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Abstract

In this paper we will study the properties of the least extension n(Λ) of a given
intermediate logic Λ by a strong negation. It is shown that the mapping from Λ to
n(Λ) is a homomorphism of complete lattices, preserving and reflecting finite model
property, frame–completeness, interpolation and decidability. A general characteriza-
tion of those constructive logics is given which are of the form n(Λ). This summarizes
results that can be found already in [13, 14] and [4]. Furthermore, we determine the
structure of the lattice of extensions of n(LC).

Introduction

Constructive logic is an extension of intuitionistic logic by another connective, the strong
negation. 1 Basically, this additional connective is motivated by the fact that we can
not only verify a simple proposition such as This door is locked. by direct inspection, but
also falsify it. An intuitionist is forced to say that the falsity of this sentence is seen only
indirectly, namely by seeing that it is impossible for this sentence be true. While accepting
that there is a way to deny a sentence weakly — in the sense of the intuitionist —, for
a constructivist there also is a way to deny a sentence strongly — namely by stating its
falsity. If one assumes that the direct access to the falsity of a sentence is limited to basic
propositions, one must assume as well that the strong negation of a complex sentence can
be verified by an intuitionist if he was only informed about the truth or falsity of the
simple propositions. This leads to Nelsons constructive logic.

1It has been brought to my attention by the referee that in the context of logic the term constructive
is used for logics which have the disjunction property. This might be a reason to avoid the use of the term
constructive here since we are talking of extensions of Nelson–logic. And in them the disjunction property
might fail. It is for this reason that a different term is used below, except for the introduction, where we
allow ourselves some relaxed use of terminology.
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Constructive logic has attracted attention in logic programming recently, see [9, 10]
and [5]. Its main advantage is in admitting the possibility of a direct statement of the
falsity of a proposition while retaining the ‘negation as failure’, which is so characteristic in
logic programming. The present essay has been sparked off by a question raised by David
Pearce concerning the so–called answer set semantics of Gelfond and Lifschitz, see
[2, 3]. In [8], Pearce shows that the constructive logic of the two–element chain is a
deductive base for the nonmonotonic logic derived from stable models à la Gelfond &
Lifschitz.

While the knowledge about intermediate logics is immense, little is commonly known
about constructive logics ([12] puts it as an exercise to clarify the structure of the lattice
of extensions of Nelsons’s Logic). The main results in this area are contained in the papers
by Valentin Goranko [4] and by Andrzej Sendlewski [13] and [14]. The state of
the art is nicely summarized in [15]. The quoted papers establish facts about constructive
logic using the theory of intuitionistic logic. It is shown that the least extension of an
intermediate logic by a strong negation shares many basic properties with its intuitionistic
reduct, for example tabularity, decidability and interpolation. We will add some properties
to this list. Moreover, we will show in addition that the three–valued frame–semantics
of [12] is the geometrical analogue of the construction of so–called twist algebras. Using
this correspondence, the structure of the lattice of logics based on linear frames will be
determined.

I wish to thank David Pearce for endless conversations about constructive logic and
the logic of here–and–there, Wolfgang Rautenberg and an anonymous referee for
pointing out several imperfections of an earlier manuscript.

Intermediate and Constructive Logics

Recall that intuitionistic logic is a logic weaker than classical logic, consisting of the
following axioms for the connectives ∧, ∨, ¬ and → in addition to the rules of substitution
and modus ponens. (A different set of basic connectives might be chosen; the results do
not depend on the actual choice.)

(a1) p→ (q → p)
(a2) (p→ (q → r)) → ((p→ q) → (p→ r))
(a3) p ∧ q → p
(a4) p ∧ q → q
(a5) p→ (q → p ∧ q)
(a6) p→ p ∨ q
(a7) p→ q ∨ p
(a8) (p→ r) → ((q → r) → (p ∨ q → r))
(a9) (p→ q) → ((p→ ¬q) → ¬p)
(a10) ¬p→ (p→ q)

We define ⊥ := p ∧ ¬p, > := p → p. We are working over a fixed set Vω of denumerably
many sentence letters, denoted by lower case Roman letters. Lower case Greek letters are
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reserved for formulae. We denote by Int the set of tautologies of intuitionistic logic in
these connectives. Classical logic is obtained by adding the axiom ((p → q) → p) → p.
Any logic containing Int and contained in classical logic is called an intermediate logic.
(We do not require that an intermediate logic be different from Int or from classical logic,
i. e. we do not require it to be strictly intermediate between the two.) We denote the
set {∧,∨,¬,→} of intuitionistic connectives by I; I also denotes the language defined by
means of these connectives. There will be no harm in the ambiguity. An I–algebra is an
algebra of a signature appropriate for I and an I–homomorphism is a homomorphism
of I–algebras. The operations of J corresponding to the operation symbols of I are ∩, ∪,
− and →. If θ is a congruence relation on J then [x]θ := {y|x θ y} denotes the coset of x,
and pθ : x 7→ [x]θ the natural homomorphism from J onto J/θ. If J = 〈J,∩,∪,→,−〉 is
an I–algebra and β : V → H a function then there exists a unique I–homomorphism from
the algebra of I–formulae into J, denoted by β. Given a pair φ, ψ of formulae, we write
J |= φ = ψ if β(φ) = β(ψ) for all β : Vω → J . In addition, we write J |= φ if J |= φ = 1, for
1 := x→ x for some (and hence all) x. (Thus 1 = β(>) for all β.) We write Th J for the
set of all φ such that J |= φ, and call it the theory of J. Also we write Eq J for the set of
all equations φ = ψ such that J |= φ = ψ. We call this the equational theory of J. For
classes K of algebras, ThK and EqK denote the intersection of the theory (of the equational
theory) of all members of K. A Heyting algebra is an I–algebra H whose theory contains
Int, and in which x = y iff x ↔ y = 1, where x ↔ y abbreviates (x → y) ∩ (y → x). It
holds by definition that if H is a Heyting algebra then H |= φ ↔ ψ iff H |= φ = ψ. It
follows that for a class K of Heyting algebras EqK = {φ = ψ | φ↔ ψ ∈ ThK}. If J is an
I–algebra such that Th J contains Int, then the relation θ defined by x θ y iff x ↔ y = 1
is a congruence relation, and the algebra J/θ is a Heyting algebra. We call θ the natural
congruence relation on J. Given an intermediate logic Λ we let AlgΛ denote the class
of Heyting algebras whose theory contains Λ. AlgΛ is a variety, since it is determined by
the equations φ = 1 for each axiom of Λ. Recall here that a variety is a class of algebras
closed under the operations P of forming products, H of taking homomorphic images, S
of taking subalgebras and I of taking isomorphic copies. In turn, each variety corresponds
to an intermediate logic. For if it is determined by a set {φi = ψi|i ∈ J} of equations, it
is likewise determined by the set of axioms {φi ↔ ψi|i ∈ J}. By Birkhoffs Theorems,
intermediate logics are complete with respect to Heyting algebras in the sense that every
intermediate logic is determined by a class of Heyting algebras.

