
Strict Compositionality and Literal Movement
Grammars

Marcus Kracht1

II. Mathematisches Institut
Freie Universität Berlin

Arnimallee 3
D – 14195 Berlin

Germany
kracht@math.fu-berlin.de

Abstract. The principle of compositionality, as standardly defined, re-
gards grammars as compositional that are not compositional in an intu-
itive sense of the word. There is, for example, no notion of a part of a
string or structure involved in the formal definition. We shall therefore
propose here a stricter version of compositionality. It consists in a con-
junction of principles which assure among other that complex signs are
in a literal sense made from simpler signs, with the meaning and syntac-
tic type being computed in tandem. We shall argue that given this strict
principle, quite powerful string handling mechanisms must be assumed.
Linear Context Free Rewrite Systems (see [13]) are not enough to gener-
ate human languages, but most likely Literal Movement Grammars will
do.

A grammar is compositional if the meaning of a (complex) expression is de-
termined from the meaning of its (immediate) parts together with their mode
of combination. A language is compositional if there is a compositional gram-
mar that generates it. (See [6] for a discussion.) Recently, Zadrozny [15] has
presented a proof that any meaning assignment function can go with a com-
positional grammar. This proof has been dismissed by Kazmi and Pelletier [7]
and Westerst̊ahl [14] on the grounds that Zadrozny is computing the meaning
through a detour. He introduces new functions, one per word, and reduces the re-
quirement of compositionality to the solution of an equation, which always exists
if one assumes the existence of non–well founded sets. In fact, Zadrozny him-
self finds this solution formalistic and proposes restrictions under which certain
pathological examples are excluded. So, there is an agreement that one should
not count the proof by Zadrozny as showing us anything about the problem of
compositionality of language — if the latter is understood in an intuitive sense.
But in what sense can or must compositionality be understood if it is to have any
significance? And what is the source of the complaints that people like Kazmi,
Pelletier, Westerst̊ahl (and others) raise? In this paper we will try to elaborate
a formal setup of language as a semiotic system that allows to discuss this prob-
lem in a meaningful way. We shall propose a definition of compositionality, called
strict compositionality, which is restrictive and therefore non vacuous.

Before we enter the discussion, we need to provide some basic definitions.
Let F be a set (possibly empty) and Ω a function from F to the set ω of natural
numbers. Throughout this paper, F will always be assumed to be finite. The
pair 〈F,Ω〉 (often denoted just by Ω) is called a signature. A (partial) Ω–algebra
is a pair A = 〈A, I〉, where A is a non-empty set (called the carrier set of A)
and I is a function with codomain F , which assigns to each f ∈ F a (partial)
Ω(f)–ary function on A. A homomorphism from a A to some (partial) Ω–algebra
B = 〈B, J〉 is a function h : A → B such that for all f ∈ F and all a ∈ AΩ(f):

h(I(f)(a)) = J(f)(h(a)) .

(Here, h(a) = 〈h(a0), . . . , h(aΩ(f)−1)〉.) This means that the left hand side is
defined iff the right hand is defined, and if both sides are defined they are equal.
If B ⊆ A and h is the identity map we speak of B as a subalgebra of A. In that
case one can show that J(f) = I(f) � BΩ(f). Let X ⊆ A be an arbitrary subset
of A. We denote by [X] the least subset of A that contains X and is closed under
all partial functions I(f). If X has cardinality n and [X] = A, we say that A is
n–generated. In particular, A is 0–generated if A = [∅].

Fix a set V := {xi : i ∈ ω}. An Ω–term is defined inductively as fol-
lows. Every xi ∈ V is a term; if f ∈ F and ti, i < Ω(f), are terms, so is
f(t0, t1, . . . , tΩ(f)−1). Now, given an algebra 〈A, I〉, the set of polynomials is the
set of ΩA–terms, where ΩA is obtained from Ω by adding a nullary function
symbol a for each a ∈ A, which is interpreted by a in A.

We assume that a language is a set of signs. In accordance with the syntactic
literature, a sign is a triple, consisting of an exponent (this is what you can
actually see of the sign), a type, and a meaning.

Definition 1 Let E, T and M be (nonempty) sets. A sign over (E, T,M) is a
member σ of the Cartesian product E × T × M . If σ = (e, t, m), we call e the
exponent of σ, t the type of σ and m the meaning of σ. A language over
(E, T,M) is a set of (E, T,M)–signs.

We denote the first projection from a sign by ε, the second projection by τ and
the third projection by µ. Given a language L, then ε[L] := {ε(σ) : σ ∈ L} is
the set of exponents of L. When there is no risk of confusion we shall also speak
of ε[L] as a language. This covers the traditional usage of a subset of A∗ being
a language. Here are some examples of signs.

‘a’ : 〈a,np/n, λP.λQ.(∃x)(P(x) ∧ Q(x))〉
‘man’ : 〈man, n, λx.man′(x)〉
‘walks’ : 〈walks,np\t, λx.walk′(x)〉

Notice that the name of the sign (eg ‘man’) can be anything, even a number.
What we can actually see of the sign is its exponent, ie man. (We write in type-
writer font the exponent of a sign. The symbols in typewriter font are therefore
true letters in print, while any other symbol is only proxy for some letter or
string. Typewriter fonts are our device for quoting a string in running text with-
out having to use quotation marks. Notice that ‘man’ is used to refer to the
complete sign rather than its exponent.)

