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Abstract. Mildly context sensitive grammar formalisms such as multi-
component TAGs and linear context free rewrite systems have been intro-
duced to capture the full complexity of natural languages. We show that,
in a formal sense, Old Georgian can be taken to provide an example of
a non-semilinear language. This implies that none of the aforementioned
grammar formalisms is strong enough to generate this language.

Introduction

What we have in mind when we use the term syntactic invariant is, roughly
speaking, a property, valid within some (formal) grammar theory, which remains
“robust under slight modifications” of this theory. In the following we direct our
particular attention to one such property: Semilinearity (of a language).

Introducing the definition of semilinearity, Parikh proved that any context
free language (CFL) is semilinear (see e.g. [10]). It has been shown that there is
a need to go beyond the class of all CFLs, if we want to define a formal language
in terms of phrase structure grammar or some related formalism to capture the
complexity of natural language (see e.g. [6], [15]). To cope with this problem,
mild context sensitivity is intended to be one appropriate, but rather informally
defined grammar type, determining a proper subclass of context sensitive gram-
mars. Originally, a mildly context sensitive grammar (MCSG) was defined by
three necessary properties (see e.g. [7]). Constant growth of the language pro-
duced by such a grammar is one of those, and a somewhat strengthened version
of this property of a language is that of being semilinear . In fact, this latter prop-
erty is common to all grammars within one of the “classical” formalism types
where each of these types constitutes a subclass of all MCSGs. In particular if
the grammar belongs to the class of all tree adjoining grammars (TAGs) or the
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class of all head grammars (HGs) as well as to their generalized extensions, to
the class of all multicomponent TAGs (MCTAGs) or the class of all linear con-
text free rewrite systems (LCFRSs), respectively. The class of TAGs is weakly
equivalent to the one of HGs,3 and the same holds for the class of MCTAGs and
LCFRSs ([17]). See also [8] for a survey on MCSGs. Our special interest in the
property of being semilinear is motivated by the question:

(Q) Is it reasonable to expect a grammar formalism to generate a semilin-
ear language, if the formalism is intended to capture human language
capacity?

We are going to argue that to answer (Q) is not a trivial matter. Not least, since
due to the syntactic analysis of Boeder ([1]), the phenomenon of Suffixaufnahme
of genitive suffixes in Old Georgian can be taken to provide a possible coun-
terexample. But, before we consider this case (see Sect. 2), we want to give a
formal definition of semilinear sets and semilinear languages, respectively. Then
we state a (technical) proposition which will be used to show that, in a for-
mal sense, Old Georgian is not semilinear. For these purposes we first mention
some conventions applying to our notation. All these preliminaries are done in
Sect. 1 of this paper, while a proof of the proposition is given in the Appendix.
In Sect. 3 we consider two other languages, where each of them already has been
introduced in the literature as an example of a language not derivable by any
MCTAG. For each of these two languages we briefly check for the possibility of
extending the corresponding result to the more general one that the language
is non-semilinear at all. Section 4 is reserved for a discussion of our result pre-
sented in Sect. 2. In particular, our example is compared to the two examples
mentioned in Sect. 3. Furthermore, we will show in outline how the technical
tools we used in the Old Georgian case can be interpreted with regard to a gen-
eral proof method within the framework of formal language theory. Some final
remarks are given in Sect. 5.

1 Notations, Definitions, and a Proposition

We denote the set of real numbers and natural numbers (non negative integers)
by IR and IN, respectively. IN+ is taken to be the set of all natural numbers
n > 0. For any n ∈ IN+ and any non-empty set M the set Mn is the set of
all finite sequences of length n, or all n-tuples, u = (u0, . . . , un−1) in M , where
ui ∈ M is the (i + 1)–th component of u. In the case M ⊆ IR and if ui = 1
for some i while all other components of u are 0 we also write e(i) instead of u.
e(i) is called the (i + 1)–th unit tuple (unit vector). This is due to the fact that
we will use IRn also as an abbrevation for the common n-dimensional (vector)
space (IRn,+IRn , ·SIR , 0IRn) over IR defined in a canonical way. Here, +IRn and ·SIR

denote the common addition and outer product (scalar product) on IRn defined
3 More generally, these two classes fall into a broader range of weakly equivalent gram-

mar types ([16]), where each of these has been proposed to capture natural language
capacity in a formal way.



componentwise by means of the common addition +IR and multiplication ·IR
on IR, respectively. Recall that ·SIR is a function mapping IR× IRn to IRn.4 0IRn

denotes the neutral element with respect to +IRn (the null-vector). Then, INn can
be considered as the substructure (INn,+INn , ·SIN , 0INn) of IRn, where +INn and
·SIN are the restrictions of +IRn and ·SIR to the domains INn × INn and IN× INn,
respectively, both taking values in INn. 0INn , the neutral element with respect to
+INn , thus is identical with 0IRn . Furthermore, we sometimes think of INn just
as the “simple” monoid (INn,+INn , 0INn).

