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1 Introduction

Axiomatisations of first–order logic (henceforth FOL) are given by means of
a finite list of axioms or axiom schemes, each of which represents an infinite
set of actual formulae. This latter set is either derived by means of a rule
of substitution into an actual axiom or by properly instantiating the axiom
scheme, putting actual formulae in place of the metavariables. Either way,
the presentation rests on an understanding of how one properly replaces for-
mulae (or terms) by other formulae (terms). Though any of these operations
can be rigorously defined, we shall ask whether the grammar of FOL actually
suggests a notion of replacement to begin with. The ideas behind this derive
from [5], where we scrutinize the notion of substitution in linguistic theory
and the role it plays in structural linguistics as well as modern logic. One of
the underpinnings of this research was the assumption that there is no inde-
pendent notion of substitution — substitution is canonically defined on the
basis of the grammar and the analyses it provides for linguistic expressions.
The outcome for FOL is that substitution is simply string replacement of one
constituent by another. This substitution is also simpler than the standard
one. This result raises the question why substitution (and not even general
substitution, which allows for a change of bound variables, as in λ–terms) is
chosen for FOL. For with some extra effort it can be seen that this makes
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2 SUBSTITUTION IN FOL

no real difference for the axiomatization. While changing to string substi-
tution seems like an unnecessary complication, the present result vindicates
to a certain extent the instinctive mistrust of a novice in FOL against using
a variable in the same formula both free and bound. And it may help in
understanding why these difficulties exist.

2 Motivation

Consider the following sentence

Achilles is faster than the tortoise.

Suppose we replace fast by wise, good or bad. Then we expect to find the
following.

Achilles is wiser than the tortoise.

Achilles is better than the tortoise.

Achilles is worse than the tortoise.

Thus, we do not get ∗wiseer, ∗gooder, nor ∗bader. So, in none of these cases
the substitution is mere string substitution. As for the first, the fact that we
have one e rather than two is due to a general writing convention. In the case
of good the stem changes its form in the comparative. In the case of bad, it is
both the stem and the comparative morpheme that change form. So, we find
that sometimes the thing that we put into the hole (‘filler’) changes form,
that sometimes only the container changes form, and sometimes both. The
explanation is as follows. We analyze the comparative form as a combination
of stem plus comparative suffix. We can represent this as σ • γ, where • is a
binary symbol of combination. Here σ and γ are not necessarily strings but
they can be more complex. In this case, however, they are strings. Moreover,
• can be something else than mere string concatenation. In the present case,
the actual form of σ•γ sometimes is the concatenation of σ and γ (fastaer),
sometimes the concatenation with one e removed (wisear). Or σ is changed
before concatenation, or it is γ that changes, or even both.

Each string has a term associated with it, a so–called analysis, of which
the string is a representative. The term defines the string uniquely, but
the relation between terms and strings may be many–to–one. If it is one–
to–one, the language is said to be uniquely readable. This is a property
that logical languages are required to have. While both stem and suffix are
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generally considered to be strings, this is in actual fact only a simplification
(see [5]). On a more abstract level of analysis, however, the situation is simply
as follows. The ‘container’ has an analysis s(x) in which there is a hole x
(which may contain several occurrences of x). The filler has the analysis t

which we put in place of x and obtain s(t). The term s(t) both determines
the form of the expression (the string) and the meaning. Substitution is the
replacement of t by a different term u, giving s(u) in place of s(t).

Logical languages are man made. Therefore we do not expect the patho-
logical examples of natural languages to exist. In particular, we expect that
the objects that we manipulate are simply strings, and that the operation
that forms constituents is simply concatenation. This is the case in proposi-
tional logic. For example, look at

((p0∧(¬p01))→p0)

We can think of this string as being obtained from

((p0∧(¬ ))→p0)

by inserting the string p01. If we substitute something else for p01, we just
replace the string occurrence of p01 by whatever substitutes it. Similarly,
replacing one or two occurrences of p0 by another variable is simply string
replacement.