Definition 2 A (E, T,M)–grammar G consists of a finite signature Ω and
functions IE, IT and IM such that E := 〈E, IE〉, T := 〈T, IT 〉 and M := 〈M, IM 〉
are partial Ω–algebras. The language of G, L(G), is defined by L(G) := [∅].
We call F the set of modes of G. A mode is proper if it has nonzero arity. The
lexicon of G is the set {〈IE(f), IT (f), IM (f)〉 : Ω(f) = 0}.

This definition needs some exegesis. We think of E, T and M as independent sets,
given in advance. At present, there are no conditions on these sets. A language is
any subset of E×T×M . A grammar is a system by which the signs of L are built
from some finite set of signs (the lexicon) by means of some finite set of functions
(called proper modes). Therefore, modes correspond to grammatical rules. For
example, if f is a binary mode, one thinks of f as the following grammatical rule

f(σ1, σ2) → σ1 σ2

Notice that terminal symbols of a grammar are generally not considered to be
rules (they are part of the lexicon), but there is no harm in thinking of them as
rules of the form σ → . (think of the arrow as the := in Prolog). Notice that
our definition of grammar is modular: not any set of functions from signs to
signs qualifies. Rather, we assume that the modes operate independently on the
exponents, the types and the meanings of the signs. Therefore, in order to define
a grammar, one needs only to specify the interpretation of the modes in each of
the three sets E, T and M independently. This defines the algebras E, T and
M. The rest is completely determined. One forms the product E×T×M. This
algebra contains a unique minimal subalgebra. Its carrier set is precisely the set
of all signs that can be produced from the lexicon by the set of proper modes.
If L has a grammar, it is also a partial Ω–algebra L in some canonical way. We
should note that if L is a (E, T,M)–language, it is also a (E′, T ′,M ′)–language
for any E′ ⊇ E, T ′ ⊇ T and M ′ ⊇ M . However, there is a different sense of
extension of a language that will play a role in the discussion.

Definition 3 Let L be a (E, T.M)–language and L′ a (E′, T ′,M ′)–language. L′

extends L if L′ ∩ E × T ×M = L.

If L′ extends properly L, one may think of L′ as having hidden signs. Such a
sign is of the form 〈e, t, m〉 where either e 6∈ E or t 6∈ T or m 6∈ M . It may be
difficult to argue for a sign with exponent e ∈ E to be hidden. Anyhow, we shall
argue below that one should not postulate hidden signs. But for the moment,
we leave this possibility open. The following definition embodies the notion of
compositionality as employed in the literature.

Definition 4 Let L be a (E, T,M)–language. L is naturally compositional
if there is a (E, T,M)–grammar G such that L(G) = L. L is compositional if
there is a L′ which extends L and is naturally compositional.

Notice that the notion of extension allows the introduction of new exponents
or new types or new meanings if necessary. However, no new (E, T,M)–signs
may be introduced. To see why this is the standard approach, notice that the

problem is stated as follows. A language is defined a subset L of E×M . The pair
〈e,m〉 corresponds to a sentence e with meaning m. With this datum, a grammar
is written, introducing new types (for intermediate constituents) and assigning
arbitrary meanings to signs containing them. However, in natural languages the
natural parts of a sentence — the constituents — do have their own meaning,
and so we cannot choose that meaning arbitrarily. Moreover, the meaning of the
constituent contributes to the meaning of the sentence. Furthermore, a context–
free grammar is often defined as a string generating device of the following
form. The symbol S is the start symbol. Starting with S, one may replace step
by step each nonterminal by the right side of an appropriate rule. In our view,
however, this approach suffers from a confusion between the type of a sign and its
exponent. The symbol NP is not part of the string–algebra, which contains only
sequences of terminal strings. Hence, NP is a type. In the course of a derivation
we actually derive triples 〈x, NP,m〉, where x is a string of type NP and meaning
m.

Nevertheless, if the set of types is finite, L may in fact be thought of as a
many sorted algebra over sound–meaning pairs. However, the introduction of the
types has the advantage to eliminate having to type the signs, and it allows to
incorporate grammars with explicit type constructors, such as categorial gram-
mars. If · is a mode, we write ·e in place of IE(·), ·t in place of IT (·) and ·m in
place of IM (·). By our definitions, · is defined on a tuple of signs exactly when all
three functions ·e, ·t and ·m are defined on the corresponding projections. This
means that the partiality is introduced by the algebras of exponents, signs and
meanings. One fundamental assumption is made.

Feasibility. If · is a mode, then the corresponding functions ·e, ·t and ·m
are computable.

Moreover, in Montague Grammar the functions are actually polynomials in the
basic functions of the algebras of strings, types and meanings, respectively. We
shall assume the same here. This means that they can be expressed in λ–notation,
but we shall suppress λ–notation whenever possible.

Polynomial Feasibility. If · is a mode, then the corresponding functions
·e, ·t and ·m are polynomial functions. Moreover, each of the functions
is computable in polynomial time.

Notice that it is not clear that a polynomial function is computable in polynomial
time. If, say, M consists in the domain ω of natural numbers and a unary function
f : ω → ω which is not computable, then f is a polynomial function but is
not polynomially computable. The results rely only partly on this restriction of
polynomial time computability.