For any finite non-empty set Σ (a set of terminals), Σ∗ is not only taken to
denote the set of all finite sequences (of all strings) in Σ including the empty
string ε, but also the monoid (Σ∗, ·Σ∗ , ε), where ·Σ∗ is the usual concatenation
operation of strings in Σ∗.

We will drop the subscripts of the just introduced operation symbols in all
cases when it does not lead to misunderstandings, and furthermore usually drop
the remaining dot “·” after doing so. If, for some non-empty set M , we simply
refer to a set Mn we will (tacitly) assume n to be in IN+ .

Definition 1. Let M ⊆ INn. Then

(a) we call M linear, if for some k ∈ IN there are some u(0), u(1), . . . , u(k) ∈ INn,
such that M = {u(0) +

∑k
i=1 ni u(i) | ni ∈ IN for 1 ≤ i ≤ k}.

(b) we call M semilinear, if for some k ∈ IN there are some linear M1, . . . ,Mk ⊆
INn, such that M =

⋃k
i=1 Mi.

It can be shown ([4]),

Lemma 2. Let M,N ⊆ INn be semilinear. Then, M ∩N ⊆ INn is semilinear.

Definition 3. For some n ∈ IN+ let {wi | 0 ≤ i < n} be an enumeration of
Σ, a finite set of terminal symbols with cardinality n. The Parikh mapping
pΣ : Σ∗ → INn is then defined inductively by means of ·Σ∗ and +INn in the
following way:

ε 7→ 0INn

wi 7→ e(i) for 0 ≤ i < n

αβ 7→ pΣ(α) + pΣ(β) for all α, β ∈ Σ∗

The image pΣ [L] := {pΣ(α) | α ∈ L} ⊆ INn of a language L ⊆ Σ∗ under pΣ is
called the Parikh image of L. If pΣ [L] is semilinear, L is called a semilinear
language.

Due to its inductive definition, the aforementioned Parikh mapping pΣ is a
surjective homomorphism which maps the monoid (Σ∗, ·Σ∗ , ε) onto the monoid
(INn,+INn , 0INn); and pΣ is 1–1 (injective) iff Σ consists of exactly one element.

4 For any two non-empty sets M1 and M2, M1 ×M2 denotes the set of all pairs, built
up by the elements of M1 and M2.



For each string α ∈ Σ∗ the (i + 1)–th component of the Parikh image pΣ(α)
just provides the result of counting the number of appearances of the termi-
nal symbol wi ∈ Σ within α. Thus, whether or not a language L is semilinear
depends only on the strings belonging to L and not on the (derivational) struc-
tures (corresponding to a possibly underlying grammar) represented by those
strings. Moreover, the order of the terminals that appear within those strings is
disregarded.5

Definition 4. For any m ∈ IN and any α = (a0, . . . , am) ∈ IRm+1 with am 6=0,
we take Pα to denote the function f : IR → IR defined by x 7→

∑m
i=0 aix

i for every
x ∈ IR. That is, Pα is the (real) polynomial (of degree m) corresponding
to α.

We are now able to state the proposition which we actually are interested in.

Proposition 5. For some natural numbers m,n ≥ 2 let α = (a0, . . . , am) be
a finite sequence in IRm+1, where am > 0, and let a given M ⊆ INn have the
following properties:

(i) For any k ∈ IN+ there are some numbers l
(k)
2 , . . . , l

(k)
n−1 ∈ IN for which the

n-tuple (k, Pα(k), l(k)
2 , . . . , l

(k)
n−1) belongs to M .

(ii) For any k ∈ IN+ the value Pα(k) provides an upper (lower) bound for the
second component l1 of any n-tuple (k, l1, . . . , ln−1) ∈ M (that is l1 ≤ Pα(k)
( l1 ≥ Pα(k) ) for any such n-tuple).

Then M is not semilinear.

A proof of this more general proposition is given in the Appendix. Here, with
regard to our further considerations, we just want to state a corollary, which
emphasizes a special case of the last proposition; namely the case m = 2,
α = (1/2,−1/2, 0), and Pα an upper bound in the sense of condition (ii). This
corollary also completes the part of the rather technical preliminaries.

Corollary 6. Let M be a subset of INn, where n ≥ 2, which has the properties:

(i) For any k ∈ IN+ there are some numbers l
(k)
2 , . . . , l

(k)
n−1 ∈ IN for which the

n-tuple
(
k, (k2 − k)/2, l

(k)
2 , . . . , l

(k)
n−1

)
belongs to M .

(ii) For any k ∈ IN+ the value P (k) := (k2 − k)/2 provides an upper bound for
the second component l1 of any n-tuple (k, l1, . . . , ln−1) ∈ M (that means
l1 ≤ P (k) for any such n-tuple).

Then M is not semilinear.
5 Notice that a mapping pΣ : Σ∗ → INn according to Definition 3 for some given set of

terminals Σ depends on the enumeration chosen for Σ. But, independently of such a
choice, the corresponding mapping is unique up to an isomorphism on INn induced
by a permutation π on {0, . . . , n − 1}. In this sense it is reasonable to speak of the
Parikh mapping pΣ with respect to a given set of terminals Σ.



