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1 Introduction

Recent developments in syntactical research have shown a great convergence in
the view that hierarchy and order are not independently specifiable and that pre-
ferrably one is determined by the other. Furthermore, in connection with this
there is growing consensus that there must be a fundamental word-order in (the
nowadays obsolete) D-structure from which the surface word order is derived by
successive movements. The consensus ends there, however. For there are at the
moment two views on the matter, which are in direct conflict. On the one hand
there is [2] who argues that the word order  is fundamental, on the other hand
there is [?] who in effect derives from his theory that all languages are funda-
mentally . We will leave it to empirical research to give evidence which of
the theories is to be preferred or whether both must be dismissed. Here we will
concentrate on the purely mathematical evaluation of these theories. This might
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prima facie be not such an interesting thing to do. [?] has anyway indicated what
consequences his theory has and in addition [2] is as clear in this respect as can
be expected. However, let us not forget that every proposal will sooner or later
be modified to enlarge the descriptive potential or remedy certain shortcomings.
To give just one example, [?] has modified the definition of -command in order
to allow for two adjunct-positions rather than one in Kayne’s theory. Obviously,
this will not be the last modification and the question arises as to what theries of
sentence structure can be associated with a linear correspondence principle à la
Kayne.

Secondly, we must ask ourselves what exactly entitles us to deduce that there
is such a thing as a strict basic word order. This is not so easily seen as the current
discussion makes us believe. It can be observed that a restriction of one com-
ponent of grammar typically goes hand in hand with opening up another. For
example, the theories of word order that we just mentioned concern themselves
with the structure inside a maximal projection. At the moment the consensus is
lost as to how many basic categories there are and what their fundamental order-
ing in languages is. Obviously, the differences in word order that we do observe
must be accounted for. If a thing such as the directionality parameter is abolished,
then either we assume different behaviour of elements under movement (generally
assumed not to be a good choice) or we assume that the languages select differ-
ent fundamental alignments of basic categories. To give an example, [3] proposes
that English generates the -phrase below the -phrase whereas Basque gen-
erates the -phrase below the -phrase. Modern conceptions in the minimal-
ist framework solve the problem of surface aligment by proposing a difference in
strength of morphological features. A priori these seem to be just different ways of
attacking the same thing. Apart from other problems that the different approaches
solve in addition, there is nothing that singles out one of them as the most ideal
solution. Maybe, then, it is a good idea to study abstractly the potential that lies in
each of these approaches so that (i) one may have theoretical reasons for prefer-
ring one over the other if they turn out to be different or (ii) one may express any
theory in any of these frameworks if they are equal and choose whichever suits
best the current problem. For a linguist, (ii) seems a less ideal situation because it
fails to show that one of the approaches is better. But if they are in fact the same
this will show that there is no way to choose between them empirically and one
should give up trying to do so. Admittedly, we will never reach a point where such
results can be proved because a theory cannot really be robbed of its connotations
and one will always feel that one is more adequate than the other despite the fact
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that they are pravtically identical.

2 An Outline of the Theory of Kayne

Kayne assumes that there is a direct correspondence between the linear order of
the words and the asymmetrical c-command relation in trees; this correspondence
is expressed by the linear correspondence axiom abbreviated as LCA. We will ex-
plain this axiom in its most simple version on trees without the segment/category
distinction. Recall that in a tree a node x c-commands a node y if the first node im-
mediately above x dominates y but neither does x dominate y nor does y dominate
x. x asymmetrically c-commands y if x c-commands y but y does not c-command
x. Now let x, y be leaves (= terminal nodes) of the tree. We write x @ y if there
exist non-terminal nodes x′, y′ such that x′ > x, y′ > y and x′ asymmetrically
c-commands y′.

LCA. @ is a strict linear order.

Moreover, Kayne argues that @ is not just any linear order but in fact precedence
in time. In the simplified example it can be shown that the LCA reduces to the
requirement that structures must be strictly right branching. Consider, namely,
what happens if the following situation arises.

•

•v • w

•x • y

�
�

�
�

A
A
A
A

Here, v c-commands y but y does not c-command v, so v asymmetrically c-
commands y. Likewise, w asymmetrically c-commands x. Let now x dominate a
terminal node p and y a terminal node q. Then we have both p @ q and q @ p but
p , q, so LCA is violated. This leaves us with only the following possibilities for
subtrees.
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•

•v • w

• y

�
�

�
�

A
A
A
A

•

•v • w

•x

�
�

�
�

A
A
A
A

Moreover, if we assume that @ is temporal precedence and temporal precedence
is the left-to-right order on paper then the second of the trees is excluded as well.
Consequently, the structures satisfying LCA are strictly right branching trees.