A Heyting algebra can be represented by an algebra of sets in the following way. Take
a poset f = 〈f,≤〉. A set S ⊆ f is a cone if for all x ∈ S and x ≤ y we have y ∈ S. Let
Co(f) be the set of cones of f; Co(f) is closed under intersection and union, contains f and
∅. Define the following operations

−S =
⋃
〈U |U ∈ Co(P), U ∩ S = ∅〉

S → T =
⋃
〈U |U ∈ Co(P), U ∩ S ⊆ T 〉

Now let P be any subset of Co(f) closed under intersection, union, − and →, and which
contains at least ∅ and P . In that case 〈f,≤,P〉 is called a (generalized) frame. (In
what is to follow, we will omit the qualification ‘generalized’.) It is easy to see by direct
verification that P forms a Heyting algebra under the operations just defined, putting
0 := ∅ and 1 := P . Any Heyting algebra is isomorphic to the algebra of cones of a frame.
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Intermediate logics are therefore also complete with respect to (generalized) frames.

The language of constructive logic, C, is obtained by adding to I a new unary connec-
tive ∼. The logic N, also called Nelson logic, is defined to be the least set closed under
substitution and modus ponens, containing Int and the postulates

(n1) ∼ (x→ y) ↔ x∧ ∼ y
(n2) ∼ (x ∧ y) ↔ ∼x ∨ ∼y
(n3) ∼ (x ∨ y) ↔ ∼x ∧ ∼y
(n4) ∼ −x ↔ x
(n5) ∼∼ x ↔ x
(n6) ∼x ∨ −x ↔ −x

The notions of C–algebra, C–homomorphism etc. are defined as in the I–case. As be-
fore, we define satisfaction relations C |= φ = ψ and C |= φ for algebras with appropriate
signature, and extend the definition of ThC, Eq C to C–algebras. A Nelson algebra is a
C–algebra N = 〈N,∩,∪,→,−,∼〉 whose theory contains N and whose reduct to {∩,∪} is
a distributive lattice. (This has given rise to the name N–lattice for what we call Nelson
algebras.) By virtue of (n5), (n2) and (n3), the map ∼ is an antiisomorphism of that
lattice.

It is not necessarily the case that the I–reduct of a Nelson algebra is a Heyting algebra,
because even though all axioms receive the value 1 we might have x ↔ y = 1 but x 6= y.
An alternative way of stating this is to say that the biimplication ↔ is not congruential.
(This means that {〈x, y〉 : x ↔ y = 1} is not a congruence.) From the truth of φ ↔ ψ
we can only conclude that φ and ψ are truth equivalent, but not that they are equal (see
[12]). However, we do have x = y iff both x ↔ y = 1 and ∼x ↔ ∼y = 1. Hence, any
equational theory of Nelson algebras can be turned into an axiomatic theory by replacing
the equation φ = ψ by the axioms ψ ↔ φ and ∼ φ ↔ ∼ ψ. We can summarize this as
follows. For a class L of Nelson–algebras, EqL = {φ = ψ | φ ↔ ψ,∼φ ↔ ∼ψ ∈ ThL}.
Conversely, if L is the class of algebras satisfying {φi = ψi | i ∈ J}, then L is also the
algebra satisfying {φ1 ↔ ψi | i ∈ J} ∪ {∼φi ↔ ∼ψi | i ∈ J}. Therefore, for any N–logic
AlgΘ is a variety and every variety is of this form. Using Birkhoffs Theorems again we
establish that every logic extending N is determined by a class of Nelson algebras which
is a variety. Following [4], axiomatic extensions of N are called N–logics.

The Twist Construction

In analogy to the representation of Heyting algebras as algebras of sets over a frame,
one would like to have a representation of Nelson algebras. Such a representation can be
given either directly by using three valued interpretations on frames (on the basis of [12])
or by an algebraic construction of Nelson algebras from Heyting algebras, which is due
to [16]. (Vakarelov calls the algebras obtained by this construction special while we
refer to them as twist algebras.) We will perform these constructions and show that they
are actually the same construction, based on algebras and frames respectively. Given an
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I–algebra J = 〈J,∩,∪,→,−〉 put

J./ = {〈x, x′〉|x ∩ x′ = 0} = {〈x, x′〉|x′ ≤ −x}.

Define the following operations.

(t∩) 〈x, x′〉 ∩ 〈y, y′〉 := 〈x ∩ y, x′ ∪ y′〉
(t∪) 〈x, x′〉 ∪ 〈y, y′〉 := 〈x ∪ y, x′ ∩ y′〉
(t→) 〈x, x′〉 → 〈y, y′〉 := 〈x→ y, x ∩ y′〉
(t−) −〈x, x′〉 := 〈−x, x〉
(t ∼) ∼ 〈x, x′〉 := 〈x′, x〉

Define J./ = 〈J./,∩,∪,→,∼,−〉. We call the pair 〈1, 0〉 the unit of J./. It is denoted by
1. It is the maximal element in the lattice 〈J./,∩,∪〉. The minimal element is 〈0, 1〉.

Proposition 1 Let J be an I–algebra. If Th J contains Int then Th J./ contains N.

Proof. Let β : Vω → J./ be a valuation. It is straightforward to check that for any
φ, β(φ) ∈ J./. Moreover, there exist γ1, γ2 : Vω → J such that β(p) = 〈γ1(p), γ2(p)〉.
For each φ, β(φ) = 〈γ1(φ), y〉 for some y such that y ∩ γ1(φ) = 0. Hence if φ is a
theorem of Int, then γ1(φ) = 1 and so y = 0. Thus β(φ) = 〈1, 0〉, which is the unit
element. Hence, Th J./ contains Int. Now consider the postulates for ∼. Notice that in
J./, 〈x, x′〉 ↔ 〈y, y′〉 = 〈x↔ y, x∩ y′ ∩ y ∩ x′〉 = 〈x↔ y, 0〉. Hence the equivalences (n1) –
(n6) hold if the first components are equal. This is a matter of direct verification. a

If H is a Heyting algebra we call H./ a twist–algebra.

Theorem 2 (Vakarelov) Let H be a Heyting algebra. Then H./ is a Nelson algebra.

Proof. In view of the previous theorem one only has to show that 〈J./,∩,∪〉 is a lattice.
Again, this is a question of direct verification. a

This observation can be strengthened. Take two Heyting algebras H and I and an I–
homomorphism h : H → I. Put h./ : H./ → I./ : 〈x, y〉 7→ 〈h(x), h(y)〉. This is a
C–homomorphism of the corresponding twist algebras. Namely, since h commutes with
the basic operations, h./ also commutes with the operations on the twist algebras. For
example

h./(〈x, x′〉 → 〈y, y′〉) = h./(〈x→ y, x ∩ y′〉)
= 〈h(x→ y), h(x ∩ y′)〉
= 〈h(x) → h(y), h(x) ∩ h(y′)〉
= h./(〈x, x′〉) → h./(〈y, y′〉)

Theorem 3 (Goranko) (−)./ is a covariant functor from the category Heyt of Heyting
algebras into the category Nels of Nelson algebras. a
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Twist algebras can be represented as follows. Let H be a Heyting algebra. There exists a
general frame F = 〈P,≤,P〉 such that the natural algebra over P is isomorphic to H. Let
P./ be the set of pairs 〈S, T 〉 such that S, T ∈ P and S ∩ T = ∅. The operations on the
pairs of sets are as defined by the clauses (t∩), (t∪), (t→), (t−) and (t∼) above. Suppose
then that ι : H → P is an I–isomorphism. Then it is easy to see that ι./ : H./ → P./ is a
C–isomorphism.