We notice here right away that in addition to the official definition there
exist ‘dialects’ of logical languages obtained by changing more or less dras-
tically the strings that represent a formula (not to speak of the famous Be-
griffsschrift of [2]). For example, brackets are often dropped, variables are
denoted by metavariables, and more function symbols are added. While lo-
gicians abstract from these changes and deal with the strings as imperfect
representatives (in place of the correct ones), we shall treat these strings as
objects in their own right. The approach is thus not normative, it is descrip-
tive. It is not our aim to prescribe which strings constitute the language, we
are interested in what happens if they are one way or another.

3 Sign Systems

Definition 1 A sign is a triple σ = 〈e, c,m〉, where e is the exponent of

σ, c its category, and m its meaning. A language is a set of signs.
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A signature is a function Ω:F → N for an arbitrary set F of function
symbols. A (partial) Ω–algebra is a pair A = 〈A, I〉, where A is a set and
for every f ∈ F , I(f) is a partial Ω(f)–ary function on A.

Definition 2 A grammar consists of

1. a finite set F of modes,

2. a signature Ω:F → N,

3. for every f ∈ F , partial Ω(f)–ary functions f ε on E, f γ on C, fµ on

M

A grammar G is a grammar for ∆ ⊆ E×C×M if the functions 〈f ε, f γ, fµ〉,
f ∈ F , generate ∆ from the empty set.

[5] introduces a few more conditions on grammars. One is that functions
are not allowed to destroy material of the exponents, the second that all
functions are computable. A third condition is that the categories are dis-
tribution classes. These requirements need comment. First, the requirement
of computability derives from the notion of compositionality; if we under-
stand the meaning of a complex expression by applying a certain function
to the meaning of its parts then we cannot strictly speaking understand the
meaning of a complex expression if it is derived using a noncomputable func-
tion. This is awkward and we cannot go into the ramifications of this, but it
has certainly been a concern in the foundation of mathematics (for example
in intuitionism and constructivism). We shall not insist on computability.
However, the other constraints shall be met.

To give an example, let ∆ be the set of pairs 〈~x, T, n〉, where ~x ∈ {0, 1}∗

is a binary sequence and n is the number that ~x represents in binary. This set
can be generated from the zeroary functions f0 := 〈0, T, 0〉 and f1 := 〈1, T, 1〉
and two unary functions, f2 and f3.

f2(〈~x, T, n〉) := 〈~xa0, T, 2n〉
f3(〈~x, T, n〉) := 〈~xa1, T, 2n+ 1〉

So, put F := {f0, f1, f2, f3}, Ω : f0, f1 7→ 0; f2, f3 7→ 1.
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4 A Grammar for Generating the Exponents

We first deal with the morphology of predicate logic. The exponents of
signs are also called (well–formed) expressions (wfes). Predicate logic is
given by its well–formed expressions and their meanings. We assume that
the expressions are strings and that the only operation to form complex
expressions is concatenation (and no blank is inserted). It turns out that
there is a context free grammar generating the wfes.

For concreteness’ sake, there will be a unary predicate symbol p, a binary
function symbol + and a binary relation symbol =. The exponents must be
strings over a finite alphabet A. Thus, it is not possible to assume an infinite
supply of primitive symbols. So we put

A := {¬, →, +, ∀, (, ), 0, 1, p, x, =}

A variable is a sequence x~α, where ~α is a binary sequence (a decimal repre-
sentation would be just as fine, but changes nothing in principle).

Definition 3 A context free grammar is a quadruple 〈S,N,A,R〉, where

S is the start symbol, N the set of nonterminals, A the alphabet and

R the set of rules.

A is as above, N = {<variable>,<term>,<formula>}, S = <formula>.
Here is now the set of rules.

