
Gumm’s Theorem and the Structure of Minimal Alge-
bras

Marcus Kracht,
II. Mathematisches Institut,
Arnimallee 3,
D - 14195 Berlin

In this note we will show that Gumm’s theorem on Abelian algebras can be
strengthened in such a way that Pálfy’s theorem on minimal algebras becomes
a near consequence. This is surprising, at least after having a second look
at the matter. For if one compares the proofs of the original theorems there
is indeed a similarity between the two; however, it is not possible to see
directly that a minimal algebra with more than 3 elements is Abelian. This
results only after the completion of the classification of minimal algebras.
So, Gumm’s theorem is of no use here. Instead, there is a weaker property
that can easily be derived for minimal algebras, which we call 1-Abelian; and
we can show that Gumm’s theorem can be proved with 1-Abelian replacing
Abelian. It should be said here that few of the proofs are new; rather, the
novelty is the arrangement of the facts that can be proved with them.

Definition 1 An algebra A is called 1-Abelian if it satisfies the term condi-
tion for all binary polynomials, that is, for all f ∈ Pol2 A and a, b, c, d ∈ A

(†) f(a, c) = f(a, d) implies f(b, c) = f(b, d).

Clearly, if A is Abelian, it is also 1-Abelian. The property of being 1-Abelian
has some easy consequences which we list in the following proposition.

Proposition 2 Let A be 1-Abelian. Then the following holds

(i) For all f ∈ Poln+1 A and a, b ∈ An, c, d ∈ A:

f(a, c) = f(a, d) implies f(b, c) = f(b, d)

(ii) For all f(x, y) ∈ Poln+1 A: if f(a, y) does not depend on y for some a,
then f(x, y) does not depend on y.
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Proof. It is clear that if f ∈ Poln+1 A and a, b, c, d ∈ A as well as e ∈ An−1

then by (†) f(a, c, e) = f(a, d, e) implies f(b, c, e) = f(b, d, e). Thus the
following implications hold:

f(a1, . . . , an, c) = f(a1, . . . , an, d)
⇒ f(b1, a2, . . . , an, c) = f(b1, a2, . . . , an, d)
⇒ f(b1, b2, a3, . . . , an, c) = f(b1, b2, a3, . . . an, d)
⇒ . . .
⇒ f(b1, . . . , bn, c) = f(b1, . . . , bn, d).

(ii) Suppose that for all c, d f(a, c) = f(a, d). Then by (i), for all
c, d, b f(b, c) = f(b, d). 2

Recall that Gumm’s Theorem states that an algebra is polynomially
equivalent to a module over a ring iff it is Abelian and Malcev. Here we
show the following theorem.

Theorem 3 For an algebra A the following are equivalent:

(i) A is Malcev and 1-Abelian.

(ii) A is polynomially equivalent to a module over a ring.

Proof. (ii) ⇒ (i). By Gumm’s Theorem, since Abelian implies 1-Abelian.
(i) ⇒ (ii). We use the proof in [1], Claim 4, p. 49, to show that we have an
Abelian group definable in A. As usual, pick an arbitrary element 0 ∈ A and
put

x + y = p(x, 0, y)

−x = p(0, x, 0)

where p is the Malcev polynomial. Then x + 0 = 0 + x = x. Now define the
following polynomials.

δ1(x, y, z, u) = p(p(x, 0, u), 0, p(y, u, z))

δ2(x, u) = p(x, u, p(u, x, 0))

δ3(x, y, u) = p(u, 0, p(x, u, y))

Since δ1(0, b, 0, b) = b = δ1(0, b, 0, 0), δ1(a, b, c, b) = δ1(a, b, c, 0), by (2.ii).
Now

δ1(a, b, c, b) = p(p(a, 0, b), 0, p(b, b, c)) = (a + b) + c
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and
δ1(a, b, c, 0) = p(p(a, 0, 0), 0, p(b, 0, c)) = a + (b + c)

and hence + is associative. Next, δ2(0, a) = 0 = δ2(0, 0) and so again
by (2.ii) δ2(a, a) = δ2(a, 0) showing a + (−a) = 0. Finally, δ3(0, 0, b) =
p(b, 0, p(0, b, 0)) = b + (−b) = 0 and δ3(0, 0, 0) = 0 from which a + b =
δ3(a, b, 0) = δ3(a, b, b) = b + a, using (2.ii) once again.

Notice that indeed we only used that A is 1-Abelian. In the next step we
show that all polynomials are affine; the rest is standard. The ring will be
defined as usual, and it follows indeed that A is equivalent to a module over
that ring. So, take a f ∈ Poln A and put g(x) = f(x)− f(0). A proof of the
next claim will complete the proof of the theorem.

Claim 4 g(x) is linear. Moreover, for the functions gi(x) = g(0, . . . , xi, . . . , 0)
we have

g(x) =
n∑

i=1

gi(x)

Proof. Consider the function

h(x) = g(x)−
n∑

i=1

gi(x).

Since

h(0, . . . , 0, xi, 0, . . . , 0) = g(0, . . . , 0, xi, 0, . . . , 0)−
n∑

i=0

gi(0, . . . , 0, xi, 0, . . . , 0)

= gi(x)− gi(x)

= 0

we find that h does not depend on xi, by (2.ii). 2

Recall that an algebra A is called minimal if its unary polynomials are
either constant or bijective. It is trivial to see that if A has two elements
it is minimal and likewise if it contains only unary bijective polynomials
(plus, of course, the constant ones). The remaining case is covered by Pálfys
Theorem stated below. It is a rather direct consequence of Theorem 3 and
the following fact, which corresponds to Step 1 on p. 152 in [2]. (The proof
performed there is due to B. Jónsson.)
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Lemma 5 Let A be a finite minimal algebra with ]A > 2. Then every binary
operation which depends on both arguments is a quasigroup operation, that
is, f(a, c) = f(a, d) implies c = d.

Furthermore, if A is not unary, there is a binary polynomial depending on
both arguments, by Corollary 4.2 of [1].

Lemma 6 Suppose that A is a finite minimal algebra and ]A > 2. Then A

is 1-Abelian.

Proof. Consider a binary polynomial f(x, y). (†) is trivially satisfied if f
depends on just one variable. For suppose f(a, c) = f(a, d); if f does not
depend on its first argument, then f(b, c) = f(a, c) = f(a, d) = f(b, d). If,
however, f does not depend on its second argument, then f(b, c) = f(b, d)
by definition. If f depends on both variables then f(a, c) = f(a, d) implies
c = d by the previous lemma and so f(b, c) = f(b, d) for every b. 2

Lemma 7 Suppose that A is a finite minimal algebra, ]A > 2 and that A is
not unary. Then A is Malcev.

Proof. By assumption, there is a poynomial which is not unary; so there
is binary polynomial f depending on both arguments. f is a quasigroup
operation and A finite; so 〈A, f〉 and a fortiori A is Malcev. 2

Theorem 8 (Pálfy) Suppose that A is a finite, non-unary minimal algebra
and ]A > 2. Then A is polynomially equivalent to a finite vector space.

Proof. From Lemma 6 and Lemma 7 it follows in conjunction with The-
orem 3 that A is polynomially equivalent to a module over a ring. Since
multiplication by an element r 6= 0 of the ring must be bijective by the min-
imality of A the ring has no zero divisors; it is therefore a field since it is
finite. 2

In the light of these results it seems that 1-Abelian behaves much the
same as Abelian and is equivalent to it in presence of a Malcev polynomial.
We do not believe that 1-Abelian algebras are necessarily Abelian but we
have not found a counterexample.
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