In [12] an approach was taken via pair valued or — alternatively — via three–valued
interpretations on frames. It is as follows. Let F = 〈f,≤,P〉 be a frame. A pair–valuation
into F is a pair β = 〈β+, β−〉 of functions from the set of variables into P such that for every
sentence letter p β+(p) ∩ β−(p) = ∅. β+(p) is the set of all worlds at which p is definitely
accepted, β−(p) the set of all worlds at which it is definitely rejected. The assumption is
that if p is accepted (rejected) at x and x ≤ y then p must be accepted (rejected) at y as
well. This is extended to all formulae φ, using the definitions (t∩), (t∪), (t→), (t−) and
(t∼) as well as the standard clauses for the intuitionistic connectives. A pair valuation
can be interpreted as a valuation as follows. P := 〈P,∩,∪,→,−〉 is a Heyting algebra.
A pair valuation into F (and likewise into P) is a (simple) valuation into P./, that is, a
function β : Vω → P./. We write 〈F, β, x〉 |= φ if β(φ) = 〈S, T 〉 where S contains x, and
we say that the models accepts φ at x. If on the other hand x ∈ T we say that the
models rejects φ at x. Define the twist frame F./ of F by 〈f,≤,P./〉. A valuation into
F./ is a function β : Vω → P./. There is a natural correspondence between valuations on
F./ and pair–valuations on F. Again, we write 〈F./, β, x〉 |= φ if β(φ) = 〈S, T 〉 for some S
containing x. An N–frame is a triple 〈f,≤,F〉 where F is a subset of Co(〈f,≤〉)./ closed
under ∩, ∪, →, ∼ and − as defined above by the clauses (t∩), (t∪), (t→), (t∼) and (t−).
In intuitionistic logic, a frame of the form 〈f,≤,P〉 where P contains all cones of 〈f,≤〉
is called a Kripke–frame. Analogously, an N–frame is called a Kripke–frame if it is
the twist frame of a Kripke–frame. (Notice that it makes no sense to distinguish a special
Kripke–N–frame from a Kripke–frame.) The topological (or geometrical) representation
theorems for Heyting algebras can be carried over straightforwardly to Nelson algebras,
once the algebraic properties of the twist map are determined. We will return to this issue
briefly below.

We can pass from a pair–valuation to a three–valued valuation in the following way. A
3–valuation is a map w : P × var 7→ {−1, 0, 1} such that both w−1(−1) and w−1(1) are
cones for each individual variable. The interpretation is that p is accepted at x if w(x, p) =
1, and that p is rejected at x if w(x, p) = −1. The third case, w(x, p) = 0, arises when p
is not decided at x. Again, this is extended to all formulae, following (t∩), (t∪), (t →),
(t−) and (t ∼). We write F |=3 φ if for all three–valued interpretations w and all worlds x,
w(x, φ) = 1. The various acceptance clauses are made to fit in the following way. Given a
3–valuation w put w+(p) = {x|w(x, p) = 1}, w−(p) = {x|w(x, p) = −1}. Then 1 = w(x, φ)
iff x ∈ w+(φ). It is clear from the previous considerations that w+(φ) ∩w−(φ) = ∅, so we
have a pair–valuation. Conversely, let us be given a pair–valuation 〈β+, β−〉. Then put
w(x, p) = 1 iff x ∈ β+(p) and w(x, p) = −1 iff x ∈ β−(p). This is noncontradictory, and
yields a 3–valuation. Thus it does not matter whether we think in terms of pair–valuations
or in terms of 3–valuations.
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A natural question is whether all Nelson algebras can be obtained as twist algebras from
some Heyting algebra. This is generally not so; there is a two element Nelson algebra which
does not arise as a twist algebra from a Heyting algebra, because the latter necessarily
contain either one or at least three elements. However, the situation is nearly optimal.
For a Nelson algebra N can at least be embedded into a twist algebra. Moreover, this
algebra can be canonically determined. For let N be a Nelson algebra. Then N � I is not
necessarily a Heyting algebra, but (N � I)/θ is a Heyting algebra, where θ is the natural
congruence, and (N � I)/θ is also the ‘least’ Heyting algebra that can be obtained by
factorization. We denote it by N./, and call it the Heyting algebra associated with N or
the untwist algebra of N. If h : N → O is a C–homomorphism of Nelson algebras, then
h is also an I–homomorphism. Moreover, if x ↔ y = 1 for x, y ∈ N then h(x ↔ y) = 1.
Hence, if θN and θO are the natural congruences on N and O, respectively, the map pθo ◦h
factors through pθN

. Thus, there exists a map h./ such that pθO
◦ h = h./ ◦ pθN

. Hence we
have h./ : N./ → O./.

N./

h./
- O./

N � I
h

-O � I

pθN

?

pθO

?

Thus, (−)./ also is a functor. But more can be shown. Recall that a functor F : C → D
is left adjoined to a functor G : D → C iff for every A ∈ C and B ∈ D there exists a
bijection πAB : HomC(F (B), A) → HomD(B,G(A)). (This requires that the categories
involved are small, i. e. that Hom(C,D) is a set for any given objects C and D. This is
the case in our setting.)

Theorem 4 (Sendlewski) (−)./ is a covariant functor from the category Nels into the
category Heyt. (−)./ is left–adjoined to (−)./. Moreover, ((H)./)./

∼= H for all Heyting
algebras H.

Proof. Fix a Heyting algebra H and a Nelson algebra N. We define a map π : Hom(N,H./) →
Hom(N./,H) and a map ρ : Hom(N./,H) → Hom(N,H./). First π. Let h : N → H./.
Then there exists an I–homomorphism j1 : N � I → H, and a map j2 : N → H such that
h(x) = 〈j1(x), j2(x)〉. Let θ be the natural congruence on N. Then put π(h)([x]θ) := j1(x).
To see that this does not depend on the choice of representatives, let y ∈ [x]θ. Then
x↔ y = 1, and so h(x↔ y) = 〈1, 0〉. Therefore j1(x) = j1(y).

Now let i : N./ → H. Recall that by the definition of N./ its underlying set is the
set of cosets [x]θ, where θ is the natural congruence on N. Then we define ρ(i) : x 7→
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〈i([x]θ), i([∼x]θ)〉. This is a C–homomorphism. For example

ρ(i)(x ∩ y) = 〈i([x ∩ y]θ), i([∼(x ∩ y)]θ)〉 =
= 〈i([x]θ ∩ [y]θ), i([∼x]θ ∪ [∼y]θ)〉 =
= 〈i([x]θ) ∩ i([y]θ), i([∼x]θ) ∪ i([∼y]θ)〉 =
= 〈i([x]θ), i([∼x]θ)〉 ∩ 〈i([y]θ), i([∼y]θ)〉 = ρ(i)(x) ∩ ρ(i)(y)

We also have to show that ρ◦π(h) = h and π◦ρ(i) = i. Take h and let h(x) = 〈j1(x), j2(x)〉.
Then π(h) : [x]θ 7→ j1(x) and so ρ(π(h)) : x 7→ 〈j1(x), j1(∼x)〉 = 〈j1(x), j2(x)〉. Hence
ρ ◦ π(h) = h. Next let i : N./ → H. Then ρ(i) : x 7→ 〈i([x]θ), i([∼x]θ)〉. Thus π(ρ(i)) :
[x]θ 7→ i([x]θ) and so π◦ρ(i) = i. Now, finally, consider the identity 1H./ : H./ → H./. Then
π(1H./) : (H./)./ → H. This is an isomorphism. For, by definition, π(1H./) : [〈x, y〉]θ 7→
x. Now notice that [〈x, y〉]θ = {〈x, y′〉|x ∩ y′ = 0}. Thus we can choose 〈x, 0〉 as a
representative of the coset of 〈x, y〉. Hence the map is bijective. a

Corollary 5 (Vakarelov) Let N be a Nelson algebra. Then N is embeddable into (N./)./.