<variable> ::= x | <variable>a0 | <variable>a1

<term> ::= <variable> | (a<term>a+a<term>a)

<formula> ::= pa(
a

<term>a) | (a<term>a=a<term>a)

| (a¬
a

<formula>a)

| (a <formula>
a

→a<formula>a)

| (∀a<variable>a)a<formula>

A context is a pair C = 〈~u1, ~u2〉 of strings. If ~y is a string, then C(~y) :=
~u1~y~u2. Let ~x = ~u1~y~u2 be a string. We say that ~y is a substring of ~x, and say
that C = 〈~u1, ~u2〉 is an occurrence of ~y in ~x. Given a CFG G = 〈S,N,A,R〉,
if there is a derivation Y ⇒∗

G ~u1X~u2 and ~y is an X–string, we say that the
occurrence 〈~u1, ~u2〉 of ~y in ~x is a constituent occurrence (of category

X). The distribution classes are the following sets (where S is the start
symbol of G).

DistG(~y) := {〈~u1, ~u2〉 : (∃X ∈ N)(S ⇒∗

G ~u1X~u2 and X ⇒∗

G ~y)}
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If ~x and ~y are X–strings, then they define the same distribution class. The
converse need not hold. If the converse holds, the grammar is called bal-

anced.

The grammar above is balanced. This grammar defines in total 3 dif-
ferent distribution classes: that of variables, of terms and of formulae. And
they correspond exactly to the nonterminals used above. This contrasts with
predicate logic as defined in textbooks, where only terms and formulae are
recognized. The category of a variable is motivated on purely distributional
grounds: only a variable can occur right after ∀. Indeed, it is generally as-
sumed that a variable has no occurrence after a quantifier, so that substitu-
tion will not touch it. The grammar speaks a slightly different language: the
variable occurs as a variable, but not as a term. And term substitution tar-
gets exclusively the term occurrences. (Often, variable substitutions are also
considered, known as ‘replacement of bound variables’ or ‘α–conversion’.)

5 A Grammar for FOL

Now we shall propose a grammar for FOL in the sense of our earlier definition.
Put E := A∗ and C := {ν, τ, ϕ}. A structure is defined as usual, except
that we fix the underlying domain to be a cardinal number. This makes the
class of models a set. Clearly, every ordinary structure has an isomorphic
structure of that kind so that we do not loose anything. Let N be the set
of natural numbers. A valuation in a structure M is a function from N to
the carrier set of M. A model is a pair 〈M, β〉, where M is a structure and
β a valuation. An index is a function from models to truth values. (The
set of truth values is as usual {0, 1}.) A point is a function from models to
elements of the carrier set. H is the set of indices over countable models, P

the set of points over countable models. Then

M := N ∪ P ∪ H

(These three sets correspond to the three categories ν, τ and ϕ.) For a
number m, let π(m) be the point such that π(m)(〈M, β〉) = β(m). If p and
q are points, p+ q is defined on M = 〈M, I〉 by

(p+ q)(〈M, β〉) := I(+)(p(〈M, β〉), q(〈M, β〉))
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Further, (= (p, q))(〈M, β〉) := 1 iff p(〈M, β〉) = q(〈M, β〉). We assume the
following functions on truth values:

−
0 1
1 0

→ 0 1
0 1 1
1 0 1

Then we put

(−i)(〈M, β〉) := −(i(〈M, β〉))
(i→ j)(〈M, β〉) := i(〈M, β〉) → j(〈M, β〉)

Finally,

A(n, i)(〈M, β〉) := 1 ⇔ for all β ′ ∼n β : i(〈M, β〉) = 1

We propose a zeroary mode Z, unary modes N, E, T, Q and binary modes X,
P, G, C.

Z := 〈x, ν, 1〉
N(〈~x, ν,m〉) := 〈~xa0, ν, 2m〉
E(〈~x, ν,m〉) := 〈~xa1, ν, 2m+ 1〉
T(〈~x, ρ,m〉) := 〈~x, τ, π(m)〉
P(〈~x, τ, p〉, 〈~y, τ, q〉) := 〈(a~xa+a~ya), τ, p+ q〉

G(〈~x, τ, p〉, 〈~y, τ, q〉) := 〈(a~xa=a~ya), ϕ,= (p, q)〉

Q(〈~x, ϕ, i〉) := 〈(a¬a~xa), ϕ,−i〉

C(〈~x, ϕ, i〉, 〈~y, ϕ, j〉) := 〈(a~xa→a~ya), ϕ, i→ j〉
X(〈~x, ν, n〉, 〈~y, ϕ, i〉) := 〈(∀a~xa)a~y, ϕ, A(n, i)〉

The grammar just defined is called Pred. Notice that the functions so
defined are not computable. However, this is a deficit of predicate logic in
general.