2 Old Georgian

In this section, first we briefly introduce the phenomenon, shown by Old Geor-
gian, to which our further argumention is related. Then, we are going to deter-
mine a sublanguage (fragment) LM of Old Georgian of which the Parikh image
pΣ [LM ] is a set M ⊆ INn according to Corollary 6 above. This fragment is not
only non-semilinear itself, but also prevents the entire Old Georgian language
from being semilinear.

Old Georgian is one of those languages which show the phenomenon called Suf-
fixaufnahme (literal: taking up of suffixes6). In particular, the Old Georgian
grammar allows for multiple case(-number)-marking of nouns by adding “extra”
case suffixes to the “inner” case suffix, where the (possibly empty) inner case
suffix is obligatory and signals case in the “usual” sense, that is to say, the case
immediately assigned to the smallest NP to which a noun belongs (which is the
only marked case, for example, in the Indo-European language family). Each
additional case-marker is the result of some indirect case assignment, and in
this sense an explicit “reference” to the syntactical function of a noun(phrase)
as a part of some more comprehensive constituent. Taking the case-suffixes of a
noun in their “left-to-right-order” they can be described as the reflex of a left
recursive, increasing structural embedding of NPs. Such a description is possible
at least with regard to an underlying basic structure as it is assumed in [1].
More concretely, in Old Georgian, complex NPs, including stacked genitive NPs,
cannot only be of the following basic form.7

Davit-is galob-isa muql-ta ama-t
[ [ [ [ David-Gen ]NP4 singing-Gen ]NP3 verse-Pl(Gen) Art-Pl(Gen) ]NP2

(1)

c.artkuma-j
recitation-Nom ]NP1

‘the recitation of the verses of the song of David’

The “sub–NPs” can also appear in reversed order. But then corresponding to
the stacking of the NPs, a stacking of case suffixes appears as well.

tkuenda micemul ars cnob-ad saidumlo-j igi sasupevel-isa
to=you given is knowing-Adv mystery-Nom Art=Nom kingdom-Gen

(2)

m-is γmrt-isa-jsa-j
Art-Gen god-Gen-Gen-Nom

‘Unto You it is given to know the mystery of the kingdom of God’

6 But, see [11] for the (non-)possibility of an appropriate translation of the term Suf-
fixaufnahme.

7 Actually, the structure of (1) is only nearly basic, since Boeder assumes nouns to be
phrase-final within the basic structure, while in (1) the article ama-t has shifted to
the right of its noun muql-ta by undergoing clitic movement.



.qovel-i igi sisxl-i saxl-isa-j m-is Saul-is-isa-j
all-Nom Art=Nom blood-Nom house-Gen-Nom Art-Gen Saul-Gen-Gen-Nom

(3)

‘all the blood of the house of Saul’

According to Boeder ([1]), the examples (2) and (3) are a result of ordinary
agreement, instantiated by an optional application of some recursive (transfor-
mational) rules to the underlying basic structure as given with the example
(1). If we apply Boeder’s analysis to the general case, especially the analysis
of constructions like (3), then (abstracting from determiners and other lexical
categories) complex nominative NPs consisting of k stacked NPs, k ∈ IN+ , may
have the form

N1 - Nom N2 - Gen - Nom N3 - Gen2 - Nom . . . Nk - Genk−1 - Nom (4)

Here, for 1 ≤ i ≤ k, Ni denotes some noun(stem). That is to say, for any such
NP,

∑k−1
i=0 i = k2/2 − k/2 is the number of genitive suffixes appearing in it.

Moreover,

the number of all genitive suffixes of all nouns within a complex NP
consisting of k stacked NPs, where k ∈ IN+ , is bounded by k2/2− k/2.

(5)

This is due to the restrictions on the applicability of the rules, proposed by
Boeder. These restrictions come up with the given basic structure

[ [ [ . . . [ Nk - Gen ]NPk
. . . N3 - Gen ]NP3 N2 - Gen ]NP2 N1 - Nom ]NP1 (6)

Roughly speaking, an indirect case assignment to Ni-Gen is only possible “up-
wards” with respect to the stacked NPs. That is to say, such an assignment
to Ni-Gen is only possible with respect to the NPs in which NPi is properly
embedded, and possible only one time for each NPj with 1 ≤ j < i. Thus, the
maximal number of suffixes that can be taken up by Ni-Gen is i− 1.

