
Inessential Features

Marcus Kracht ?

II. Mathematisches Institut
Freie Universität Berlin

Arnimallee 3
D-14195 Berlin

kracht@math.fu-berlin.de

Abstract. If one converts surface filters into context free rules, one has
to introduce new features. These features are strictly nonlexical, and their
distribution is predictable from the distribution of the lexical features.
Now, given a (feature based) context free grammar, we ask whether one
can identify the nonlexical features. This is not possible; however, the
notion of an inessential feature offers an approximation. To arrive at a
descriptive theory of language one needs to eliminate all the inessential
features. One can measure the complexity of a language by the com-
plexity of the formulae needed to define the distribution of inessential
features.

1 Introduction

According to the lexicalist doctrine, the features that get used in syntax must
be exactly those that are used in the lexicon as well. That is to say, the lexicon
already provides the necessary distinctive features on which syntax operates, and
there is no need to introduce new ones. We will give two examples. In X–bar–
syntax a distinction is drawn between (usually) three levels in the completion of
a phrase: the lexical level, the intermediate level and the phrasal level. From a
lexicalist perspective, although talk about the various levels is not meaningless,
their use in syntax should in principle be eliminable. In other words the status
of a constituent in a syntactic structure is not freely assigned by syntax, but
follows exactly from the assignment of purely lexical features in the syntactic
tree. If something is a phrase in a structure, it necessarily is a phrase in that
structure. For example, in

(1.) John is [very [proud of his son]].

we have the adjective proud, and the adjectival phrase very proud of his son. That
the latter is a phrase follows from the principles of X–bar–syntax. 1 There is an
? This research has been carried out in collaboration with the Innovationskolleg ‘For-

male Modelle kognitiver Komplexität’ (INK 12/A3) at Potsdam University, funded
by the DFG. I wish to thank Jens Michaelis for many useful discussions. Thanks also
to Hans Leiß and James Rogers for raising interesting questions.

1 Notice that strictly speaking, at least the distinction between lexical and phrasal
level is justified for a lexicalist. In English, John acts like a noun phrase, not like



intuition that syntax should only talk about those features that are given by the
lexicon. In other words, syntax and morphology share a pool of features, which
we call lexical features. A syntactic theory (and a morphological theory) is not
allowed to introduce new features, and computation should proceed using only
the given lexical features. This is not a substantial criterion but a criterion that
makes it possible to separate lexical from nonlexical features and to provide a
complexity measure for the computational system (or syntax) alone. However, in
the Minimalist Program it is actually assumed that the computational system
performs computations only on the feature complexes of the lexical elements
which get inserted from the lexicon. Consequently, Chomsky [2] has sought to
eliminate the levels from X–bar–syntax (see also the discussion thereof in Kracht
[6]).

The other example concerns the slash–feature of GPSG. 2 Here the intuition
is somewhat clearer. The slash–feature was introduced to control the dependency
between a filler and the corresponding gap. As an example we use simple question
formation and topicalization. Consider the contrast between (2.), (3.) and (4.).

(2.) Alfred is [stealing books].
(3.) What is Alfred [stealing]?
(4.) Books, Alfred is [stealing].

Steal is a transitive verb, and it normally expects its object to the right. How-
ever, in questions and other constructions, this need not be so. Two solutions
offer themselves. One is to supply the object in form of an empty element, and
then discuss separately the distribution of such empty elements; another is to
revise the context restriction of transitive verbs according to the facts just pre-
sented. The first has been implemented in transformational grammar, the latter
in GPSG. In GPSG, a transitive verb may occur either in a constituent together
with a direct object, or it may form a constituent of the form transitive verb with
an object missing, which is coded with the help of the slash–feature roughly as
tv[slash : np], where tv is the category of transitive verbs. The problem is that
the addition of this new feature is inadmissible for a lexicalist. Any transitive
verb is equally admissible in the contexts (2′.), (3′.) and (4′.). There is therefore
no need to discriminate between words that can be used in one of the contexts
and not the other. 3

(2′.) Alfred is books.
(3′.) What is Alfred ?
(4′.) Books, Alfred is .

Thus in both cases we have an instance of features that are not motivated from
the lexicon but only from syntax.

a noun, and there are a number of phrasal pro–forms with this property, too, e. g.
one, such, so.

2 Notice that what we call features in the sequel are booleans, not features in the sense
of GPSG and feature logic.

3 Actually, this is not quite right. (3′.) can be filled by doing, while (2′.) and (4′.)
cannot. However, do is anyway syntactically distinct from a full verb. Hence, that it
discriminates the given contexts need not invalidate our argument.