In the simplest case, the grammar has only one mode, •, called the merge. It
is given by the functions •e, •t and •m, which are defined by

ε(σ1 • σ2) = ε(σ1) •e ε(σ2)
τ(σ1 • σ2) = τ(σ2) •t τ(σ2)
µ(σ1 • σ2) = µ(σ1) •m µ(σ2)

Let •e be concatenation of strings with a blank (�) inserted, •t be slash–
cancellation and •m be function application, and we get Montague–Grammar.
To give an example, we may compose the signs ‘a’ and ‘man’. This gives the sign
σ := ‘a’ • ‘man’. Now,

ε(σ) = ε(‘a’) •e ε(‘man’)
= aa�aman
= a man

Likewise, τ(σ) = np and µ(σ) = λQ.(∃x)(man′(x)∧Q(x)) are established. Hence
we get

σ = 〈a man,np, λQ.(∃x)(man′(x) ∧ Q(x))〉
A word on notation. We shall assume that the exponents of signs are strings
or sequences thereof. These strings are represented in exactly the same way as
they are written. So, each word is actually already a sequence (of letters) and
concatenation of words is done by putting a blank in between the two. We use
� to denote the blank. Plain concatenation is denoted by a, or, if no confusion
arises, it is denoted simply by concatenation. Word concatenation is denoted by
·. We have x · y = xa�ay.

Suppose that G generates L. Since L = [∅], any sign of the language can be
represented by a constant term. This term is called its representing term. Terms
uniquely designate derivations. So, if for a given exponent x there are m terms
representing a sign with exponent x then x is said to be m–fold structurally
ambiguous. The reader should bear in mind that the term denotes the signs only
with the grammar being given.

The definitions allow that the exponents of signs may be anything we please.
Yet, if by exponent we mean the visible (or audible) exponent of the sign, there
is little sense in assuming that the exponents of signs are anything but strings.
This is, with a minor adaptation, what we shall assume here. It has been shown
that given any recursively enumerable language and any computable function
assigning meanings to strings, there is a type assignment and a compositional
grammar generating this language (see [6] for details). However, there is a sense
in which some of these grammars may fail to be compositional in an intuitive
sense. We shall therefore say that a grammar G is a strict grammar of L if it
satisfies the following two requirements. (Two other principles will still follow,
but we assume them to follow from the next two, if not in the literal sense, then
at least in spirit.)

Naturalness. L(G) = L.

Analyticity. There is a finite set A such that E ⊆ A∗. For each mode f
and each sequence σ on which f is defined there is a string polynomial
p(x), in which each xi, i < Ω(f), occurs at least once, such that

fe(ε(σ)) = p(ε(σ))

(Here, ε(σ) = 〈ε(σi) : i < Ω(f)〉. Notice that fe(ε(σ)) = ε(f(σ)), by the
assumption that f is defined on σ.)

Definition 5 A language L is strictly compositional if it has a strict com-
positional grammar.

These principles need a certain amount of motivation. The principle of Natural-
ness is stronger than requiring that L(G) extends L′, which is commonly used
in the definitions of compositionality. If G is natural for L, L is actually natu-
rally compositional, as defined earlier. So, notice that we require that all signs
that the grammar generates are part of the language. In particular, the signs
generated have exponents that are units of the language, and the grammar as-
signs those types and meanings to them that they have in that language. What
signs there are is of course an empirical question. It is to a large extent also a
question of methodology or personal persuasion. Not everyone will accept that
λ–terms count as meanings for the words of natural language. However, even
if the existence and nature of signs is unclear the question of what they are is
not without meaning at all. Just like Augustinus observed with respect to time,
there is a perennial problem with respect to meaning. It seems that we know
perfectly well what meaning is, but when asked to give a definition, we fail. The
present discussion is therefore not targeted at the question of what signs there
are; rather, granted that we know that, how can a grammar for them look like?
To emphasize our point once more: if the question whether languages are com-
positional is to have any nontrivial meaning at all, it is because we exclude the
introduction of new signs.

The Principle of Analyticity means the following. If a sign σ is directly de-
rived from σi, i < n, then the exponents of the σi are disjoint parts of the
exponent of σ. We have phrased this using the language of string polynomials.
It should be stressed that the polynomial may depend on the mode as well as
the sequence of signs. However, if it is independent of the choice of the signs, we
call the grammar uniformly analytic.

Definition 6 A grammar is uniformly analytic if for every mode f there
exists a string polynomial p, in which each variable xi, i < Ω(f), occurs at least
once, such that for all sequences σ of signs on which f is defined the equation

fe(ε(σ)) = p(ε(σ))

holds.

However, the interpretation of the mode in A∗, fe, need not be identical to p,
it may just be a subset of p (since fe may be a strictly partial function). In
fact, Uniform Analyticity comes down to the existence of a polynomial p of the
appropriate kind such that fe = p � dom(fe).

Example 1. To illustrate our point we shall discuss the example of Kazmi
and Pelletier in [7]. Let A = {a, b, c}, be the alphabet and let the set of expo-
nents be {a, b, c, ca, cb}. Now we introduce a meaning assignment, which has
the property that µ(a) = µ(b) but µ(ca) 6= µ(cb). Now, suppose first that there
is only one type of expression. Then it is easily seen that there exists no strictly
compositional grammar for that language. This is independent of whether we

assume Polynomial Feasibility. For there simply is no function ·µ whatsoever
that satisfies

µ(ca) = µ(c) ·µ µ(a)
µ(cb) = µ(c) ·µ µ(b)