Take the set Σ to be the Old Georgian lexicon, and LG ⊆ Σ∗ to be the language
of Old Georgian. Before we proceed, we just want to emphasize one observation
which can be made so far. If we want to deal with a finite lexicon (a set of
terminal symbols or atomic elements), (4) demands that at least some kind of
“global” genitive suffix Gen has to be a lexical entry (terminal symbol) on its own.
Notice, due to (4) there are uncountable many (pairwise distinct) possibilities
of multiple-case marking of a noun: there is no upper bound on the number of
genitive suffixes that “can be added” because of the fact that the number k ∈ IN+

of instances of some nouns within a complex NP is not (finitely) limited.
As announced at the begining of this section, we now determine a non-

semilinear fragment LM ⊆ LG. For any k ∈ IN+ this fragment includes at least
one sentence in which a complex NP corresponding to (4) can be found. But, in
addition, we try to keep such a sentence “as simple as possible” with respect to
its structural complexity. The idea is to fix an intransitive verb and to define the
members of LM in such a way that each member is a grammatical sentence which
consists of exactly one instance of the fixed verb and an NP, which is therefore



necessarily the subject. For some n ∈ IN let us now take {wi | 0 ≤ i < n} to be
an enumeration of Σ. For simplicity, not effecting our considerations in general,
we assume

w0 to be some fixed noun(stem) ,
w1 the genitive suffix Gen ,
w2 a nominative suffix ,
w3 a genitive article ,
w4 a nominative article ,
w5 a fixed intransitiv verb .

(7)

Now consider the linear, and hence semilinear, set

R =
{

e(4) + e(5) +
3∑

i=0

nie
(i) | ni ∈ IN

}
⊆ INn (8)

Then the full pre-image of R with respect to the Parikh mapping pΣ is the
language

LR := p−1
Σ [R] = {α ∈ Σ∗ | there is an u ∈ R with pΣ(α) = u} ⊆ Σ∗ (9)

The language LR includes all strings of Σ∗ which consists of exactly one appear-
ance of w4 and w5 and an arbitrary number of appearances of w0, . . . , w3. We
now define the language LM as the set of all strings belonging not only to LR

but also to LG, that is
LM := LG ∩ LR ⊆ Σ∗ (10)

Then, the Parikh image pΣ [LM ] of LM clearly is a subset of the intersection
of the Parikh images of LG and LR. But pΣ [LM ] even is identical with this
intersection, since LR is defined as the full pre-image of R with respect to pΣ ;
that is

M := pΣ [LM ] = pΣ [LG] ∩ pΣ [LR] = pΣ [LG] ∩R (11)

Recall that LM only includes strings of LR ⊆ Σ∗. But all strings within LM are
grammatical in the sense that they belong to LG as well. Since we can assume
that the intransitive verb needs to be combined with one nominative subject-
NP to produce a well-formed sentence, it is reasonable to conclude that each
string of LM consists of one (possibly complex) nominative subject-NP besides
the single instantiation of w5, the fixed intransitive verb. Moreover, since an
NP cannot assign nominative case to its complement but only the oblique case
genitive, at least the underlying basic structure of this subject-NP can only be
of the form (6). That is to say, the subject-NP itself can only consist of k stacked
NPs, k ∈ IN+ , where each of these stacked NPs has genitive as its immediate
case, except for the “highest” one which must have nominative case. But then,
because of (4) and (5) the set M can not be semilinear according to Corollary 6.
Now, we recall that the set R is in particular semilinear, and that the intersection
of two semilinear sets is semilinear itself (Lemma 2). Then, due to (11), we may
finally conclude that pΣ [LG] can not be semilinear, and thus Old Georgian is a
non-semilinear language.



3 Semilinearity and MCTAGs

Although a “weak” property on its own,8 semilinearity seems to be a “strong”
property with respect to natural language formalisms, as we have just seen.
Remember that (as is shown in [17]) semilinearity is a necessary property of
e.g. any multicomponent TAL (MCTAL), that is, any language generated by an
MCTAG. Due to other examples, it has already been doubted whether TAGs
and/or even MCTAGs, and thus LCFRSs, are appropriate tools for natural lan-
guage. E.g. Rambow ([14]) states the inadequacy of MCTAGs to capture the
phenomenon of Scrambling as it appears in German. Nevertheless, also his pro-
posal for a revised grammar formalism only gives rise to grammars that produce
a semilinear language.

Manaster-Ramer ([9]) argues that Dutch is no tree adjoining language (TAL)
referring to a certain subset of coordination phrases which is no TAL. He in-
formally outlines that, on the basis of a generalized extension of this subset,
the same kind of argumentation is even possible if the term TAL is replaced
by MCTAL. A formal elaboration of this is given by Groenink ([5]). Radzinski
([13]) proves that the language of all Chinese number-names is no MCTAL. Like
Groenink, Radzinski refers to a certain sublanguage which is a non-MCTAL,
and he also uses a pumping lemma to show this. In both cases, Dutch and Chi-
nese number-names, the corresponding sublanguage can be shown to be non-
semilinear in general by means of Proposition 5, or at least a similar one in the
Dutch case.

The final conclusion of Radzinski, as well as that of Groenink, is based on
the argument that the considered sublanguage is the intersection of the entire
language with a certain regular language, since both authors refer to the prop-
erty that MCTALs are closed under intersection with regular sets. We implicitly
used a similar, but strictly weaker property of semilinear languages in the Old
Georgian case. It is related to the fact that a language is semilinear iff it is let-
ter equivalent to a regular language (see Sect. 4 for more details). And, taking
for granted Radzinski’s general assumptions about the Chinese number-names,
in a nearly identical way as in the Old Georgian case, the corresponding sub-
language can be used to show that the entire Chinese number-names system is
non-semilinear as well, and thus not only a non–MCTAL.