6 Substitution

We shall consider three types of substitution. String substitution is standard
in propositional logic. We decompose the string ~x = C(~y), then replacing the
occurrence C of ~y by ~z is C(~z). This substitution however is a substitution
that replaces proper occurrences of a subexpression only. It is not indiscrim-
inate string substitution. We denote it by pt/xq (for the case of replacing a
variable by a term, but the notation is analogously used in other cases).
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The second type we find for example in [8]. We call it standard substi-

tution, since it is the most widely used.

[t/x]y :=

{

t if y = x,
y else.

[t/x]f(~s) := f([t/x]s0, . . . ,[t/x]sn−1)

[t/x]r(~s) := r([t/x]s0, . . . ,[t/x]sn−1)

[t/x](¬ϕ) := (¬[t/x]ϕ)
[t/x](χ→χ′) := ([t/x]χ→[t/x]χ′)

[t/x](∀y)χ :=







(∀y)χ if y = x,
(∀y)[t/x]χ if y not in t or x not free in χ,
(∀y)χ else.

This is basically a substitution that replaces free occurrences of x by t. The
third type, called general substitution in [7], executes a renaming of bound
variables in last clause of the definition above whenever y is free in t and t
actually occurs free in χ. We denote by {t/x}ϕ the result of applying the
generalized substitution to ϕ. (To make this into a function, y has to be
chosen according to a fixed procedure, for example, choosing the smallest
binary sequence possible.) Notice right away that these operations are only
substitutions of variables by terms. Occasionally, however, authors do look
at substitutions of predicates by predicates (see for example [4], 155–162).

Given a grammar, substitution is defined as follows. Call a structure

term a well–formed term over the signature. Given a structure term, we
can compute the sign that it denotes — if it denotes a sign at all. For, as
some operations may be partial, some structure terms fail to denote signs;
when they do denote a sign, however, it is unique. Structure terms can con-
tain variables. (If they don’t they are called constant.) Structure terms
shall be written in Polish Notation. (This is an arbitrary choice of no signif-
icance.) For example, PTNZTEZ is a structure term, which defines the sign
〈x0+x1, τ, π(2) + π(3)〉. Not all structure terms denote a sign. If they do,
they are called definite. PTNZEZ is a structure term but not definite.

Definition 4 Let s, t, t′ be structure terms, and let s contain a single oc-

currence of x. Denote by [t/x]s the substitution of t for the occurrence of x
in s. [t′/x]s is said to be the result of substituting the occurrence of t named

by x by t′ in s.

Definition 5 Let σ and τ be signs. We say that τ is a part of σ under

the analysis s if there is a constant term t and a term u with a single
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occurrence of a free variable, x, such that [t/x]u = s, and s unfolds to σ and

t unfolds to τ .

In predicate logic as defined above, the notion of part is straightforward. A
part always is a certain subexpression. Substitution is the replacement of
such subexpressions by others. Moreover, it is substitution of variables by
variables, of terms by terms, and of formulae by formulae.

Theorem 1 The substitution defined by the grammar Pred is string sub-

stitution of a variable by a variable, of a term by a term, and of a formula

by a formula.