So, restricting the class of functions to exclude this example — as Zadrozny pro-
poses — is not necessary at all under the assumption of strict compositionality.
We shall briefly outline two alternatives to the present example to shed light on
the kind of restrictions that are operative here. First, we could have said that a,
b, c, ca and cb are the exponents of primitive signs and that there is no proper
mode, just five 0–ary modes. This is unintended in the example above, since we
write ca to imply that the sign with exponent ca is composed from the signs
with exponents c and a, respectively. Notice however that many languages have
words that can be segmented as strings into ‘unnatural’ parts, in which case the
impossibility to have a compositional account of the meaning of that word does
simply not arise since the word as a sign is not conceived of as consisting of these
parts. To give an example, the word ‘selfish’ is not the result of composing ‘sell’
and ‘fish’, although that (almost) sounds the same. Also the word ‘caterpillar’
is not a compound built from ‘(to) cater’ and ‘pillar’. Likewise, idioms must be
considered as units from a semantic point of view. Evidently, they can often also
be read literally (in which case they are decomposed), but this is not at issue
here. Thus, the notion of a basic sign (ie a 0–ary mode) is different from the
notion of a sign having a nonsegmentable exponent. A second variation on that
theme is to allow the same string to have several types. We could, for example,
allow any string to denote itself when of type, say, s. In that case we have two
signs with the same exponent, for example

〈a, t, µ(a)〉, 〈a, s, a〉

In this situation, a compositional grammar in the strict sense once again exists.
Just assume two binary modes ◦ and •:

〈x, s,m〉 ◦ 〈y, s, n〉 = 〈xy, s,man〉
〈x, s,m〉 • 〈y, s, n〉 = 〈xy, s, µ(man)〉

So, we can either compose two strings qua strings, in which case we do concate-
nation on the semantic side. Or we can compose strings qua meaningful entities
— in which case we shall step from the string to the corresponding meaning.
(Actually, • alone would have sufficed here. One can also introduce a unary mode
that transports a string to its meaning.) In this way, once again a compositional
grammar exists for any language whatsoever. Or so it seems. What should be
observed, however, is that we are not giving a grammar for the same language,
since a language is a set of signs, and we have expanded the set of sings to include
strings of type s. But how about human languages? We claim that in human
languages it is not possible to have a string denote its usual meaning in addition
to denoting itself. In the latter case we call the string quoted. There exist devices
that allow to quote a string qua string, so actually we do have strings as mean-
ings in our language. (Just anything can be the meaning of an expressions.) But

the string x can never denote itself (ie x). Rather it must occur in a context that
quotes it. For example, we distinguish in writing between man — the exponent
of a sign whose meaning is, say, λx.man′(x) — and ‘man’ (using object language
quotation marks here), the exponent of a sign whose meaning is man. So, it is
never x itself that denotes x but, for example, the string x enclosed in quotes.
Of course, it is only natural for a semiotic system not to allow for the possibility
that its signs are all self–denoting, which would mean that we probably didn’t
need the signs in the first place. And precisely this saves us from vacuity.

The Principle of Analyticity is needed to be able to talk meaningfully about
parts of a sign. Hence, we can talk about constituents and of a constituent anal-
ysis. As the principle stands, it is not unproblematic. First, we shall have to
talk of occurrences of strings. The Principle of Analyticity is to be understood
to require that ε(σ) is made from the ε(σi), and that each ε(σi) occurs at least
once. So, there is no deletion of any material whatsoever. Assuming for the mo-
ment that the exponents are strings, the function ·e shall simply be a semigroup
polynomial in n–variables such that each variable occurs at least once. Examples
are

p(x, y) := xxy, q(x, y) := yxya

Here, a is a certain constant (the letter a). The Principle of Analyticity does
allow for empty categories. However, we shall apply Occam’s Razor and assume

Nonemptyness. No sign has empty exponent.

Now follow some more examples of grammars.
Example 2. Numbers are written as sequences of digits, where a digit is

a member of {0, 1, . . . , 9}. The sequence xk−1xk−2 . . . x0 represents the num-
ber

∑
i<k µ(xi) · 10i, where µ(xi) is the number assigned to each digit. There

are therefore two types: digits (D) and sequences (S). The following is a strict
grammar. These are the nullary modes:

‘0’ : 〈0, D, 0〉
‘1’ : 〈1, D, 1〉

. . .
‘9’ : 〈9, D, 9〉

There is a unary mode ∗ and a binary mode ◦. ∗e(x) := x, ∗m(µ) := µ, and
∗t(D) := S. ∗t(S) is undefined. For the binary mode ◦ we have x ◦e y := xy,
S ◦t D := S. ◦e is undefined otherwise. m ◦m n := 10m + n. So, the term ∗‘7’
corresponds to the sign 〈7, S, 7〉, the term ‘2’ ◦ (‘3’ ◦ ‘7’) to the sign 〈237, S, 237〉.

Since the algebra of types is finite, one can actually present the algebra of
signs in form of the following context–free grammar.

〈0, D, 0〉 | . . . | 〈9, D, 9〉 → .
〈xy, S, 10 ·m + n〉 → 〈x, S, m〉 〈y, D, n〉
〈x, S, n〉 → 〈x, D, n〉

(Here, | denotes an alternative; the first line abbreviates therefore a total of ten
rules.) Terminal symbols are denoted here by nullary rules. This grammar is
left–regular.

Example 3. As above. However, assign to a sequence x as meaning the pair
ν(x) := 〈`(x), µ(x)〉.

〈0, D, 〈1, 0〉〉 | . . . | 〈9, D, 〈1, 9〉〉 → .
〈yx, T, 〈`1 + `2, 10 ·m1 + m2〉〉 → 〈x, T, 〈`1,m1〉〉 〈y, D, 〈`2,m2〉〉
〈x, T, 〈`, n〉〉 → 〈x,D, 〈`, n〉〉
〈x, S, n〉 → 〈x, T, 〈`, n〉〉

This is a compositional grammar. However, it is not strict. The problem is that
the meaning of a string x simply is the number it represents, we are not al-
lowed to add any more to it. It can be shown that there is no right–regular
strict grammar that generates the number sequences. For a proof note that the
sequences 7, 07, 007 etc all have the same meaning, namely 7. However, the
result of prefixing 1 is different in all cases. We get 17, 107, 1007 etc, which all
represent different numbers. However, since we have only finitely many types in
a right–regular grammar, some of the sequences 7, 07, 007 etc must have equal
type, and therefore the grammar generates two different sequences starting with
1, which are assigned the same number. This is, however, incorrect.