3.1 Chinese Number-Names

The sublanguage of the Chinese number-names, considered by Radzinski ([13]),
includes all well-formed strings composable only of instances of wu (five) and
zhao (am. trillion) and consisting of at least one instance of each. This set is the
following one:

LM := {wu zhaok1 . . . wu zhaokm | m, ki ∈ IN+ , k1 > k2 > . . . > km} (12)

8 E.g., if Σ is a finite set with at least two elements there are uncountable many
semilinear languages L ⊆ Σ∗.



Let {wi | 0 ≤ i < n} be an enumeration of the Chinese number-names lexicon
Σ, where w0 = wu and w1 = zhao, and let LCN ⊆ Σ∗ be the language of all such
number names. Then, by Proposition 5, the Parikh image M := pΣ [LM ] is a
non-semilinear subset of INn. The appropriate polynomial Pα, providing a lower
bound in the sense of (ii) of Proposition 5, is of degree 2 and looks similar to
that of the Old Georgian case, namely Pα(x) = x2/2+x/2. Due to the definition
of LM and (12), we may conclude that

M = pΣ [LCN] ∩ {e(0) + e(1) + n0e
(0) + n1e

(1) | n0, n1 ∈ IN} (13)

Thus, if LCN were semilinear, then M , as the intersection of two semilinear sets,
would be as well. Hence, LCN cannot be semilinear in general.

3.2 Dutch Coordination Phrases

Groenink ([5]) considers a fragment LM of the language Dutch, which can be
written as the infinite union

⋃
k∈IN Lk, where for each k ∈ IN, Lk is the following

sublanguage of Dutch

Lk = dat Jan Piet Marie Fredk

(hoorde lerenk uitnodigen)+ en (zag lerenk omhelzen)
(14)

That is, e.g. for k = 1 the shortest string belonging to Lk is

dat Jan Piet Marie Fred hoorde leren uitnodigen en
that Jan Piet 1 Marie 2 Fred 3 hear-past 1 teach-inf 2 invite-inf 3 and

(14′)

zag leren omhelzen
saw-past 1 teach-inf 2 embrace-inf 3

‘that Jan heard Piet teach Marie to invite Fred and saw him teach her
to embrace him’

Now, let be w0 = Fred and w1 = leren in an enumeration {wi | 0 ≤ i < n} of the
Dutch lexicon Σ. Then the Parikh image M := pΣ [LM ] is of the form

M = {(k, k ·m + k, l
(k·m)
2 , . . . , l

(k·m)
n−1 ) | k ∈ IN,m ∈ IN+} ⊆ INn (15)

for some appropriate l
(k·m)
i ∈ IN, 2 ≤ i < n, for each k ∈ IN and m ∈ IN+ . The

set M can be shown to be non-semilinear.9 Then it is an immediate consequence
that LM must be a non-MCTAL, as is shown in [5].

9 We omit a proof here, since it differs from that of Proposition 5 in certain details,
though it can be done in a similar manner.



4 Discussion

Radzinski is aware of the fact that it is not quite clear whether the Chinese
number-names system can be considered as properly related to an I-language
(in the sense of Chomsky) or rather as related to an interface between a natural
language component of the human cognitive endowment and a “mathematical”
one. Therefore, Radzinski admits that the consequences of his example for the
natural language Chinese do not become obvious at once. But also, if the first
possibility is supposed to be the right one, it does not immediately become
decidable whether the Chinese language “in its entirety” is a non–semilinear
language.10

In contrast to the case of Chinese number-names, it does not become clear as
quickly that the entire Dutch language is non-semilinear. This is due to reasons
we will not go into in detail here. They are related to the fact that coordination
phenomena in general present rather problematic data for an appropriate lin-
guistical analysis. This is already mentioned by Manaster-Ramer ([9]), when he
discusses his argumentation. He notices that his observation strongly depends
on what is assumed to belong to the Dutch language in general by means of
a competence–performance distinction. Looking at some examples, Manaster-
Ramer on the one hand points out the possibility of “dropping” some of the
NPs explicitly appearing in coordination phrases like (14). On the other hand,
he shows that to “pump in” some new NPs, without simultaneously pumping
in new verbs, is possible as well. Roughly speaking, the latter possibility is to
coordinate some of the NPs as a complex NP which itself is part of an NP coordi-
nation. As far as we see, both possibilities (dropping and pumping in) together,
even make validity of the argumentation that Dutch is no (simple) TAL very
uncertain, at least in terms of weak equivalence.