The operation might perhaps better be called replacement to avoid collision
with the ordinary substitution of predicate logic, but we wish to contend that
what we call here substitution is the linguistically appropriate one. To wit,
the substitution we obtain on the level of exponents goes as follows. (We
omit some obvious clauses.)

pt/xq~u := [t/x]~u, if ~u is a term
pt/xq(a¬a~ya) := (a¬a

pt/xq~ya)

pt/xq(a∀a~za)a~y := (a∀a~za)a

pt/xq~y

(The first line means that if ~u is a string denoting a term, then the substi-
tution is simply ordinary substitution on terms. We shall sometimes use ~u
to remind ourselves that the object in question is a string. t and x are also
strings but we did not write ~t or ~x, for example.)

In particular, the operation pt/xq does not care about the distinction
between free and bound variables. There is a similar substitution of formulae
by formulae, which once again is simple string replacement, and an operation
of variable replacement. The latter changes all occurrences of a variable
(including the ones in the quantifier prefixes), again disregarding free and
bound occurrences.

Substitution also figures in what is known as Leibniz’ Principle. Let L
be a logic, here identified with its set of tautologies.

Definition 6 A logic L is Leibnizian with respect to a sign grammar iff

for any two structure terms t and u, tµ = uµ iff for all s containing at most

x free:

1. [t/x]s is a sign iff [u/x]s is.
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2. If [t/x]s is a formula, [t/x]sε ∈ L iff [u/x]sε ∈ L.

This is a formalization of the informal statement saying that two things have
equal meaning iff they can be substituted for each other in all contexts. No-
tice that this definition is relative to the grammar and not just the language.
This is so since it relies on the notion of substitution, which is not available
in a language, only in a grammar.

Proposition 1 Every predicate logic with identity is Leibnizian with respect

to Pred.

Proof. Suppose that ϕ and ψ are formulae with different meaning. Then
without loss of generality there is a model in which ϕ is true and ψ is false.
Therefore (ϕ→ψ) 6∈ L, but (ϕ→ϕ) ∈ L. Consider the terms t, u such that
tε = ϕ and uε = ψ. Then put s = Ctx. We have

[t/x]s := (ϕ→ϕ)
[u/x]s := (ϕ→ψ)

This shows the claim for formulae. Let terms t and u be given. If their mean-
ing is different, then (t=u) 6∈ L but (t=t) ∈ L. Let t and u be structure terms
with exponents t and u. Then put s := Gtx. Similarly with variables.

The above proof works in the presence of a predicate. If the signature is
empty, the theorem holds since there are no formulae anyway. Consider the
following strengthening of Leibniz’ Principle: For all structure terms t and

u, and for all s such that [t/x]s and [u/x]s are formulae:

CGtuC[t/x]s[u/x]sε ∈ L

This means that for terms s, t (where ϕ(s) results from replacing some ap-
propriate variable z in ϕ by s — whatever substitution is actually used) the
following holds.

((s=t)→(ϕ(s)→ϕ(t))) ∈ L

However, string substitution does not satisfy this property. Neither does
standard substitution. Put ϕ(z) := (∀x0)(¬(z=x0)). The following is not
valid in predicate logic.

(∀x)(∀x0)((x=x0)→((¬(∀x0)(x=x0))→(¬(∀x0)(x0=x0)))

Notice that generalized substitution satisfies the stronger version. However,
Leibniz’ Principle as defined above is about synonymy. It is clear that if t and
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u are synonymous, then so are [t/x]s and [u/x]s. It follows from Proposition 1
that the rules

(s=t)
(ϕ(s/x)→ϕ(t/x))

(χ→χ′), (χ′→χ)
(ϕ(χ/p)→ϕ(χ′/p))

are admissible, where ϕ(s/x) and ϕ(χ/p) are short for substitution of s for
every occurrence of x and substitution of χ for the proposition (meta)variable
p. For all three substitutions, predicate logics admit the above rules.