Proof. Let 1N./ : N./ → N./. Then ρ(1N./) : [x]θ 7→ 〈[x]θ, [∼x]θ〉. Assume that x 6= y.
Then either x↔ y 6= 1, that is, [x]θ 6= [y]θ, or ∼x↔ ∼y 6= 1, in which case [∼x]θ 6= [∼y]θ.
Hence ρ(1N./) is injective. a

As a consequence, each Nelson algebra can be embedded isomorphically into the algebra
of sets of an N–frame. Namely, let N be given. Then there exists a frame 〈f,≤,P〉 such
that N./

∼= P, where P = 〈P,∩,∪,→,−〉. Hence there exists an imbedding i : N./ � P,
and so ρ(i) : N → P./. Let F be the image of ρ(i). We now have an N–frame 〈f,≤,F〉
such that N is isomorphic to the algebra over the sets of F.

Simulating Twist Algebras

The C–validities of H./ can be simulated as intuitionistic validities of H by doubling each
variable. To make that precise we need the following definition of a standard form.

Definition 6 A C–formula is said to be in standard form if it is built from variables p
and strongly negated variables ∼p using only intuitionistic connectives.

Proposition 7 For every ψ there exists a s(ψ) which is in standard form, such that in
N the equivalence ψ ↔ s(ψ) holds.

Proof. Only truth equivalence is required. This follows directly from the laws (n1) –
(n6). a

Now let ψ be any C–formula and introduce for every variable p of ψ a new variable p−.
To distingish the variable p− from standard variables we call it a twistor. In particular,
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p− is the twistor of p. Let V := var(ψ) and put

ψ./ :=
∧
p∈V

p− → ¬p.→ .(s(ψ)[p−/∼p])

That means the following. First put ψ into standard form, replace occurrences of ∼p by
p− and then add the condition that p− ≤ ¬p. For a finite set of formulae V we denote
the formula

∧
〈p− → ¬p|p ∈ V 〉 by γV . The set of twistors of φ is denoted by var−(φ).

Furthermore, we write φ̂ for s(φ)[p−/∼p|p ∈ var(φ)]. Thus s(ψ) can be obtained from ψ̂
by a substitution. We now have ψ./ = γV → ψ̂ for some V . The following theorem (in a
slightly different form) is due to Valentin Goranko [4].

Theorem 8 (Twist Simulation) For all Heyting algebras H and C–formulae ψ,

H./ |= ψ ⇔ H |= ψ./.

Proof. Suppose H./ |= ψ. Then H./ |= s(ψ), by truth–equivalence. Thus we may assume
that ψ is in standard form. Let V := var(φ) and β a valuation of V ∪V − = V ∪{p−|p ∈ V }
in H. We have to show that β(ψ./) = 1. Put

c := β(γV ) =
⋂
p∈V

β(p− → ¬p)

It is enough to prove that c ≤ β(ψ̂). Now let w+(p) = c ∩ β(p), and let w−(p) =
c ∩ β(p−). Then we have defined a valuation w into H./ by w : p 7→ 〈w+(p), w−(p)〉. For
by construction, w+(p)∩w−(p) = c∩β(p)∩β(p−) ≤ β(p)∩β(p− → ¬p)∩β(p−) = 0. Since
H./ |= ψ we have w+(ψ) = 1. Consequently, we also have c ≤ w+(ψ[p−/∼p]) = w+(ψ̂).
On the other hand, c = w+(ψ̂) ∩ c = β(ψ̂) ∩ c and this shows that c ≤ β(ψ̂). Now
assume conversely that H |= ψ./. Let v be a valuation on H./. There are β+ and β−

such that v(p) = 〈β+(p), β−(p)〉. Then β−(p) ≤ −β+(p). We expand β+ to a valuation
δ with δ(p) = β+(p) for p ∈ V and δ(p−) = β−(p). Then since δ(p− → ¬p) = 1 we get
δ(ψ[p−/∼p]) = 1 by construction. It is enough to show β

+(ψ) = 1. But assuming ψ in
standard form this follows from the equation δ(p−) = β−(p). a

For a I–formula ψ put ψ./ := ψ. In full analogy to the Twist Simulation we get

Theorem 9 (Untwist Simulation) For all Nelson algebras N and intuitionistic formu-
lae ψ

N./ |= ψ ⇔ N |= ψ./ (= ψ). a

Corollary 10 The rule ψ/ψ./ is admissible in all varieties generated by twist algebras.
The rule ψ.//ψ is admissible in all extensions of N.

Proof. Let J be a class of Heyting algebras. Let V be the variety generated by the twist
algebras H./, H ∈ J . Assume V |= ψ. Then H./ |= ψ for all H ∈ J . Therefore, by Twist
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Simulation, H |= ψ./ for all H ∈ J . But then H./ |= ψ./ for all H ∈ J . Now let V be any
variety of Nelson algebras. Assume that ψ./ holds in V. Pick N ∈ V. Then N |= ψ./ and
so N./ |= ψ./, by Untwist Simulation. Therefore, by Twist Simulation, (N./)./ |= ψ. Since
N is a subalgebra of (N./)./, we also have N |= ψ, as desired. a

We extend the notation for twist and untwist to classes of algebras in the following
way. If K (L) is a class of Heyting algebras (Nelson algebras) then K./ (L./) is the class
of all N./, N a member of K (the class of all H./, H a member of L). Call a variety V of
Nelson algebras a twist variety if it is generated by a class of twist algebras.

Theorem 11 A variety of Nelson algebras is a twist variety iff all rules of the form ψ/ψ./

are admissible.

Proof. Let V be a variety of Nelson algebras. Let W be the twist variety generated by
(V./)./. It is easy to see that W is the smallest twist variety containing V. By Corollary 10,
ψ/ψ./ is admissible. Now assume that ψ/ψ./ is admissible in V. Then V |= ψ iff V |= ψ./

iff V |= (ψ./)./ iff (V./)./ |= ψ iff W |= ψ. So, V and W have the same theorems, and are
thus identical. a

Properties of the Imbedding

Let E Int be the lattice of intermediate logics and EN be the lattice of axiomatic extensions
of N. Both are complete lattices, with the meet being the intersection and the join being
the least logic generated by the set theoretic union. Define a map from the first into the
second by taking n(Λ) to be the least N–logic containing (the theorems of) Λ. Define a
map i : EN → E Int : Θ 7→ Θ ∩ I, restricting Θ to its intuitionistic fragment. Given
Θ ∈ EN and Λ ∈ E Int we have n(Λ) ⊆ Θ iff Λ ⊆ i(Θ), as is easily verified. Hence, n
is left–adjoint as functor of posets to i. The following is straightforward consequence of
Untwist Simulation.

Proposition 12 (1.) Let Λ be an intermediate logic and H a Heyting algebra. If H ∈ AlgΛ
then H./ ∈ Algn(Λ). (2.) Let Θ be an N–logic and N be a Nelson algebra. If N ∈ AlgΘ
then N./ ∈ Alg i(Θ).