Now Kayne’s theory isn’t as simple minded as that. Rather than using the
c-command relation specified above it uses the adjunction-based definition given
in [1]. In order to fully appreciate this definition and its empirical content it is
necessary to spell out exactly what adjunction structures are.

3 Trees and Adjunction Structures

While trees are fundamental structures both in mathematics and linguistics they
are rigorously defined and there is no problem in handling definitions which are
strictly tree based. However, ever since the barriers system, nodes in trees do no
longer function as carriers of categories. This shift in the fundamental notions has
caused a great deal of confusion since it was not properly mirrored by a shift in
terminology. Moreover, the notions are at closed look not as rigorously defined as
they should be. In this section we will try to remedy this situation.

Recall that a (finite) tree is a structure T = 〈T, r, <〉 where T is a (finite) set,
the set of nodes, r ∈ T a node, called the root and <⊂ T × T a binary relation
such that the following conditions hold

Transitivity (∀xyz)(x < y ∧ y < z.→ .x < z)
Irreflexivity (∀x)¬ x < x
Local Linearity (∀xyz)(x < y ∧ x < z.→ .y < z ∨ y = z ∨ y > z)
Root (∀x)(x = r ∨ x < r)
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Given a tree, we define x ≤ y by x = y or x < y. If x ≤ y we say that y dominates
x, if x < y we say that y properly dominates x. Finally, if there is no z such that
x < z < z we say that y immediately dominates x. Given x we put

↓ x = {y : x ≥ y}
↑ x = {y : x ≤ y}

↓ x is the constituent headed by x and ↑ x the position of x. Next we discuss
ordered trees. An ordered tree is an object T = 〈T, r, <,@〉 such that 〈T, r, <〉
is a tree and @⊂ T × T a binary relation on the nodes equivalent to the order in
time. This relation is not so straightforward to define since we have to take of
overlapping nodes. The intuition is that x ⊆ y for two nodes x, y if the event of
uttering x precedes that of y. It is clearly possible for events x, y that neither does
x precede y nor does y precede x; in that case we say that they overlap and write
x ◦ y. This results in the following postulates.

Definition (∀xy)(x ◦ y.↔ .¬ x @ y ∧ ¬ y @ x)
Transitivity (∀xyz)(x ⊂ y ∧ y @ z.→ .x @ z)
Irreflexivity (∀x)¬ x @ x
Overlap (∀xy)(x ◦ y.↔ .x ≥ y ∨ x ≤ y)
Persistence (∀xyx′y′)(x @ y ∧ x′ ≤ x ∧ y′ @ y.→ .x′ @ y′)

Given the interpretation these postulates are immediate. If x precedes y and y
precedes z then x precedes z as well; x cannot precede itself. If x does not precede
y nor does y precede x then they must overlap. Here, however, we have the special
situation of trees. Overlapping events must be included in each other, that is, if x
overlaps with y then either x is included in y or y is included in x. This inclusion
(as subevent) manifests itself as dominance in the tree. The last postulate concerns
the consistency of the precedence relation with respect to subevents. If x precedes
y and x′ is a subevent of x, y′ a subevent of y then x′ must precede y′ as well.

Finally, we come to adjunction structures. The idea behind adjunction struc-
tures is that they arise from a process known as adjunction. The effect of adjoining
a constituent to a node x is that x becomes doubled up into two nodes; so linguis-
tic categories do not correspond to nodes but to sets of nodes which arise from
adjunction. It is not hard to see that if the adjunction to x creates the new node
above x then the sets corresponding to categories must be linear. Thus we have
the following definition.

Definition 1 An adjunction structure is an object 〈T, r, <,C〉 where 〈T, r, <〉 is a
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tree and C ⊆ Pow(T ) a partition of the set T of nodes into convex, linear subsets.
An element b of C is called a block, and x ∈ b is a segment of b.

Similarly ordered adjunction structures can be defined. Recall that a partition of
a set T is a set C of subsets such that if b1, b2 ∈ C then b1 ∩ b2 = ∅ and the union
of all b ∈ C is the full set T . Thus each node is a segment of exactly one block. A
set S is called convex if for all x ≤ y ≤ z y ∈ S if only x, z ∈ S . S is linear if for
two elements x, y either x = y or x < y or x > y. A block is always of the form
[x, z] = {y : x ≤ y ≤ z}.

The notions of dominance etc. have to be adapted to adjunction structures.
There are now three possibilities for blocks to dominate each other. Take namely
two blocks, b1 and b2. Let x ∈ b1 and y ∈ b2. If x > y then for all z ∈ b2 x > z.
For by the linearity of b2 we must have z = y, z < y or z > y. Only the last case is
nontrivial. We have x > y and z > y; thus by local linearity either x > z or x = z
or x < z. In the first case we are done. The last two, however, cannot arise. For if
x ≤ z and y, z ∈ b2, then by the convexity of b2 we have z ∈ b2 and so x < b1, since
b1 and b2 are disjoint.