7 Uniqueness of the Analysis

We have presented a grammar which makes any predicate logic Leibnizian.
The substitution it defines is string substitution. The question is whether
there are grammars for which the corresponding substitution on the level of
terms is either standard or generalized substitution. First, notice that the
meaning of a formula depends on the meaning of those well–formed formulae
which have been used to build it. It follows that if χ is a subformula on
whose meaning the meaning of ϕ depends, then χ or an equivalent formula
must actually be part of ϕ. Unfortunately, the converse need not hold. ϕ
may be built using formulae that do not appear in it, and these might be
formulae on whose meaning its meaning does not even depend. This is not an
absurd statement. [1] makes that point clearly: the meaning of the formula
(∀x)ϕ(x), x free, depends on more than just its subformulae. Its truth cannot
be assessed by looking at the truth of the subformulae alone as in classical
logic (though its meaning can be so found). Instead the entire model must be
inspected. We may see this as a reflex of the fact that this formula actually
contains all substitution instances as subformulae to begin with. Here is how.
Let us add a ternary mode Y. For terms ~u, variables ~x, and formulae ~z let

Y
ε(~u, ~x, ~z) := ~z [~u/~x]

where ~z [~y/~x] denotes the result of replacing all free occurrences of ~x by
~y. The interpretation of that function is also straightforward. Let m be a
number, i an index and p a point.

Yµ(p,m, i)(〈M, β〉) := i(〈M, β[p(〈M, β〉)/m]〉)

where β[p(〈M, β〉)/m] is different from β only in assigning the value of p on
〈M, β〉 to the number m. (If p is the meaning of the term t, p(〈M, β〉) is
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nothing but the denotation of t in the model.) For completeness’ sake we
remark that

Yγ(a, b, c) =

{

ϕ if a = τ, b = ν, c = ϕ
undefined else.

This fully defines the operation of the mode Y on signs. Notice that Yxxu
denotes the same sign as u. So, structure terms are no longer unique for
formulae. Now, let x be the structure term for x, t the structure term for t
and u some (!) structure term for ϕ. Then

Ytxuε = [t/x]ϕ, Yxxuε = ϕ

Thus, with s := Yxxu we have a structure term such that standard substi-
tution is nothing but substitution in the grammar sense. Yet, the proposed
solution has a defect: it makes formulae into subformulae that have no string
occurrence in it. For example, ϕ(y) is a subformula of ϕ(x) and vice versa.
This is unacceptable.

It is clear that there are many grammars that generate predicate logic.
Even if we exclude pathological cases and require, say, that the grammar
is context free, there are infinitely many solutions. Let us therefore try to
elaborate which further assumptions on the grammar make it unique. The
sign based grammar Pred is unique on the following assumptions. The
datum is pairs of well–formed expressions combined with their meanings.

[a] We assume that the exponents are strings over the alphabet, and that
the modes can only concatenate them, possibly adding syncategore-
matic symbols.

[b] We assume that the system is monotectonic (or unambigous): every
well–formed expression has a unique structure term.

[c] We assume that for every substring that is a well–formed expression
of some type, that occurrence is the exponent of some subterm of the
structure term. This is called transparency.

[d] Any two well–formed expressions have the same category iff they have
the same distribution.

By [a] and [c] we get that every well–formed expression is composed from
its immediate subexpressions. For example, (∀x0)(x=x0) has as its imme-
diate subexpressions x0 and (x=x0). Hence, the additional brackets as well
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as ∀ are syncategorematic. Moreover, it makes x a subexpression of x0,
which is a subexpression of x01, and so on. Notice that by transparency
substitution can be formulated as mere string replacement, since ‘accidental’
occurrences of subterms cannot be mistaken for proper ones (as would be
p0→p1 in p∧p0→p1, when brackets are dropped). [b] is put in to make sure
that there are no two modes that operate in the same way on signs. [d]
ensures that we do not create more categories than absolutely necessary. By
distributional analysis we get in fact three categories: variables (only they
appear right after ∀), terms and formulae.