Theorem 13 (1.) Let Λ be an intermediate logic and Λ = ThK for some class K of
Heyting algebras. Then n(Λ) = ThK./. (2.) Let Θ be a N–logic and Θ = ThL for some
class L of Nelson algebras. Then i(Θ) = ThL./.

Proof. (1.) Suppose ψ 6∈ n(Λ). Then ψ./ 6∈ n(Λ) and so ψ./ 6∈ Λ. Hence there exists a
H ∈ K such that H 2 ψ./. By Twist Simulation, H./ 2 ψ, and so ψ 6∈ ThK./. The reasoning
can be played backwards, and so the first claim is proved. (2.) Suppose ψ 6∈ i(Θ). Then
ψ 6∈ Θ, by conservativity of the imbedding. Hence there exists a N ∈ L such that
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N 2 ψ(= ψ./). By Untwist Simulation N./ 2 ψ and so L./ 2 ψ, from which ψ 6∈ ThL./,
by definition. Again, the reasoning can be played backwards, and this proves the second
claim. a

Corollary 14 If V is a variety of Nelson algebras, I(V./) is a variety of Nelson algebras.
If W is a variety of Heyting algebras then IS(W./) is a variety of Nelson algebras.

Theorem 15 (Sendlewski) n is a lattice imbedding of E Int into EN commuting with
infinite joins and meets. A logic is of the form n(Λ) for some intermediate logic Λ iff all
rules ψ/ψ./ are admissible. Moreover, Λ = i(n(Λ)); in other words, the minimal N–logic
containing a given intermediate logic is a conservative extension.

Proof. We prove the last assertion first. Let Λ be an intermediate logic, characterized
by a variety V of Heyting algebras. Then n(Λ) is characterized by V./, by Theorem 13,
and i(n(Λ) is characterized by (V./)./, again by Theorem 13. But I(V./)./ = I(V) and
so i(n(Λ)) = Λ. That n commutes with infinite joins is easy to verify. The case of
(infinite) meets is still to be verified. So, let Λi, i ∈ I, be a set of intermediate logics. Put
Θ :=

⋂
i∈I Λi. Then n(Θ) ⊆

⋂
i∈I n(Λi), since n is isotone. For the converse it is enough

to show that in
⋂

i∈I n(Λi) all rules ψ/ψ./ are admissible. So let ψ ∈
⋂

i∈I n(Λi). Then for
each i ∈ I, ψ ∈ n(Λi), whence ψ./ ∈ n(Λi), and so ψ./ ∈

⋂
i∈I n(Λi). a

Usually, from the fact that an imbedding is a lattice homomorphism not much can be
deduced. However, in this special case we can show that a lot of properties of the in-
termediate logics are preserved under the imbedding, so that the N–extensions are more
or less determined by their I–reduct. We say that an extension Λ of N is tabular iff
Λ = ThN for a finite Nelson algebra N. Λ has the finite model property if for every
formula φ 6∈ Λ there is a finite Nelson algebra N such that N |= Λ but N 2 φ. Λ is called
complete if for every φ 6∈ Λ there exists a Kripke–N–frame F./ such that F./ |= Λ but
F./ 2 φ. Λ is frame–compact if for every finitely satisfiable set of formulae is there is
a Kripke–N–frame F./ for Λ, a valuation β and a point x such that 〈F./, β, x〉 |= Φ. Λ is
decidable if the problem ‘φ ∈ Λ’ is decidable. These definitions are the natural extensions
of the definitions for intermediate logics.

Theorem 16 (Goranko, Sendlewski) The following properties of intermediate logics
are preserved and reflected by passing to the minimal N–extension: finite model property,
tabularity, completeness, frame–compactness, and decidability.

Proof. For tabularity, completeness and finite model property this already follows from
Theorem 13. Now assume that Λ is frame–compact. Let Φ be a set of C–formulae and
assume that it is n(Λ)–consistent. Then Φ./ := {φ./ | φ ∈ Φ} is Λ–consistent. For
otherwise there exists a finite set ∆./ of Φ./ such that ∆./ `Λ ⊥. We have ∆./ := {γv(φ) →
φ̂ | φ ∈ ∆}, where v(φ) denotes the set of variables of φ. (Recall the definitions of γV and
φ̂ from the previous section.) Since ∆ is finite, the union of the v(φ), φ ∈ ∆, is also finite.
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Let it be W . Then the set {γW → φ̂ | φ ∈ ∆} is also Λ–inconsistent. Consequently,

((
∧

∆)./ =) γW →
∧

φ∈∆

φ̂ `Λ ⊥

It follows that ∆ is n(Λ)–inconsistent. But then Φ is n(Λ)–inconsistent, against our
assumption. Thus we have established that Φ./ is Λ–consistent. It follows that there is a
Kripke–frame F = 〈f,≤,P〉 and a valuation β and a point x ∈ f such that 〈F, β, x〉 |= Φ./.
Let γ : Vω ∪ V −

ω → P./ be defined by γ(p) := 〈β(p), β(p−)〉. Then 〈F, γ, x〉 |= Φ. Hence,
n(Λ) is frame–compact. Conversely, if n(Λ) is frame–compact and Φ is a Λ–consistent set
of I–formulae then Φ is also n(Λ)–consistent and there exists a Kripke–frame F, a pair
valuation β(p) = 〈γ1(p), γ2(p)〉 and a point x such that 〈F, β, x〉 |= Φ. Then 〈F, γ1, x〉 |= Φ.
Moreover, F |= Λ. Finally, decidability. Suppose that n(Λ) is decidable. Let ψ ∈ I be
given. Then, by conservativity, ψ ∈ n(Λ) iff ψ ∈ Λ. Thus, Λ is decidable. Now assume
conversely that Λ is decidable. Let ψ ∈ C be given. Then, by Theorem 11, ψ ∈ n(Λ) iff
ψ./ ∈ n(Λ). The latter is decidable, since it is equivalent to ψ./ ∈ Λ. a

An intermediate logic Λ has interpolation if whenever φ→ ψ ∈ Λ there exists a formula
χ such that var(χ) ⊆ var(φ) ∩ var(ψ) and φ→ χ, χ→ ψ ∈ Λ. Likewise for extensions of
N.

Theorem 17 (Goranko) Let Λ be an intermediate logic. Then Λ has interpolation iff
n(Λ) has interpolation.

Proof. Assume that Λ has interpolation. Let φ → ψ ∈ n(Λ). Then (φ → ψ)./ ∈ n(Λ).
The interpolating formula will be found by close analysis of the formulae simulating the
twist. Recall that they were defined by reserving a special, new set of variables of the form
p− called twistors. The set of twistors of φ is denoted by var−(φ). Furthermore, recall
that φ̂ denotes s(φ)[p−/∼p | p ∈ var(φ)]. Let V := var(φ) and W := var(ψ) − V . Then
(φ→ ψ)./ is equivalent in N to γV ∧ γW .→ .φ̂→ ψ̂, which in turn is equivalent in N to

γV ∧ φ̂.→ .γW → ψ̂.

By assumption on Λ there exists a ρ such that var(ρ) ⊆ var(γV ∧ φ̂) ∩ var(γW → ψ̂) and

γV ∧ φ̂→ ρ, ρ.→ .γW → ψ̂ ∈ n(Λ).