It is tempting to conclude that a strict grammar for the number sequences
must be left regular. This is more or less correct, but there are infinitely many
grammars that can generate the number sequences compositionally even in the
strict sense and each is different in the constituent analysis that it introduces.
Nevertheless, the constituent analysis cannot be right regular. Strict grammars
must satisfy the condition that not both a string x and 0x are generated having
identical type. So, even if the constituent analysis is not uniquely defined by the
principles laid out above, there nevertheless are certain things that can be said
about possible constituents.

The present definitions do not say anything about the size of the algebra of
types. It may be finite or infinite. However, notice that if a grammar has in-
finitely many signs then the same exponent can in principle have infinitely many
meanings depending on which type it has. Moreover, strings can be infinitely
ambiguous, simply because they can be derived from some the same string us-
ing some unary modes. Since we do not want to exclude the number of types
to be infinite, we shall rather require that unary modes must also change the
exponent. Although this does not follow from Analyticity in a literal sense, it is
nevertheless a principle of the same sort, since it requires that every step leaves
a visible trace on the exponent.

Productivity. If σ is composed from τ by applying a unary mode, then
ε(τ) is shorter than ε(σ).

This means that there can be no unary rules that only change the category
(type) and the meaning; rather, a unary mode must introduce material into the
string. The grammar in Example 2 does not comply with this restriction. There

is an easy fix for that. Just assume the following additional 0–ary modes:

‘0#’ : 〈0, S, 0〉
‘1#’ : 〈1, S, 1〉

. . .
‘9#’ : 〈9, S, 9〉

Now eliminate the last rule and add instead the rule

〈xy, S, 10m + n〉 → 〈x, D,m〉 〈y, D, n〉

This looks like a bad trick but is in fact quite logical. The digit 3 for example, is
actually the exponent of two signs, that of the digit 3 and that of the sequence
consisting of 3. This grammar reflects the dual nature of sequences of length 1.
Sequences of length > 1 can of course not be digits.

There is plenty of evidence that in language there are empty signs and also
non productive modes. However, their use must obviously be highly restricted
otherwise the determination of the meaning from the sound can become infea-
sible. So, when one looks closely at the matter it often enough appears that the
use of empty signs and non productive modes can be eliminated in much the
same way as it can be done in context free grammars.

Example 4. This example concerns the English number names, in a slightly
simplified form. This example goes back to Arnold Zwicky, for a discussion of the
formal complexity of English and Chinese number names see [11]. Each language
has a largest primitive name for a number. This number varies from language
to language. Let us assume that it is million for English. Numbers of the form
106k are represented by the k–fold iteration of the word million. The number
2000003000005 is therefore represented by the string

two million million three million five

We shall leave out the words thousand, hundred as well as ten, twenty etc and
assume that our alphabet consists only of

{zero, one, two, . . . , nine, million}

Legitimate expressions have the following form:

x0 · millionk0 · x1 · millionk2 · . . . · xm−1 · millionkm−1

where k0 > k1 > . . . > km−1 and xj 6= million for all j < m. This sequence
represents the number

m−1∑
j=0

xj · 106kj

This language is not generable by Linear Context Free Rewrite System (oth-
erwise known as LCFRSs); in fact, it is not even semilinear. However, it is

recognizable in polynomial time. We shall propose two quite similar grammars.
Each of the two have the following 0–ary modes:

‘0’ : 〈zero, D, 0〉 ‘0#’ : 〈zero, S, 0〉
‘1’ : 〈one, D, 1〉 ‘1#’ : 〈one, S, 1〉

.
‘9’ : 〈nine, D, 9〉 ‘9#’ : 〈nine, S, 9〉
‘m’ : 〈million,M, 106〉 ‘0†’ : 〈zero,SE, 0〉

‘1†’ : 〈one,SE, 1〉
. . .

‘9†’ : 〈nine,SE, 9〉

Here, D is the type of a digit, S that of a number expression, and SE that of
a simple expression, where a simple expression is of the form x · millionk, x a
digit. Now, there is a binary mode(s) • and •S , operate as follows:

〈x,SE,m〉 • 〈y, M, n〉 := 〈x · y,SE,m · n〉
〈x,SE,m〉 •S 〈y, M, n〉 := 〈x · y,S,m · n〉

Finally, the mode ◦ is defined as

〈x,S,m〉 ◦ 〈y,SE, n〉 := 〈x · y,S,m + n〉

However, as the definitions stand the grammar generates all sequences of simple
expressions, not necessarily in decreasing order. To implement the latter restric-
tion, we have two choices: (a) we define ◦m to be m ◦m n := m + n if m > n,
and m◦m n undefined otherwise, (b) we define x◦e y := x · y if x ends in a larger
block of million than y, and x ◦e y is undefined otherwise. The proposals differ
slightly. If we disallow expressions of the form zero millionk then they are ac-
tually equivalent, otherwise option (a) gives incorrect results. The trouble with
both proposals is that we need to introduce strange partial functions. However,
notice that the definition of a grammar did not tell us what the basic functions
of the partial algebras are. So, rather than taking a simple merge as the (only)
basic operation, we may also take merge functions as basic which require prop-
erties of strings to be checked. This requires careful formulation. We shall have
to require that these functions be computable in polynomial time, otherwise
Theorem 8 below is actually incorrect. In this case, if we are operating on the
string algebra, testing whether one string is a substring of the other certainly
takes only polynomial time. We come to our main definition:

Definition 7 A grammar is strictly compositional (or strict) if it is ana-
lytic, polynomially feasible, has no nonempty signs and is productive. A language
is strictly compositional if it has a strictly compositional grammar.