It is interesting to note that different results obtain if the morphology is
different. Suppose we drop brackets in conjunctive expressions as we do with
additive terms, writing ϕ∧χ∧ψ in place of (ϕ∧(χ∧ψ)). Then the resulting
language is no longer transparent. The string (x=x0)∧(x0=x1)∧(x1=10)

has two different overlapping well–formed substrings, (x=x0)∧(x0=x1) and
(x0=x1)∧(x1=x10). But not both of them can be part of one and the same
analysis, because of [a]. Of course, the ambiguity is spurious: we may choose
either analysis. On either analysis we get the same result. (As a note of
clarification: here we do not view the omission of brackets as an abbreviatory
convention, but we take strings without brackets as genuine, well–formed
expressions in their own right. We are analyzing, so to speak, the actual
usage of predicate logic rather than the official norm.)

Now, there are other conventions as well. The brackets around an equa-
tion are always omitted. One also assumes that ¬ is the strongest symbol,
and brackets are dropped from (¬ϕ). Outer brackets are always dropped.
However, notice that while x=x0∧x0=x1 is unambigous, its negation is to be
written ¬(x=x0∧x0=x1) rather than ¬x=x0∧x0=x1. All this only concerns the
manipulation of the exponents of the grammar that generates this language.
Substitution, however, remains the same operation on the level of structure
terms, only that it projects differently onto the exponents (= wfes).

8 Axiomatization

The relevance of substitution is seen when we turn to axiomatization. There
are two kinds of axiomatizations. The first uses an inbuilt rule of substitu-
tion, the second specifies axiom schemes, using metavariables for formulae.
In propositional logics both approaches are possible, while FOL can use in-
ternal substitution only with respect to terms, since there are no variables for
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formulae. However, we should be aware of the fact that the employment of
axiom schemes relies on a correct understanding of what is substituted and
how. This includes a proper understanding of the morphology of the actual
language. Let us give an example. In propositional logics substitution is
taken to be replacement of occurrences of a (meta)variable by a string. Yet,
this works only in the transparent case. If we do not write brackets matters
are different. For example, replacing p0 in p0∧p1 by the disjunction p01∨p11

will make it necessary to insert brackets, so that we get (p0∨p11)∧p1 and
not p01∨p11∧p1. On the other hand, if we have to substitute p01∧p11 for p0,
no insertion of brackets is needed. This shows clearly that substitution may
require syntactic analysis. Instead, one should think of the strings as repre-
sentatives of structure terms, and metavariables as proxy for structure term
variables. For example, (¬((∀x)ϕ→(¬ϕ))) is proxy for QCXxzQz, where x
is a variable for a structure term for variables, z a variable for a structure
term for formulae. Given the grammar there is no question of what function
substitution actually is, since it is universally and unequivocally determined
at the level of structure terms. If, say, we instantiate x to ENZ and z to
GENZEZ then the structure term becomes

QCXENZGENZEZQGENZEZ

Its exponent is (¬((∀x01)(x01=x1)→(¬(x01=x1)))).
The first task we set ourselves is to axiomatize predicate logic using string

substitution, denoted here by pt/xq. Recall that predicate logic has three
kinds of axioms. The first set is the propositional axioms, for example

((ϕ→(ψ→χ))→((ϕ→ψ)→(ϕ→χ)))

These rules are unproblematic. The given axioms can be instantiated by
substituting any given structure term for formulae for the variables for terms
x, y and z in

CCxCyzCCxyCxz

So these axioms are completely schematic. Likewise the rule

(mp)
(ϕ→χ) ϕ

χ

The next set are the axioms for equality: reflexivity, transitivity and sym-
metry, and the rule of replacement of equals:

(∀x)(∀x0)(x=x0→(p(x)→p(x0)))
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These axioms are the exponents of concrete structure terms. (This is enough
given [2] and (gen) below.)

Finally, the following need to be added.

[1] ((∀x)(ϕ→ψ)→((∀x)ϕ→(∀x)ψ))

[2] ((∀x)ϕ→[t/x]ϕ)

[3] (ϕ→(∀x)ϕ) (x not free in ϕ)

and the rule

(gen)
ϕ

(∀x)ϕ

Notice that [1] and the rule (gen) present no problem. [2] and [3] present two
problems: they have side side conditions and they involve explicit substitu-
tions.

Suppose that we change to the substitution pt/xq.