However, it is not our intention to judge the conclusions of Radzinski and
Manaster-Ramer, respectively Groenink, rigorously. We just wanted to empha-
size some possible objections raised by the authors themselves, since the Old
Georgian example seems to avoid the corresponding difficulties. First of all, there
should be no doubt that this example falls into the domain of natural language
capacity. Secondly, compared to the Dutch coordination-phenomenon the com-
plex NP constructions of Old Georgian, considered above, have the advantage
that they represent a strict morpho-syntactic phenomenon. That is to say, with
regard to the case suffixes the underlying (syntactic) structure is “directly visi-
ble”; which is not necessarily the case e.g. within a coordination of coordinated
NPs in Dutch. This kind of “visibility” turns out to be possible at least in the
case of Suffixaufnahme as it is given with (4). Recall that, in accordance with (5),
(4) is the “most complex” case by means of the total number of genitive suffixes

10 Such a decision may be advanced, if (as is proposed in [9]) a certain kind of constraint
on “classificatory capacity” is assumed to come up with an appropriate grammar for
natural language. According to Radzinski, the validity of such a constraint at least
implies that Chinese turns out to be a non-MCTAL in case of “proper inclusion” of
the Chinese number-names within the Chinese language.



which may appear as suffixes of the nouns within a complex NP consisting of k
stacked NPs for some k ∈ IN+ . And in fact, our argumention is in some sense
strictly concentrated on this case. We do not have to take care of all possibilities
of Suffixaufnahme coming up with the application of some (recursive) rules to
a given basic structure of a complex NP like (6) as long as the total number
of “addable” genitive suffixes is bounded as stated in (5). The definition of the
Old Georgian fragment LM is only an implicit one, also allowing for complex
NPs in which the “full range of possible suffixes” is only partially realized like
in (2). Moreover, since LM actually is defined by means of its Parikh image
pΣ [LM ], a priori there is no restriction on the order in which the stacked NPs
have to appear within the subject-NP of a member of LM . This is reasonable
since there are also examples of preposed genitive NPs showing agreement by
Suffixaufnahme.

P. avle-js-i tav-isa mok.ueta-j
Paul-Gen-Nom head-Gen cutting-Nom

(16)

‘the decapitation of the head of Paul’

Although Boeder ([1]) argues that “leftward” Suffixaufnahme is non-recursive
and even limited to the possibility of taking up one single suffix like in (16), the
contrary would not effect our argumentation. This also holds if it turned out that
sentences including NPs like (2.1) or (2.2) belong to Old Georgian. According
to Boeder, such NPs are in all probability ungrammatical.

γmrt-isa-jsa sasupevel-isa saidumlo-j (2.1)

sasupevel-isa γmrt-isa-jsa saidumlo-j (2.2)

More generally, all our considerations are independent of the (generative) gram-
mar formalism which we prefer to investigate the underlying structures of com-
plex NPs in Old Georgian.11 Our argumentation stays valid as long as, on the
one hand, complex NPs are in general allowed to have a surface structure like
(4), and on the other hand, a kind of “upper bound-restriction” on the appearing
suffixes like (5) holds, as we assume to be the case due to the analysis of Boeder.

Besides the particular result concerning Old Georgian our approach offers a more
general perspective on a formal approach to languages or on dealing with formal
languages. Let us recall first the definition of constant growth as it is proposed
in [7] as a necessary property of a mildly context sensitive language (MCSL), a
language derivable by an MCSG. A language L has constant growth iff there is
some constant c0 ∈ IN and some finite set of constants C ⊆ IN such that for any
α ∈ L with |α| ≥ c0 there is some α′ ∈ L and some c ∈ C for which the equation
|α| = |α′| + c holds. Here, for any β ∈ L, |β| denotes its length. Indeed, this
definition can be thought of as a kind of a weak pumpability condition, which
11 E.g., a grammar in terms of a GB- or minimalist framework in which we want (in

particular and in contrast to Boeder’s approach) some kind of Freezing principle (in
the sense of [18]) to be valid, or at least descriptively adequate (see e.g. [2]).



also is true for the somewhat strengthend version, the definition of semilinearity
of a language. (It should be clear that each semilinear language a fortiori has
the constant growth property.) And, in this sense our Proposition 5 provides a
kind of weak pumping lemma. We already mentioned in Sect. 3 that our formal
argumentation applying to Old Georgian is similar to a standard proof method
in the framework of formal languages: first, to figure out a fragment of a given
language L, where the fragment does not fall into a class of formal languages
L which is closed under intersection with regular languages. Second, to show
that the fragment is the intersection of L and a regular language, that is to show
that L cannot belong to L. In our considerations we first fixed the non-semilinear
fragment LM of Old Georgian LG, then we argued that the Parikh image pΣ [LM ]
is the intersection of the Parikh images of LG and of the semilinear language
LR ⊆ Σ∗. Finally, we concluded that pΣ [LG] cannot be semilinear referring to
the property that the set of semilinear subsets of INn is closed under intersection.