2 The Constituent Logic(s)

2.1 The Basic Structures

Some notation shall be fixed for convenience. With M a set, let ℘(M) denote
the powerset of M , and let M∗ be the set of finite strings of elements from M .
An element of M∗ is denoted by bold face type, e. g. x. Given binary relations
R,S over M , put

R ◦ S := {〈x, z〉 : (∃y)(〈x, y〉 ∈ R and 〈y, z〉 ∈ S)}

Moreover, Rn is defined inductively by R0 := {〈x, x〉 : x ∈M}, Rn+1 := R ◦Rn.
Finally, R∗ :=

⋃
n≥0R

n and R+ :=
⋃
n>0R

n.
Our original structures are ordered trees — possibly infinitely branching —

and decorated with features from a given set F of features. F can in principle
be any set (it may even even empty) but it is always required to be finite. Here,
an ordered labelled tree over F is a quadruple O = 〈T,<,L, ξ〉, where < is a tree
ordering on T , ξ : T → ℘(F ) is a function, called the labelling function, and L
an ordering compatible with <, the left–of–relation. < is a tree ordering on T if
< is a binary relation on T which is transitive, irreflexive, the sets {y : y > x}
are linear for all x, and there is an r such that r > x for all x 6= r. A leaf is
a node x such that for no y, y < x. We write y ≤ x if y < x or y = x. L is
compatible with < if it satisfies the following postulates. (l) L is linear on the
leaves, (c) xLy iff for all leaves u and v such that u ≤ x and v ≤ y it holds that
uLv. Given a labelled ordered tree, we define two relations ≺ (child–of) and @
(immediate left–sister–of).

x ≺ y iff x < y and for no z, x < z < y,
x @ y iff xLy, for no v: xLvLy, and for some z: x ≺ z and y ≺ z.

We put T(O) := 〈T,≺,@, ξ〉. A quadruple T = 〈T,≺,@, ξ〉 where T is a set, ≺
and @ binary relations on T and ξ : T → ℘(F ) a function is called an F–tree
if it is of the form T(O) for some ordered labelled tree O. The relations < and
L can be recovered as follows: <=≺+, and L =≺∗ ◦ @+ ◦ �∗. Therefore, the
class of F–trees can be characterized directly. Namely, T = 〈T,≺,@, ξ〉 is a finite
F–tree iff (α)− (δ) hold. (α) The transitive closure ≺+ of ≺ is a tree ordering,
(β) @+ and its converse are both irreflexive linear orders, (γ) If x, y ≺ z then
x @+ y, x = y or y @+ x, (δ) If x ≺ z and x @+ y or y @+ x then also y ≺ z.

2.2 Modal Languages for Trees

With each f ∈ F we associate a boolean constant f. (For simplicity, we also write
f in place of f .) Our boolean connectives are >, ∧, ¬, the others being defined
from them in the usual way. We denote by TmBoo(F ) the set of boolean terms
over F that can be formed in this language. We denote members of TmBoo(F )
by a, b etc. We write a ≤ b if a → b is a boolean tautology. For a set C ⊆ F we
put

χ(C) :=
∧
f∈C

f ∧
∧

f∈F−C

¬f



Each boolean term over F is equivalent to a disjunction of formulae χ(C) for
certain C (for example the disjunctive normal form).

There are a number of languages with which we will talk about these struc-
tures. The first three will be introduced in this section. The largest of them is
called Olt (orientation language over trees). It is identical to propositional dy-
namic logic (PDL) over four basic programs, called up, down, left and right.
Recall that PDL has two sorts of expressions, programs and propositions. There
is a set Var of propositional variables, a set F of propositional constants, and
a set Π0 of program constants. Propositions are formed by using boolean con-
nectives. The basic set is >, ¬ and ∧, all others are defined in the usual way.
Moreover, if α is a program and ϕ a proposition, then [α]ϕ and 〈α〉ϕ are propo-
sitions. We assume that [α]ϕ is equivalent with ¬〈α〉¬ϕ. Programs are formed
in the following way. Members of Π0 are programs, called basic programs. If α
and β are programs, then α;β, α ∪ β and α∗ are programs as well. We define
α+ := α;α∗. Finally, if ϕ is a proposition, then ϕ? is a program. In our case,

Π0 = {left, right, up, down}

We write ♦ for 〈up〉, � for [up], and similar conventions are used for ♦, �,
♦, �, ♦ and �. Moreover, we write ♦

∗ for 〈up∗〉, �
∗ for [up∗], ♦

+ for 〈up+〉
and �

+ for [up+] (and likewise for down, left and right). There are two more
languages which are of interest to us. The first is BOlt(F), the basic orientation
language, which is a 4–modal language based on the operators �, �, � and
�, with additional constants from F . The other language is what we call the
weak orientation language WOlt(F) of Blackburn, de Rijke & Meyer–Viol [1]; it
is a modal logic based on the primitive operators �, �

∗, �, �
∗, �, �

∗, � and
�
∗. 4 Both languages can be construed as fragments of PDL. Namely, BOlt(F)

coincides with the ∗–free fragment of PDL, also known as EPDL. WOlt(F)
coincides with the ∗–free fragment over Π1 where

Π1 := Π0 ∪ {up∗, down∗, left∗, right∗}

The structures for these logics are the same for all languages, namely general-
ized Kripke–structures T together with a valuation function for the constants
from F . Generalized Kripke–structures here are simply called structures and are
quintuples 〈T,≺,@,T, ξ〉 such that T is a non–empty set, ≺ and @ binary rela-
tions over T , ξ : T → ℘(F ) and T ⊆ ℘(T ) a system of sets closed under relative
complement, intersection and [α], where for B ⊆ T

[α]B := {x : (∀y)(〈x, y〉 ∈ R(α) → y ∈ B)} .