The present restrictions can be shown to be nontrivial. Before we engage in the
proof we have to fix a last detail. We shall assume that the algebra operates
not necessarily on strings but on sequences of strings. Moreover, these sequences
shall have bounded length, say k. It is beyond the scope of this paper to motivate

exactly why we depart from the ideal model that the exponents are strings. There
are basically two arguments: (a) if we allow only strings then there does not seem
to be a feasible algorithm to generate those languages that are not context–free,
(b) strings are not continuous but are naturally segmented (eg by pauses). Of
course, it is always possible to introduce a boundary marker into the string
which would function the same way. We have felt it technically more clean to
allow sequences of strings. The relation between the sequences of strings and the
strings themselves is fixed by the following requirement.

Vectorization. The string associated with an exponent 〈xi : i < n〉 is its
concatenation x0x1 . . . xn−1.

Hence, we shall assume that the exponents of the grammar depart only mildly
from strings, namely, they are allowed to be strings with some gaps. We call a
grammar vectorized if it uses sequences of strings rather than strings.

Theorem 8 Let A be a strictly compositional vectorized grammar for L. Then
the following holds:

1. Given a string x it can be decided in polynomial time whether it belongs to
the language.

2. Given a string x, there are at most exponentially many derivations for x.

Proof. The algorithm is an adaptation of the chart method. First, notice that
any derivation has length at most |x|, where |x| denotes the length of x. A
representing term for x has therefore at most |x| mode symbols. It is now easy
to see that x is at most exponentially ambiguous. Now for the first claim. Let
n := |x|. By analyticity, the sequence 〈xi : i < k〉 must consist of disjoint
substring occurrences of x. (This is easily established by induction.) There exist
less than n2 substrings, and hence less than n2k k–sequences of substrings. In
the first step, try to match a sequence against the exponent of a 0–ary mode.
This takes polynomial time. This gives the list L0. Now, given Li, let Li+1 be
the result of applying all possible modes to the members of Li and matching
the result against x. x corresponds to some exponent of a sign in L iff there is
a σ ∈ Li for some i < n such that the exponent (or its product) is x. Now,
computing Li+1 from Li takes time polynomial in n. For there are at most n2k

members, and there are finitely many modes. Each application of a single mode
takes polynomial time (by polynomial feasibility). We have to compute Li only
for i < n. This concludes the proof of the first claim. a

(The polynomial bounds computed here are rather bad. They suffice for the
argument, however.) So, strictness is restrictive. The question therefore arises:
which languages are strict and which ones are not? In particular: are natural
languages at all strictly compositional in the sense of the definition? We believe
that the answer to the second question is positive. Notice that the rather tight
constraints on putting together signs do not allow to dissociate the meaning com-
position and the string handling. For example, devices such as a Cooper–storage
are inadmissible since they dissociate the syntactic structure from the semantic
structure by introducing new meanings, something which is strictly prohibited.

It may well be that Categorial Grammar takes us out of that problem by asso-
ciating enough types with a string to cover its potentials in a context. If we are
not so happy with having infinitely many types, however, the only way to sur-
round this is to postulate stronger string handling mechanisms. One promising
proposal that has been made recently are the so–called Literal Movement Gram-
mars (LMG) as have been introduced by Annius Groenink in [5]). An LMG has
rules of the following form

A(γ) → B0(δ0) B1(δ1) . . . Bn−1(δn−1)

where A and the Bi are nonterminals, here called types, and γ and δi sequences
of polynomials over the alphabet, possibly using variables. Since there are only
finitely many rules, the length of these sequences is bounded. We may therefore
assume that they all have the same length, adding empty strings if necessary.
The advantage of LMGs is that they add explicit rules for handling the strings.
By adding a third dimension, the meaning, we can turn an LMG into a grammar
of signs. We call an interpreted LMG a grammar that has rules of the form

A(γ, q(µ0, . . . , µn−1)) → B0(δ0, µ0) B1(δ1, µ1) . . . Bn−1(δn−1, µn−1)

where µi are variables for meanings and q is a polynomial function Mn → M.
An easy example of an LMG is the following

S(xx) → S(x); S(a) → .

This grammar generates the language {a2n

: n ∈ ω}. It is shown in [5] that
any recursively enumerable language can be generated by an LMG. Therefore,
these grammars are very powerful. However, certain subclasses can be identified.
According to [5], an LMG is bottom up nonerasing if each variable on the right
hand side occurs at least once on the left hand side. An LMG is bottom up linear
if each variable on the right hand side occurs at most once on the left hand side.
An LMG is noncombinatorial if each term on the right hand side consists of a
single variable. Finally, an LMG is simple if it is bottom up linear, bottom up
nonerasing and noncombinatorial. Now the following holds

Theorem 9 (Groenink) Let L ⊆ A∗ be a language. L is PTIME–recogniza-
ble iff it can be generated by a simple LMG.

Now, this does not mean of course that a PTIME–recognizable sign grammar
can be generated by a simple interpreted LMG. But we shall present evidence
below that natural languages can be generated by (more or less) simple LMGs.
Notice that in the definition of bottom up nonerasingness one thing must be
added: first, one should talk of constants, not only variables which occur on
the right hand side. However, for noncombinatorial grammars this is obviously
unnecessary.