Given b2, the set of nodes in b1 which dominate one (and therefore all) seg-
ments of b2 is linear and convex. Let namely b1 = [x, y] and let z be the least
segment dominating a segment of b2. Then the nodes of [z, y] will be all nodes
from b2 dominating a segment of b2. There are three cases. (1) z does not exist,
(2) z < y, (3) z = y. If (1) is the case we say that b1 excludes b2; if (3) is the case
we say that b1 includes b2. If (2) is the case we say that b1 weakly includes b2.

There is the possibility to reduce a category to a single node; thus we realize
the intuition that categories are represented by a single node. In this case we
need to use the relations of inclusion and weak inclusion as primitive. Let us then
define an adjunction tree as an object A = 〈A, r,�,≤〉 where the nodes of A are
the blocks of an adjunction structure and a � b if a is included in b and a ≤ b
if a is wekaly included in b. First of all we should ask ourselves whether we can
characterize adjunction trees independently. This is possible; the postulates are
the following.

Irreflexivity (∀x)(¬ x � x)
(∀x)(¬ x ≤ x)

Transitivity (∀xyz)([x � y ∨ x ≤ y] ∧ y � z.→ .x � z)
Persistence (∀xyz)([x � y ∨ x ≤ y] ∧ y ≤ z.→ .x ≤ z)
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First question is whether these postulates indeed determine adjunction structures,
that is, whether any structure satisfying these postulates can be construed as the
compression of an adjunction structure. To this end take any adjunction tree A =
〈A, r,�,≤〉. Crucial is here the relation (� ∪ ≤)+; this relation plays the part of
dominance. Start with the root and work your way down. The root is now a block;
we need to see how many nodes are to be put into that block. First of all, collect
all elements which are immediately included by r with respect to the relation (�
∪ ≤)+. They can be divided into the set I = {i1, . . . , im} of elements included by
r and the set W = {w1, . . . ,wn} of elements weakly included (but not properly
included). Now replace r by two copies rw and ri and let rw immediately dominate
W in any order plus ri; let ri immediately dominate I in any order. Now proceed
by splitting i j,wk in the same way. It is not hard to see—given the success of this
uncompression—that the adjunction structures do not let us recover the adjunction
structure uniquely. The problem is not the set I but the set W. We cannot single
out the correct hierarchical structure concerning the adjoined element, that is, the
weakly included elements which are not strongly included. We cannot say of two
such elements v,w whether they are sisters or which of the two is higher in the
sense of strict -command. Similarly, if we consider the ordered companions,
the recovery is not unique. The additional postulates for the ordering relation
(and overlap) are the following in addition to the intrinsic postulates Irreflexivity,
Transitivity and Overlap.

R-Persistence (∀xyz)(x @ z ∧ [y � z ∨ y ≤ z].→ .x @ y)
L-Persistence (∀xyz)(x @ z ∧ [y � x ∨ y ≤ x].→ .y @ z)

We could have formulated a single postulate but two are more readable. Now
consider an ordered adjunction structure and two blocks b and c. Then either
one segment of b dominates or is dominated by a segment of c in which case
they overlap, or no segment of b dominates any segment of c and no segment of
c dominates any segment of b. In case of overlap, if a segment of b dominates a
segment of c then it dominates all segments of c. Thus overlap means that the event
of b is included in or includes the event of b if by the event for b we understand
the set of all nodes (improperly) dominated by any segment of b.
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4 Command Relations and Asymmetric Kernels

A command relation is a function s selecting for each tree T a relation s(T) over
that tree such that the following conditions hold.

Stability : If U ⊆ T is a subtree then s(U) = s(T) ∩ T × T
Shape : The set {y ∈ T : x s(T) y}, , r is a constituent properly containing x
Root : The set {y ∈ T : r s(T) y} is the whole tree

These definitiopns merit comment. First of all, the notion of a subtree of a tree
needs to be clarified. We will understand by a subtree U of T an object U =
〈U, s, < ∩U2〉 arising from T by restricting the relation of T to a subset U where
U is such that it has a unique root s and is convex. (Recall that convex means that
we have z ∈ U if only x < z < y for some x, y ∈ U.) The stability postulate has the
following cnsequence. Let us pick two arbitrary nodes inT, x and y. Then whether
or not x s(T) y can be decided by looking at the minimal subtree containing both
x and y. We can get this subtree by taking the least point z dominating both x
and y, called the crosspoint and taking U = [x, z] ∪ [y, z]. Subtree stability is an
important concept.