Actually, we do not need the last mentioned property in this general form,
since LR is a context free language and we have pΣ [LR] = R. LR even is a regular
language. Assuming LG to be semilinear there would be a regular language L′

G

which is letter equivalent to LG, since any language is semilinear iff it is letter
equivalent to a regular language.12 LR is the full pre-image of R with respect to
pΣ , thus the following equation can be given.

pΣ [LG ∩ LR] = pΣ [LG] ∩ pΣ [LR] = pΣ [L′
G] ∩ pΣ [LR] = pΣ [L′

G ∩ LR] (17)

But LM is the intersection of LG and LR. According to (17), and because L′
G∩LR

is context free, even regular, the Parikh image pΣ [LM ] would be semilinear. This
would contradict the result shown in Sect. 2.

5 Some Final Remarks

Old Georgian is only one of several languages which show the phenomenon of
Suffixaufnahme.13 But, as far as we know, there is no other such language which
allows for an unbounded iteration of Suffixaufnahme as is possible in Old Geor-
gian, at least with regard to genitive case suffixes. In most languages this process
is strictly limited to the possibility of taking up just one additional case suffix.
However, there are e.g. some Australian language families in which a limited
stacking of up to four case suffixes can be found (see [3]). Thus Old Georgian
does not only show a phenomenon which is not widespread among natural lan-
guages in general, it seems to be even a rather bizzare language among those
which allow for multiple case-marking. And, it should be remarked here that,
nowadays, Suffixaufnahme in Modern Georgian is at best only marginally pos-
sible and in any case non recursive.

12 Two languages L1, L2 ⊆ Σ∗ are said to be letter equivalent if pΣ [L1] = pΣ [L2].
Although not explicitly stated, the mentioned equivalence is already proven in [10].
The “only if” is even shown for context free languages.

13 [12] provides a collection of papers on this topic.



Nevertheless, according to our argumentation Old Georgian provides a nat-
ural languge which, in a formal sense, is not semilinear in general, and thus
no MCTAL in particular. Now, the intention underlying the definition of mild
context sensitivity is to add a sufficient amount to the capacity of the context
free grammar-type, which is just the necessary amount to capture natural lan-
guage complexity. Thus, the question arises which kind of mildly context sensitive
grammar formalism could be appropriate to deal with Old Georgian. The Simple
Literal Movement Grammars (simple LMGs) of Groenink ([5]) seem to provide
such a searched for tool. They can be thought of as a generalization of LCFRSs
where a restricted non-linear rewriting is allowed. However, the class of all simple
LMLs, the class of all languages derivable by some simple LMG, is known to be
identical with PTIME ([5]). Thus for example also the language {a(2n) | n ∈ IN}
is a simple LML. Therefore, the class of simple LMLs includes languages which
do not have constant growth. Groenink gives the simple LMG-type definition to
cope with languages like the Dutch fragment to which we referred in Sect. 3 and
which is no MCTAL. To restrict the class of simple LMGs in a reasonable way
with respect to natural languages, Groenink proposes a revised definition of mild
context sensitivity. In particular this definition contains a strengthend version of
the constant growth property which he calls finite pumpability and which allows
for several non-semilinear languages like the Dutch fragment. Whether this finite
pumpability property also is fullfilled by the Old Georgian fragment LM , which
we have taken into account, depends on what is “really” contained in it. That is
to say, it depends on an explicit definition of LM which has not been necessary
to give within our argumentation. Without looking at further details we want
to finish our considerations here, just by claiming that, as far as we see, at least
along the lines of Boeder’s paper there does not seem to be a reason to exclude
the Old Georgian fragment to be finite pumpable in the sense of Groenink.

Appendix

In order to prove Proposition 5 we first recall a classical result in Analysis as

Lemma 7. For some m ∈ IN let α = (a0, . . . , am) ∈ IRm+1 be a finite sequence
where am > 0. Then, there is some r0 ∈ IR such that Pα(x) =

∑m
i=0 aix

i > 0 for
all x ∈ IR for which x > r0.

Proof of Proposition 5. First, we define a set M as a subset of M . For this
purpose we choose fixed numbers l

(k)
2 , . . . , l

(k)
n−1 ∈ IN for any k ∈ IN+ according

to property (i) and set

M :=
{(

k, Pα(k), l(k)
2 , . . . , l

(k)
n−1

)
| k ∈ IN+

}
(18)

The proof will be done by contradiction. Assume M is semilinear and notice that
M is not empty. Then there exists a µ ∈ IN+ and linear sets N1, . . . , Nµ ⊆ INn

for which we have

M =
µ⋃

j=1

Nj (19)



Since M is an infinite subset of M there must be an Nj , 1 ≤ j ≤ µ, which
contains an infinite subset of M . We take N to be such an Nj and choose
u(0), u(1), . . . , u(ν) ∈ INn for some appropriate ν ∈ IN such that

N =
{

u(0) +
ν∑

j=1

nju
(j) | nj ∈ IN for 1 ≤ j ≤ ν

}
(20)

For 0 ≤ i < n and for 0 ≤ j ≤ ν let u
(j)
i be the (i + 1)–th component of u(j).