Simple LMGs are not necessarily analytic, but if they are, they are uniformly
analytic. For example, a clause of the form

A(x) → B(x) C(x)

can occur in a simple LMG, but if we read the rules as modes this is unacceptable.
The condition of analyticity requires instead that each variable occurs to the left
hand side at least as often as it occurs on the right hand side. Furthermore, [5]
disallows a variable to occur more than once to the left, but shows that this
condition can be circumvented. We shall therefore say that an LMG is analytic
if it is (a) noncombinatorial and (b) every variable occurs on the left hand side
of a production at least as often as it occurs on the right hand side. Languages
generated by analytic LMGs are also generated by simple LMGs but the converse
need not hold. Notice that our first example of an LMG is actually analytic.
However, it is not simple. Yet, it is easily transformed into a simple LMG (see
also [5]):

S(xy) → S(x) S(y) E(x, y); S(a) → .
E(a, a) → . ; E(x1y1, x2y2) → E(x1, x2) E(y1, y2)

We notice that in Example 4, assuming that we work with pairs of strings
rather than strings, under a suitable reformulation we only need to assume the
existence of a binary string function of the following form:

p(x, y) :=
{

x if x = y
↑ else

(Here, ↑ means that the function is undefined.)
We shall illustrate the potential of this proposal by giving an analysis of

two benchmark examples. One is the cross–serial dependencies. The other are
the languages with iterated cases. A particular example of the latter kind was
analyzed in [8], where it was shown that the language generated in this example
was not semilinear, hence not generable by a LCFRS (or a Multi–Component
TAG, for that matter). (For a reference on LCFRSs see [13].)

Example 5. The following LMG generates the cross-serial dependencies of
Dutch.

VR(zien) → .
VR(laten) → .
NP(Jan) → .
NP(Piet) → .
V (zwemmen) → .
VC (x1 · y1, x2 · y2) → NP(x1) VR(y1) VC (x2, y2)
VC (x, y) → V (y) NP(x)

It is straightforward to transform this LMG into a sign grammar. We basically
need in addition to the nullary modes, a binary mode • and a ternary mode ◦.
The binary mode is defined as follows.

〈〈x1, x2〉,NP, f〉 • 〈〈y1, y2〉,V, g〉 := 〈〈x1 · x2, y1 · y2〉,VC, f(g)〉

◦ operates as follows.

◦(〈〈x1, x2〉,NP, f〉, 〈〈y1, y2〉,V, g〉, 〈〈z1, z2〉,VC,P〉)
:= 〈〈z1 · x1 · x2, z2 · y1 · y2〉,VC, g(f)(P)〉

The semantics of a raising verb, here zien (English ‘to see’) is as follows:

λx.λP.λy.see′(y, P(x))

This generates the cross–serial dependencies. If we want to give an analysis of the
German verb cluster or of the analogous English construction, we only have to
modify the string polynomial ◦e, nothing else needs to be changed. The analysis
of cross–serial dependencies is similar to that of Calcagno [2], where a larger
fragment is analyzed using head–wrapping, which was introduced in Pollard
[10]. Calcagno also discusses the relationship with a proposal by Moortgat [9],
who uses string equations. String equations are one way to try to avoid the use
of vectorization. It is therefore worthwhile to see why it does not work. Suppose
we have the following rule

A(u · x, v · y) → B(u, v) C(x, y)

Then this must be replaced in Moortgat’s system by the following rule:

A(p) → B(q) C(r) : p = u · x · v · y, q = u · v, r = x · y.

This means that if an A is analyzed as a B plus a C then the strings associated
with A, B and C should satisfy the string equations shown to the right. The
trouble with string equations, as Calcagno rightly points out, is that they come
down to an a posteriori analysis of a single string into several components, which
may or may not reflect the actual composition of the string. String equations
are simply not analytic (in our sense of the word). Head–grammars and LCFRSs
on the other hand mark explicit places for inserting strings, thus reflecting the
actual construction of the string rather than just any other. Notice that LMGs
allow both for string equations and for vectorization, but string equations are
not allowed in an analytic or a simple LMG.

Example 6. We finally discuss the stacked genitives of Old Georgian (see
[8]). Old Georgian displays a phenomenon called Suffixaufnahme or Double Case.
Suffixaufnahme is found in many Australian languages, and it is said to be
iterable beyond limitation (at least in some languages with respect to certain
constructions, to be exact, see [4], [3] for examples). Old Georgian provides a
generic case of Suffixaufnahme that is iterable (see Boeder [1]).

govel-i igi sisxl-i saxl-isa-j m-is
all-nom Art-nom blood-nom house-gen-nom Art-gen

Saul-is-isa-j
Saul-gen-gen-nom

All the blood of the house of Saul

We will give a compositional LMG for this construction. However, we will sim-
plify the matter. Full NPs shall have no article, the nominative is always -j and
the genitive does not appear in its short form -is. The grammar manipulates
triples 〈x, y, z〉, where x is the first noun, y its stack of case suffixes and z the

remaining NP. First we write the plain LMG. (Recall here that we distinguish
plain concatenation (a) from word concatenation (·).)