Now we come to the postulate for shape. Let us agree on the following ter-
minology. We say x commands y with respect to s (or s(T)) if xs(T)y. The set
of all nodes commanded by x in T is called the domain of x in T. Domains are
constituents according to shape; this means that the domain of x is of the form ↓y
for some y. We write y = fs(x), ignoring the dependency from the tree T which
we would normally have to indicate. If s is understood we simply write y = f (x).
fs is the function associated with s. Thus, instead of defining command relations
as systems of relations over trees we could define them as systems of functions
over trees. Notice that an additional consequence of Shape is that f (x) > x if x is
not the root. Root is equivalent to f (r) = r.

Command relations can similarly be defined on ordered trees. Yet, there is
typically no ordering condition on command relations. This is expressed in the
postulate of Ambidextrousness.

Ambidextrousness : If @1 and @2 are two orderings of the same treeT then s(〈T,@1

〉) = s(〈T,@2〉).

This concludes the definition of command relations over trees. However, there
are postulates with which we will have to deal extensively later on. These are
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Monotonicity : if x ≤ y then fs(x) ≤ fs(y)
Tightness : if x < fs(y) then fs(x) ≤ fs(y)

Monotone relations have the reasonable property that domains are never shrinking
when one moves up the tree. Tight relations have the property that they have a
node-based definition. Such a definition works by selecting a set P ⊆ T of critical
nodes and then defining fP(x) to be the least node y ∈ P strictly dominating x,
and fP(r) = r. Given P we say that x P-commands z if z is in the domain of that
relation.

Given a relation R on a tree—in our case a command relation – the asymmetric
kernel R> is defined as follows. xR>y iff (1) x R y, (2) ¬ y R x and (3) ¬ x ◦ y. The
last clause does not necessarily presuppose an ordering on the nodes; we can
define x ◦ y by x ≤ y ∨ y ≤ x. Central to Kayne’s analysis of word-order, and
indeed central to syntax based approaches to trees, is not the asymmetric kernel as
defined but rather its persistent closure. We want that x R> y and y′ ≤ y and x′ ≤ x
then also x′ R> y′.

Proposition 2 Let f be a monotone command-relation and T a tree. The persis-
tent closure of the asymmetric kernel of f (T) is both irreflexive and transitive.

Proof. Let C denote the persistent closure of R>. We then have x C y iff there exist
x′ ≥ x, y′ ≥ y such that x′ R> y′. We have to show that never x C x and that x C y C z
implies x C z. First, if x C x then there exist x′, x′′ ≥ x such that x′R>x′′. But then
¬(x′◦x′′), which cannot be. Second, assume x Cy C z. Then exist x′ ≥ x and y′ ≥ y
such that x′ R> y′ and exist y′′ ≥ y and z′′ ≥ z such that y′′ R> z′′. This means that
x′ R y′ but not y′ R x′ and that they do not overlap; that y′′ R z′′, not z′′ R y′′ and that
they do not overlap. Likewise, we now have f (x′) ≥ y′ and f (y′′) ≥ z′′ but neither
f (y′) ≥ x′ nor f (z′′) ≥ y′′. By local linearity we must have y′ ≤ y′′ or y′′ ≤ y′.
Assume the latter first. Then f (y′′) ≤ f (y′). Since x′ � f (y′) we have x′ � f (y′′).
Suppose now that f (z′′) ≥ x′. Then since z′′ ≤ f (y′′) we also have z′′ ≤ f (y′) so
that f (z′′) ≥ y′ means either f (z′′) ≤ f (y′) or f (z′′) ≥ f (y′). The first contradicts
f (z′′) ≥ x′ the second means, however, f (z′′) ≥ f (y′′) ≥ y′′, contradicting the
choice of y′′ and z′′. So, then, f (y′) ≤ f (y′′). We can assume f (y′) < f (y′′) from
which follows y′ < y′′. There are two basic cases; either f (y′′) � x′ or f (y′′) ≥ x′.
Assume first f (y′′) ≥ x′. Then if f (z′′) ≥ x′, f (z′′) dominates the crosspoint of
x′ and z′′. Since y′′ does not overlap with z′′ it does not dominate z′′. Moreover,
f (z′′) < f (y′′). We know that the crosspoint of x′ with y′′ dominates the crosspoint
of x′ with y′. It cannot, however, dominate z′′, because then y′′ dominates z′′. So,
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the crosspoint of x′ with z′′ dominates the crosspoint of x′ with y′′ and this shows
that f (z′′) ≥ y′′, which is excluded by choice of y′′ and z′′. Hence f (z′′) � x′ and
we are done. So this leaves the case f (y′′) � x′. Then f (z′′) � x′ as well, since we
must have f (z′′) ≥ f (y′′). �
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