In the special case j = 0 we will simply write u instead of u(0), and ui instead
of u(0)

i , to denote the corresponding n–tuple and its components. Notice that
ν ≥ 1 because N is infinite. In particular the set N contains an infinite subset of
M . Hence, there must be an unbounded (strongly) increasing (infinite) sequence
(ki)i∈IN in IN+ for which we have(

ki, Pα(ki), l
(ki)
2 , . . . , l

(ki)
n−1

)
∈ N (21)

Using (20) and (21) we now fix some n
(ki)
1 , . . . , n

(ki)
ν ∈ IN for every i ∈ IN, or

every element of the sequence (ki)i∈IN, such that the following equation holds

u +
ν∑

j=1

n
(ki)
j u(j) =

(
ki, Pα(ki), l

(ki)
2 , . . . , l

(ki)
n−1

)
(22)

That is to say, for all i ∈ IN we have especially

u0 +
ν∑

j=1

n
(ki)
j u

(j)
0 = ki (22.1)

u1 +
ν∑

j=1

n
(ki)
j u

(j)
1 = Pα(ki) (22.2)

Since not only N is infinite, but also the projection of N to the first component,
there must be a natural number ω with 1 ≤ ω ≤ ν for which the first component
u

(ω)
0 of u(ω) is different from zero. We may assume w.l.o.g. that u

(1)
0 , . . . , u

(ω)
0 all

are different from 0 and that u
(ω+1)
0 , . . . , u

(ν)
0 all are identical with 0. Then, for

some fixed element K of the sequence (ki)i∈IN we can distinguish two cases.

1. case: n
(K)
j u

(j)
1 = 0 for any natural number j with ω < j ≤ ν.

We first notice, because of (22.1) it follows immediately that

n
(K)
j ≤ K for 1 ≤ j ≤ ω , since u

(j)
0 > 0 in such a case. (23)

Carrying on we define m1 := max{u(j)
1 | 1 ≤ j ≤ ω} and let β be the finite

sequence (a0−u1, a1−ωm1, a2, . . . , am) ∈ IRm+1. Then, by Lemma 7 applied to



the polynomial Pβ and due to the fact that (ki)i∈IN is an unbounded increasing
sequence, we may suppose K to be great enough to fulfill

0 < (a0 − u1) + (a1 − ωm1)K +
m∑

i=2

aiK
i = Pβ(K) (24)

Thus, the following inequality can be given

u1 +
ν∑

j=1

n
(K)
j u

(j)
1

= u1 +
ω∑

j=1

n
(K)
j u

(j)
1 , since n

(K)
j u

(j)
1 = 0 for ω + 1 ≤ j ≤ ν

≤ u1 + ωm1K , by (23) and according to the definition of m1

< a0 + a1K +
m∑

l=2

aiK
i , by (24)

= Pα(K)

But, this provides a contradiction, since K is an element of the sequence (ki)i∈IN

and so (22.2) holds especially for K. (1. case)

2. case: n
(K)
j u

(j)
1 6= 0 for some natural number j with ω < j ≤ ν.

We may assume w.l.o.g. that j = ν. Then n
(K)
ν > 0 as well as u

(ν)
1 > 0. And so,

we can continue by concluding

(n(K)
ν − 1) u

(ν)
1 < n(K)

ν u
(ν)
1 < (n(K)

ν + 1)u
(ν)
1 , since u

(ν)
1 > 0 (25)

Hence, on the one hand we have

u0 +
ν−1∑
j=1

n
(K)
j u

(j)
0 + (n(K)

ν + 1)u
(ν)
0 = K , due to (22.1) since u

(ν)
0 = 0

u1 +
ν−1∑
j=1

n
(K)
j u

(j)
1 + (n(K)

ν + 1)u
(ν)
1 > Pα(K) , by (22.2) and (25)

(26.1)

and on the other hand we have

u0 +
ν∑

j=1

n
(K)
j u

(j)
0 + (n(K)

ν − 1)u(ν)
0 = K , due to (22.1) since u

(ν)
0 = 0

u1 +
ν−1∑
j=1

n
(K)
j u

(j)
1 + (n(K)

ν − 1)u(ν)
1 < Pα(K) , by (22.2) and (25)

(26.2)



Notice that the elements

z> := u +
ν−1∑
j=1

n
(K)
j u(j) + (n(K)

ν + 1)u(ν)

z< := u +
ν−1∑
j=1

n
(K)
j u(j) + (n(K)

ν − 1)u(ν)

both belong to N since n
(K)
ν > 0, and therefore both belong to M too. But (26.1)

and (26.2) point out that this is a contradiction to the property (ii) of the set
M in any case. Assuming Pα(K) to be the corresponding upper bound for the
second component of any n-tuple which belongs to M and which first component
is K, we can refer to z>, providing a contradiction by (26.1). Assuming Pα(K)
to be the corresponding lower bound presupposed by property (ii) we can refer
to z< and (26.2). (2. case)

The two considered cases are the only ones that can appear. So, we have just
shown that the set M cannot be semilinear, that is to have proven the proposi-
tion. 2
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