Definition 7 Call a formula regimented if there is no subformula which

contains a variable both free and bound.

Lemma 1 Suppose that (∀x)ϕ is regimented. Then pt/xqϕ = [t/x]ϕ.

The following is relatively straightforward to prove.

Proposition 2 Let ϕ be regimented. If ϕ is provable in FOL, it has a proof

using only regimented formulae.

We replace the set of axioms by the following:

[i] ((∀x)(ϕ→ψ)→((∀x)ϕ→(∀x)ψ))

[ii] ((∀x)ϕ→pt/xqϕ) ((∀x)ϕ regimented)

[iii] (ϕ→(∀x)ϕ) (x not free in ϕ)

[iv] ((∀x)ϕ→(∀y)py/xqϕ) (y not free in ϕ, x not bound in ϕ)
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Thus, we have effectively restricted only the second axiom. We are guaran-
teed only to derive the regimented formulae. That is why we have added
the formula [iv]. The axiomatisation is complete. For suppose that ϕ con-
tains a subformula containing a variable bound which occurs free outside of
it. Then we can do a suitable replacement of that bound variable and get a
formula ϕ′. The two are equivalent in predicate logic. ϕ′ is regimented, and
ϕ can be derived from it using [iv]. It is certainly valid, since under the given
conditions it is identical to

((∀x)ϕ→(∀y)[y/x]ϕ)

Notice that the axiomatization is not entirely algebraic. There are side
conditions on the formulae and we have made use of explicit substitutions.
The question arises whether using a different notion of substitution can make
a difference here. This would mean to present a schematic axiomatization in
which we use metavariables for variables, for terms and for formulae. Clearly,
this is feasible, by simply listing them. This is the way in which the axiom-
atization of first–order logic is standardly taken. The set is decidable but
infinite. The question is whether a finite subset is enough. Suppose for
simplicity that we have no function symbols. Then we only need to worry
about variables and formulae. It is known that substitution can be defined
by quantification. In view of a result of [6] it is impossible to reduce the
list to a finite one. Interestingly, [9] show that adding explicit substitution
functions (of variables by variables) does not improve the situation.

We remark here only that if we use general substitution, the axiom [2]
becomes

((∀x)ϕ→{t/x}ϕ)

without side conditions. Yet, the axiom [3] still needs the side condition x is
not free in ϕ. Thus, none of the substitutions actually substantially simplifies
the task of axiomatizing FOL.

9 Conclusion

The point of this paper was to argue that the grammar of FOL virtually
forces us to assume a particular kind of substitution. The general question
concerning this is: why is this a concern? And why should the logician care?
To answer the second question first: we have shown that string substitution
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is actually no more and no less suited for the purpose than is standard sub-
stitution, but it is easier to use. The real complications do not arise from
substitution, they arise from FOL itself. To answer the first question: in an
artifical language we can make arbitrary decisions, but in a natural language
we cannot. Still, in reasoning within natural language we wish to do the very
same as we did for predicate logic: formulate the rules of reasoning within
language. The Stoics used expressions like the first or the second as variables
for sentences, something which does not require great care in formulation.
But when it comes to syllogisms, matters are less straightforward. Consider
modus barbara (see [3]):

Every man is mortal.

Every priest is a man.

Every priest is mortal.

It arises in the same way from insertion into a schematic expression:

Every P is Q.
Every R is P.
Every R is Q.

Yet, when we turn to other languages, the substitution will necessitate chang-
es. In Latin and French, the predicative adjective agrees in gender with
the subject. Although we wish to consider the agreement patterns to be
inessential, still it is important to set up the system in such a way that they
really are taken care of. In other words, we wish to set up a grammar for
French and Latin in such a way that it provides a schematic expression of the
kind that does the agreement automatically. Otherwise the logical schemata
need to make up for that (for example by devising different schemata for
different genders).
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Németi, editors, Algebraic Logic, number 54 in Colloquia Mathematika
Societatis János Bolyai, pages 539 – 571. János Bolyai Matematikai
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