(1) NPc(x, y, ε) → NP(x, ε, ε) Case(ε, y, ε)
(2) Case(ε, isa, ε) → .
(3) Case(ε, j, ε) → .
(4) NPs(x, y, z) → NPc(x, y, z)
(5) NPs(x, yaisa, ε) → NPs(x, y, ε)
(6) NPs(x, yaj, ε) → NPs(x, y, ε)
(7) NPs(x1, y2, x2

aisaay2 · z2) → NPs(x1, y2, ε) NPs(x2, isaay2, z2)

Notice that the suffix sequence in the last rule occurs twice on the left and
twice on the right hand side. This grammar is analytic (modulo massaging away
unproductive rules). The semantic functions are as follows. For (4), (5) and (6)
the corresponding function is the identity. For (1) and (7) it is application of the
right argument to the left; (3) has the interpretation λP.P (P of type 〈e, t〉), but
this is done for the purpose of exposition only. (2) has the semantics

λP.λQ.belong′(y, x) ∧ P(x) ∧ Q(y)

For the nouns we take λx.blood′(x), λx.house′(x) and λx.x
.= saul′ as interpre-

tations. They have type NP. Our target example is

sisxlj saxlisaj Saulisaisaj

Here are the translations of the nouns with stacked genitives:

sisxlj : λx.blood′(x)
saxlisaj : λQ.belong′(y, x) ∧ house′(x) ∧ Q(y)
Saulisaisaj : λQ.belong′(y, x) ∧ x

.= saul′ ∧ Q(y)

Notice that only the inner layer of case marking is semantically operative. The
outer layers do not change the meaning. Now we compose these words. By the
rules of the grammar, only the last two words can be analyzed as a constituent:

λQ.belong′(y, x) ∧ x
.= saul′ ∧ belong′(y, z) ∧ house′(x) ∧ Q(z))

This can now be composed with the first word; this gives the following translation
for our example.

belong′(y, x) ∧ x
.= saul′ ∧ belong′(z, y) ∧ house′(y) ∧ blood′(z)

For this to work properly, substitution must be defined correctly. That we have
free variables here is just an artifact of the simplicity of the fragment and could
of course be avoided.

The last example also demonstrates how languages with stacked case mark-
ing can be treated. However, we shall note here that LMGs cannot handle such
languages if they have completely free word order. It has been confirmed by
Alan Dench (p. c.) that those languages which have the most extensive iterated

case marking system do not allow for free word order beyond the clause bound-
ary. Given that free word order within a clause can in principle be accounted
for compositionally using LMGs — as we believe — this gives evidence that
LMGs have enough string handling capacity. To show this is however beyond
the scope of this paper. We shall only note that languages with stacked cases
cannot simply be treated using a function that compares strings of cases, since
the exponents of cases may actually be different. This means that the string
handling component must in these examples rely on rather delicate functions,
which are however computable in linear time. [12] has argued that German allows
scrambling across any number of clause boundaries. If that is so, German could
also not be handled by an interpreted LMG compositionally (in the strict sense).
There is however every reason to believe that the arguments cannot follow in any
order whatsoever. Rather, free word order is only present when the arguments
are sufficiently distinguishable either morphologically (by their case endings) or
semantically (animate vs inanimate). Otherwise, we claim, word order is fixed.
If we are right, also German is not so exceptional after all.

References

1. Winfried Boeder. Suffixaufnahme in Kartvelian. In Frans Plank, editor, Double
Case. Agreement by Suffixaufnahme, pages 151 – 215. Oxford University Press,
1995.

2. Mike Calcagno. A Sign–Based Extension to the Lambek Calculus for Discontinuous
Constituents. Bulletin of the IGPL, 3:555 – 578, 1995.

3. Alan Dench. Suffixaufnahme and Apparent Ellipsis in Martuthunira. In Frans
Plank, editor, Double Case. Agreement by Suffixaufnahme, pages 380 – 395. Oxford
University Press, 1995.

4. Nicholas D. Evans. A Grammar of Kayardild. With Historical–Comparative Notes
on Tangkic. Mouton de Gruyter, Berlin, 1995.

5. Annius Groenink. Surface without Structure. Word order and tractability issues in
natural language processing. PhD thesis, Utrecht University, 1997.

6. Theo Janssen. Compositionality. In Johan van Benthem and Alice ter Meulen,
editors, Handbook of Logic and Language, pages 417 – 473. Elsevier, Amsterdam,
1997.

7. A. Kazmi and F. J. Pelletier. Is Compositionality Formally Vacuous? Linguistics
and Philosophy, 21:629 – 633, 1998.

8. Jens Michaelis and Marcus Kracht. Semilinearity as a syntactic invariant. In
Christian Retoré, editor, Logical Aspects of Computational Linguistics (LACL ’96),
number 1328 in Lecture Notes in Computer Science, pages 329 – 345, Heidelberg,
1997. Springer.

9. Michael Moortgat. Generalized quantifiers and discontinuous type constructors.
In W. Sijtsma and A. van Horck, editors, Discontinuous Constituency. Mouton de
Gruyter, Berlin, 1993.

10. Carl J. Pollard. Generalized Phrase Structure Grammar, Head Grammars and
Natural Language. PhD thesis, Stanford University, 1984.

11. Daniel Radzinski. Chinese Number Names, Tree Adjoining Languages, and Mild
Context–Sensitivity. Computational Linguistics, 17:277 – 299, 1991.

12. Owen Rambow. Formal and Computational Aspects of Natural Language Syntax.
PhD thesis, University of Pennsylvania, 1994.

13. Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple
context–free grammars. Theoretical Computer Science, 88:191 – 229, 1991.

14. Dag Westerst̊ahl. On Mathematical Proofs of the Vacuity of Compositionality.
Linguistics and Philosophy, 21:635 – 643, 1998.

15. Wlodek Zadrozny. From Compositional Semantics to Systematic Semantics. Lin-
guistics and Philosophy, 17:329 – 342, 1994.