Now put χ := ρ[∼p/p− | p− ∈ var−(ρ)]. We claim that χ is the desired interpolant. To
that end, observe that χ contains no twistors. Furthermore, the variables of χ are common
variables of φ and ψ, as is easily verified. Next, observe that γV ∧ φ̂→ ρ is equivalent in
N to (φ → χ)./ and that ρ. → .γW → ψ̂ implies γV ∧ γW . → .(ρ → ψ̂), which is nothing
but (χ→ ψ)./. Hence, by Theorem 15, φ→ χ, χ→ ψ ∈ n(Λ).

Now assume that n(Λ) has interpolation. Let φ → ψ ∈ Λ. Then φ → ψ ∈ n(Λ)
and there exists a ρ such that var(ρ) ⊆ var(φ) ∩ var(ψ) and φ → ρ, ρ → ψ ∈ n(Λ).
We can assume that ρ is in standard form. Then ρ = τ [~p,∼~p] for some I–term τ [~p, ~q],
where ~p and ~q are sequences of variables of length n. Then let χ := τ [~p,¬~p]. This is an
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I–formula. Furthermore, it is based on the same set of variables as ρ. We claim, finally,
that φ→ χ, χ→ ψ ∈ Λ. Observe, namely, that by Twist Simulation

(
∧
i<n

qi → ¬pi).→ .φ→ τ [~p, ~q] ∈ Λ .

A fortiori we have
(
∧
i<n

qi ↔ ¬pi).→ .φ→ τ [~p, ~q] ∈ Λ .

From this we conclude that φ → τ [~p,¬~p] = φ → χ ∈ Λ. Likewise it is shown that
χ→ ψ ∈ Λ. a

In [6] it was shown that there are exactly seven intermediate logics with interpolation.
(By definition, intermediate logics are consistent. The inconsistent logic has interpolation
as well. Also, for the theorem to hold we need to assume that at least one of > and ⊥ is a
primitive symbol of the language.) Among them are Int, LC, classical logic and the logic
of here–and–there.

Corollary 18 There exist exactly seven extensions of N of the form n(Λ) for some logic
containing Int with interpolation. In particular, N and n(LC) have interpolation. a

A logic Λ has the disjunction property if whenever φ ∨ ψ ∈ Λ then either φ ∈ Λ or
ψ ∈ Λ. Λ is Halldén–complete if for any pair φ, ψ of formulae with var(φ)∩ var(ψ) = ∅
if φ ∨ ψ ∈ Λ then either φ ∈ Λ or ψ ∈ Λ. Λ is Maximova–complete if whenever
γ ∧ δ → φ ∨ ψ ∈ φ ∈ Λ and var(γ → φ) ∩ var(δ → ψ) = ∅ then γ → φ ∈ Λ or δ → ψ ∈ Λ.

Theorem 19 Let Λ be an intermediate logic. (1.) If Λ is Maximova–complete then n(Λ)
is Halldén–complete. (2.) If n(Λ) is Halldén–complete, so is Λ. (3.) If n(Λ) has the
disjunction property, so does Λ.

Proof. (1.) Let φ ∨ ψ ∈ n(Λ). Then (φ ∨ ψ)./ ∈ Λ. Put V := var(φ) and W := var(ψ).
With γV , γW , φ̂ and ψ̂ defined as above we have (φ∨ψ)./ = γV ∧γW .→ .φ̂∨ ψ̂. Moreover,
var(γV → φ̂) ∩ var(γW → ψ̂) = ∅. By Maximova–completeness of Λ we get (φ./ =)γV →
φ̂ ∈ Λ or (ψ./ =)γW → ψ̂ ∈ Λ. Hence φ ∈ n(Λ) or ψ ∈ n(Λ). (2.) Let φ ∨ ψ ∈ Λ and let φ
and ψ have no variables in common. Then φ∨ψ ∈ n(Λ) and — by Halldén–completeness
of the latter — either φ ∈ n(Λ) or ψ ∈ n(Λ). Hence φ ∈ Λ or ψ ∈ Λ. (3.) Similar. a

The Upper Part of E N

For a class K the smallest variety containing K is HSP(K). A variety is congruence dis-
tributive if the lattice of congruences of any algebra from that variety is distributive. Any
variety containing at least the two lattice operations ∧ and ∨ is congruence distributive
(see [1]). Hence the variety of Nelson algebras is congruence distributive. Jónsson has
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proved that in such varieties the subdirectly irreducible members of HSP(K) are already
in the class HSUp(K), where Up(K) is the ultraproduct closure of K. It follows that a
finite class of finite algebras generates a finite number of subdirectly irreducible algebras.
The relevance of this lies in the fact that the logic of a variety is determined already by
the logic of the subdirectly irreducible members. The following theorem has been proved
in [13], in essentially the same way.

Theorem 20 (Sendlewski) A logic in EN is tabular iff it is of finite codimension.

Proof. First we show that if Λ ⊆ Θ and Λ is tabular, then so is Θ; in other words the
tabular logics form a filter in the lattice of N–logics. Assume that Λ = Th(C) for a finite
Nelson algebra C. Nelson algebras are congruence distributive, since their reduct to ∩ and
∪ is a lattice. Θ is determined by its subdirectly irreducible algebras. By Jónsson’s Lemma
(see [1]), they are contained in HSUp C = HS C, again since C is finite. It also follows that
if Θ is tabular, then there are finitely many finite subdirectly irreducible algebras in the
variety of Θ–algebras. This concludes the proof of the first claim. Now suppose Θ is of
finite codimension in EN. Then i(Θ) is of finite codimension in E Int, and hence tabular
(see [12]). Thus i(Θ) is determined by a finite algebra H. Then, since n(i(Θ)) ⊆ Θ, the
logic of H./ is contained in Θ. The first is tabular. Then the second is tabular as well.
Now, assume conversely that Θ is tabular. Then the subdirectly irreducible algebras for
Θ are finite and there is a finite number of them. Let them be Ci, i < n, and let k be the
sum of their cardinalities. Suppose Λ is a proper extension of Θ. Then every subdirectly
irreducible algebra for Λ is a subdirectly irreducible algebra for Θ, and the sum of their
cardinalities must be less than k. Hence, Θ is of finite codimension. a

These results can be used to gain some understanding of the upper part of EN up to
codimension 4. We start from the well-known picture of the upper part of the lattice of
intermediate logics, up to codimension 3. (This picture can be found in [12] on page 294.)

•

•

•

• •�
�

��

@
@

@@
Th ◦ → ◦

Th ◦

Th ◦ → ◦ → ◦Th ◦��*
◦

HHj ◦

There is exactly one logic of codimension 1, namely classical logic. It is characterized by
the axiom p ∨ ¬p, or alternatively by ((p → q) → p) → p. Every intermediate logic not
containing classical logic is actually contained in it. Classical logic has one lower cover,
the logic of tomorrow, or of here–and–there. Again, every logic not containing this logic
is contained in it. Below, however, the situation is different. What we find is two lower
covers, one being the logic of the three–element chain and the other the logic of the fork.
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Let us see how this transfers to the N–logics. The least N–extension of classical logic
is the logic of a three element algebra. This algebra is due to Vakarelov. Namely, if we
start from a single point poset 〈{0},≤〉, then we have three pairs of subsets, 1 := 〈{0}, ∅〉,
0 := 〈∅, ∅〉 and −1 := 〈∅, {0}〉. This algebra satisfies the axioms of classical logic but ↔
is not a congruence. In fact, the three–element algebra is homomorphically simple and
has only one nontrivial subalgebra, namely {−1, 1}. The logic of the latter two–element
algebra extends the logic of the three-element algebra by the axiom −x↔ ∼x. Therefore,
the logic of the three–element algebra is of codimension 2.

