theory of the set of preMDSs is decidable. In particular the
PDL–theory of the set of preMDSs is decidable.

It would follow, we claim, that the theory of the full structures for GB is decidable
(though we have not given evidence for that claim let alone defined these structures). It
seems that for all intents and purposes the PDL–fragment is enough. Now, this is only the
minimal logic. We still have to account for theories of sets of preMDS corresponding to
certain possible human languages. However, if one follows the philosophy of GB, there
is little variation to be expected, which mainly consist in alternative variants of defining
barriers, bounding nodes etc and of course the lexicon. It seems therefore that the minimal
logic is a generic case from which a general result can be established.

Be matters as they are, there are reasons to believe that GB in this formulation is not
strong enough to generate all possible human languages. The evidence is based on the
contention that GB theories imply that human languages generate semilinear sets (see
[Harrison, 1978] for a definition and details). Space does not permit us to give evidence
for this contention. [Michaelis, 2001] has recently proved this claim for Stabler’s formal-
ization of the Minimalist Program (see [Stabler, 1997]). This gives some substance for
our claim. Now, [Groenink, 1997] as well as [Michaelis and Kracht, 1997] give evidence
that human languages are not necessarily semilinear. If we are right, then it follows that
GB is restrictive enough to be decidable in all its parametric variants, but too weak to
generate structures for all human languages.

5This is not to say that Sadock assumes empty categories. If not, then a context free dual analysis
grammar defines a language recognizable in cubic time. This is a much more restricted class of languages.
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