→ −1 0 1
−1 1 1 1

0 1 1 1
1 −1 0 1

−
−1 1

0 1
1 −1

∼
−1 1

0 0
1 −1

Let us go now to the logic of here–and–there, that is, the logic of the poset 〈{0, 1},≤〉.
Its minimal N–extension is that of the five elements −2 := 〈∅, {0, 1}〉, −1 := 〈∅, {1}〉,
0 := 〈∅, ∅〉; 1 := 〈{1}, ∅〉 and 2 := 〈{0, 1}, ∅〉. The operation ∩ corresponds to min and ∪
to max. The other connectives act as follows.

→ −2 −1 0 1 2
−2 2 2 2 2 2
−1 2 2 2 2 2

0 2 2 2 2 2
1 −1 −1 0 2 2
2 −2 −1 0 1 2

−
−2 2
−1 2

0 2
1 −1
2 −2

∼
−2 2
−1 1

0 0
1 −1
2 −2

The subalgebras must contain at least 2, the unit, and −2. Furthermore, they contain
1 iff they contain −1. This leaves three choices of proper subalgebras, namely {2,−2},
{2, 0,−2}, {2, 1,−1,−2}. It is readily checked that all three sets are closed under the oper-
ations. Hence these are all proper subalgebras. However, the first two arose already from
the twist construction over the one-point poset. Thus, only the four–element subalgebra
based on the set {−2,−1, 1, 2} is new.

We will now discuss the structure of the lattice of extensions of NC := n(LC), where
LC = Int + p → q. ∨ .q → p. (Hence NC = N + p → q. ∨ .q → p.) In general, given a
logic Λ, let Sfg(Λ) denote the set of subdirectly irreducible, finitely generated algebras for
Λ. Eevery extension is complete with respect to Sfg(Λ). For each extension Θ, let S(Θ)
be the class of algebras in Sfg(Λ) which validate Θ. The sets S(Θ) are closed under finite
unions and infinite intersections and can be thought of as the closed sets of a topological
space over Sfg(Λ). Moreover, S is injective. It is therefore enough to study the space of
closed sets in Sfg(Λ). In the case of Λ = NC we have a locally finite variety, so Sfg(NC)
consists of finite algebras only. The induced topology satisfies T0 (that is, for every set
{x, y} with two elements there exists an open set O such that card(O ∩ {x, y}) = 1). T0–
spaces induce an ordering on the elements by x ≤ y iff y ∈ {x}. Therefore, put A ≤ B iff
ThA ≤ ThB. Then B ∈ {A} iff A ≤ B. Hence, closed sets in the space are upward closed
with respect to ≤. The converse need not hold in general, however. If every upward closed
set is also closed, the lattice of closed sets is a continuous lattice. In the present case it



Marcus Kracht, On Extensions of Intermediate Logics by Strong Negation 16

means that distributes over u and over t. Below we will determine the structure of
〈Sfg(NC),≤〉. The lattice ENC is a continuous lattice as we will see, and so the poset
actually describes ENC up to isomorphism.

LC is the logic of linear Kripke–frames. Before we can start, we need some pieces of
notation. We denote by chn the linear Kripke–frame consisting of n points. It is based on
the poset 〈{xi | i < n},�〉 where xi � xj iff j ≤ i. The set of cones of this frames is the
collection of sets of the form ↑xi = {xj | xi � xj} = {xj | j ≤ i}. The algebra of cones of
chn is denoted by ch+

n . The following is known about the structure of E LC. (The notation
used is as follows. For a lattice V we denote by 1 + V the lattice obtained by adding a
new bottom element. Also, V⊥ is the dual (i. e. upside down) lattice corresponding to
V.)

Theorem 21 E LC ∼= 1 + ω⊥. Every proper extension of LC is tabular. Moreover, a
proper extension Λ has codimension n iff Λ = Th chn.

This can be shown as follows. Recall that a variety V is said to be locally finite if for
every natural number n the algebra freely generated by n elements in V is finite.

Theorem 22 The variety of LC–algebras is locally finite.

For a proof of the latter observe that LC has the finite model property and is complete
with respect to the algebras chm, m ∈ ω. Now take a finite number n. Let S be any set
of ≤ n cones in chm, m ∈ ω. The algebra generated by S in chm has cardinality ≤ n+ 2.
This allows to deduce that the size of the freely n–generated algebra is ≤ n! × (n + 2).
Now Theorem 21 follows by observing that first that every extension is locally finite as
well and therefore has finite model property. For a proper extension Λ of LC there must
exist an n such that chn is not a frame for Λ. Then no chm for m ≥ n is a frame for Λ.

Theorem 23 Let Λ be an intermediate logic. The variety of Λ–algebras is locally finite
iff the variety of n(Λ)–algebras is locally finite.

Proof. Let V := AlgΛ be locally finite. Let W be the variety generated by V./; then
W = Algn(Λ). Now let n be a natural number and denote by FW(n) (FV(n)) the algebra
generated freely in V (W) by the elements ai, i < n. Consider the map i : ∼ai 7→ an+i.
This map can be extended to an I–homomorphism from FW(n) into FV(2n). This map is
injective. Since the latter algebra is finite, so is the former. The other direction is easy. a

Corollary 24 The variety of NC–algebras is locally finite. a

Thus every extension of NC is the logic of some set of finite algebras. In order to obtain an
insight into the structure of ENC we will look somewhat closer at the model structures
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for LC. Take two chains chm and chn, and let m ≥ n. (a.) There exists exactly one
imbedding ιmn : chn � chm, sending xi to xi, i < n. (b.) Each p–morphism chm � chn

for m > n factors through a p–morphism chn+1 � chn. Moreover, for each i < n, the
following map is a p–morphism

εin : xj 7→
{
xj if j ≤ i
xj−1 if j > i

Hence any surjective p–morphism is a composition of maps of the form εin, for some
i, n ∈ ω. Now let ch+

n be the Heyting algebra of cones of chn. Using the duality between
finite Heyting algebras and finite Kripke–frames we obtain the following. (a.) Any I–
homomorphism ch+

m � ch+
n is of the form ι+mn. The congruence δ corresponding to it has

the cosets [↑xi]δ = {↑xi} if i < n and [↑xi]δ = {↑xj | j ≥ i} for n ≤ i < m. (b.) Any
imbedding ch+

m � ch+
n can be factored through imbeddings of the form (εin)+ : ch+

n �
ch+

n+1. We have

(εin)+ : ↑xj 7→
{
↑xj if j ≤ i
↑xj+1 if j > i

Now let us apply this to the constructive case. First, we know that every logic extending
NC has the finite model property. A finite Nelson algebra for NC is a subalgebra of
some ch+

n , for some n. Its elements are of the following form: (i.) 〈↑xi, ∅〉; we call such
elements upper elements, (ii.) 〈∅, ∅〉; we call it the middle element, (iii.) 〈∅, ↑xi〉; we
call these elements lower elements. The reduct of a Nelson algebra N to ∩ and ∪ is a
lattice; the ordering relation is denoted by ≤. Moreover, if x, y are elements of N then
put [x, y] := {z | x ≤ z ≤ y}. A congruence on an algebra is trivial if no coset has more
than one element or there exists exactly one coset.

Lemma 25 Let L be a subalgebra of (ch+
n )./ for some n and let θ be a nontrivial con-

gruence on L. Then θ has exactly two nontrivial cosets, and they are of the form [x, 1]
and [∼1,∼x] for some upper element x. All subalgebras of ch+

n )./ are therefore subdirectly
irreducible.

Proof. Let L be a Nelson algebra of this type. Consider a congruence θ. Then if θ is not
the diagonal, there is an upper element in a nontrivial coset. For let y ∈ [x]θ, y 6= x. If both
of them are not upper elements, at least one is lower. Let it be x. Then, as ∼y ∈ [∼x]θ,
we have an upper element in a nontrivial coset. Furthermore, cosets [x]θ are convex sets
with respect to ≤, since the induced homomorphism pθ is a lattice homomorphism. Let x
be an upper element in a nontrivial coset, and let y ∈ [x]θ be a nonlower element such that
y ≤ x � y. (Such an element exists.) Then 1 = y → x θ x→ y = y. Hence the coset of an
upper element is nontrivial iff it contains the unit. Similarly for lower elements. Suppose
now that there are at least two cosets. Then [1]θ 6= [∼1]θ. Let x be the least element of
[1]θ (with respect to ≤). Then [1]θ = [x, 1] and [∼1]θ = [∼1,∼x]. a

It can be checked that if the cardinality of the coset [1]θ is k then the projection pθ is the
dual of the imbedding ιn,n+k−1. Now let us turn to subalgebras of (ch+

n )./.
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Lemma 26 Let L be the twist algebra of ch+
n and let M be a maximal proper subset closed

under all operations. Then either (a.) M is the set of non–middle elements, or (b.) M
contains all elements except for 〈↑xi, ∅〉 and 〈∅, ↑xi〉 for some i < n.

Proof. It is straightforward to check that the sets are closed under all operations. Now
let M be a proper subset closed under all operations. Suppose that M contains the middle
element. There exists a nonmiddle x 6∈ M . Since also ∼x 6∈ M , we can assume that x is
upper, i. e. of the form 〈↑xi, ∅〉. This shows the theorem. a

The subalgebras of the type (b.) are actually isomorphic to (ch+
n−1)

./. Thus, all Nelson
algebras for NC fall into either of two classes: (1.) the twist algebra of ch+

n , (2.) the
algebra of nonmiddle elements of the twist algebra of ch+

n . The algebra of the first kind
will be denoted by Ln, the algebra of the second kind by L?

n.

Theorem 27 The logic NC? := NC + ¬∼p ↔ ¬¬p is the logic of all L?
n. NC? is

pretabular and the lattice of extensions is isomorphic to 1 + ω⊥.

Proof. Take x = 〈↑xi, ∅〉. Then −∼x = 〈1, ∅〉 and −− x = 〈1, ∅〉. Let now x = 〈∅, ↑xi〉.
Then −∼x = 〈∅, 1〉 and −−x = 〈∅, 1〉. However, −∼〈∅, ∅〉 = 〈1, ∅〉, but −−〈∅, ∅〉 = 〈∅, 1〉.
The remaining claims are more or less straightforward. a

The elements of L?
n can therefore be characterized by the fact that they satisfy a require-

ment that eventually a proposition must be decided, either positively or negatively. (So
there is a kind of ‘last judgement’ day.) Finally, the lattice of extensions of NC is largely
determined by the poset of –irreducible elements in the lattice. These are of finite
codimension and correspond to logics of a finite Nelson algebra. This algebra in turn is
isomorphic to L?

n or Ln for some n. Since for finite subdirectly irreducible Nelson algebras
ThM ⊆ ThN iff N ∈ HSUp M = HS M we get the following picture. ThLm ⊆ ThLn iff
n ≤ m, ThLm ⊆ ThL?

n iff n ≤ m, ThL?
m ⊆ ThLn never and ThL?

m ⊆ ThL?
n iff n ≤ m.

The picture below shows the poset of –irreducible logics in ENC.
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An index is a pair 〈i, j〉 such that i, j ≤ ω are ordinal numbers and i ≤ j. The set of all
indices is denoted by Ind. For indices i1 := 〈i1, j1〉 and i2 := 〈i2, j2〉 let i1 ≤ i2 iff i1 ≥ i2
and j1 ≥ j2. The set of indices forms a lattice with respect to this ordering, denoted
by Ind. Let Θ be an extension of LC. The index of Θ, ind(Θ), is obtained as follows.
ind(Θ) = 〈i, j〉 where i the least upper bound of all m such that Lm ∈ AlgΘ (if that set
is empty i = 0 is a least upper bound); and j is the least upper bound of all n such that
L?

n ∈ AlgΘ. It is clear that i ≤ j, so 〈i, j〉 is an index. The assignment of indices can
easily be shown to be an isotonic map of posets, and to be bijective. We conclude the
following theorem.

Theorem 28 The map Θ 7→ ind(Θ) is an isomorphism from ENC onto Ind, the lattice
of indices. Hence ENC is continuous. a
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The Lattice ENC
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. . . . . . . . . .
•

NC

Given a lattice L, an element x is called a splitting element if there exists a y such that
for every element z either z ≤ x or z ≥ y, but not both. If x is a splitting element, y is
called the splitting of L by x and denoted by L/x. We write L/{x, y} for L/x t L/y.
With L = ENC and x = Θ we write NC/Θ rather than ENC/Θ and NC/N instead of
NC/ThN. Take an extension Θ of NC. If ind(Θ) = 〈ω, ω〉 then Θ = NC. Otherwise
ind(Θ) = 〈i, ω〉 for i ∈ ω and so Θ = NC/Li+1 or ind(Θ) = 〈i, j〉 with i, j ∈ ω and then
Θ = NC/{Li+1,L

∗
j+1}.

Theorem 29 The splitting elements of ENC are of the form ThL?
n and ThLn, n > 0.
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Every proper extension of NC is of the form NC/P , where P is a set of splitting logics
of size at most 2. Every logic Θ such that NC ( Θ ⊆ NC? is of the form NC/Ln for
some n > 0. Moreover, ThLn = NC/L?

n+1, n > 0. a

It is not hard to show that for every splitting logic Θ there exists a formula φ such that
ENC/Θ = NC+φ. (Suppose NC/Θ = NC+ ∆1 + ∆2 and NC+ ∆i ( NC/Θ, i = 1, 2.
Then NC+∆i ⊆ Θ for i = 1, 2, and so NC+∆1 +∆2 ⊆ Θ. Contradiction.) Hence every
extension is finitely axiomatizable, and decidable. Moreover, for every extension Θ of NC
the problem ‘NC + φ ⊆ Θ’ is decidable; for it is equivalent to ‘φ ∈ Θ’. Now suppose that
Θ is a splitting element of NC. Then ‘NC + φ ⊇ NC/Θ’ is decidable as well, for it is
equivalent to ‘NC + φ * Θ’. Likewise, for a finite set P , the problem ‘NC + φ ⊇ NC/P ’
is decidable; for it is the conjunction of the problems ‘NC + φ ⊇ NC/Θ’ with Θ ∈ P .

Theorem 30 ENC is a continuous distributive lattice. The variety of NC–algebras is
locally finite. Every extension of NC is finitely axiomatizable, has the finite model property
and is decidable. Moreover, for every logic Λ containing NC the problem ‘NC + φ = Λ’
is decidable.
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