4 This language has a different name in the quoted paper, but we decided to harmonize
the terminology here.



Here α is a program of the language and R(α) the associated binary relation in
T . R(α) is computed as follows.

R(right) := @ R(left) := A
R(up) := ≺ R(down) := �
R(α;β) := R(α) ◦R(β) R(α ∪ β) := R(α) ∪R(β)
R(α∗) := R(α)∗

〈T,≺,@, ξ〉 is a Kripke–structure if 〈T,≺,@, ℘(T ), ξ〉 is a generalized Kripke–
structure. So, the structures for these languages differ only with respect to the
closure properties for the system T. The Kripke–structures do not change. (Read-
ers unfamiliar with generalized Kripke–structures may think of them as Kripke–
structures instead. This may go at the expense of precision, but is more intuitive
to begin with.)

A model is a triple M = 〈T, β, x〉, where T is a generalized Kripke–structure,
β : Var → 2f an assignment, and x ∈ f . For a formula ϕ in Olt(F ) M |= ϕ is
defined by induction on ϕ.

〈T, β, x〉 |=> ⇔ true
〈T, β, x〉 |= p ⇔ x ∈ β(p)
〈T, β, x〉 |= f ⇔ f ∈ ξ(x)
〈T, β, x〉 |=¬ϕ ⇔ 〈T, β, x〉 2 ϕ
〈T, β, x〉 |=ϕ ∧ ψ ⇔ 〈T, β, x〉 |= ϕ;ψ
〈T, β, x〉 |= 〈α〉ϕ ⇔ there is y such that 〈x, y〉 ∈ R(α) and 〈T, β, y〉 |= ϕ

This means in detail that

〈T, β, x〉 |= ♦ϕ ⇔ there is y A x such that 〈T, β, y〉 |= ϕ
〈T, β, x〉 |= ♦ϕ ⇔ there is y @ x such that 〈T, β, y〉 |= ϕ
〈T, β, x〉 |= ♦ϕ ⇔ there is y ≺ x such that 〈T, β, y〉 |= ϕ
〈T, β, x〉 |= ♦ϕ ⇔ there is y � x such that 〈T, β, y〉 |= ϕ
〈T, β, x〉 |= [α;β]ϕ ⇔ 〈T, β, x〉 |= [α][β]ϕ
〈T, β, x〉 |= [α ∪ β]ϕ ⇔ 〈T, β, x〉 |= [α]ϕ; [β]ϕ
〈T, β, x〉 |= [α∗]ϕ ⇔ 〈T, β, x〉 |= ϕ; [α]ϕ; [α2]ϕ; . . .

Furthermore, 〈T, β〉 |= ϕ if 〈T, β, x〉 |= ϕ for all x ∈ T , and T |= ϕ if 〈T, β〉 |= ϕ
for all valuations β. Given a class X of generalized Kripke–structures,

ThX := {ϕ ∈ Olt(F ) : (∀T ∈ X)(T |= ϕ)}

The logic of F–trees is denoted by CL(F ) (BCL(F ), WCL(F )). The reader
should be aware of the fact that these logics may admit models which are not
based on F–trees. Given a logic Λ, we denote by Mod(Λ) (Krp(Λ), FKrp(Λ))
the set of model structures (Kripke–structures, finite Kripke–structures) for Λ.
(Notice that generally we do not need to know from what language Λ is drawn.)
Even though some of our definitions are parametric in the choice of the language,
we will often suppress that dependency unless it is relevant. Also, we speak of
an F–logic when we mean an extension of the logic of F–trees in one of the



languages under consideration. The logics of n–ary branching trees are obtained
by adding the (constant) axiom �

n⊥.
With a modal logic Λ we associate the following consequence relations. Φ Λ

φ if φ can be deduced from Φ and the theorems of Λ by means of modus ponens
and the rule χ/�χ, where � is any box–like modal operator. (So, in Olt(F )
this rule takes the form χ/[α]χ, where α is a program.) Furthermore, we write
Φ `Λ ϕ if ϕ can be derived from Φ and the theorems of Λ by modus ponens
alone. We call `Λ the local consequence relation and Λ the global consequence
relation of Λ. The following holds. Φ `Λ ϕ iff for all T ∈ Mod(Λ), all valuations β
and x ∈ T , if 〈T, β, x〉 |= Φ then 〈T, β, x〉 |= ϕ. Φ Λ ϕ if for all T ∈ Mod(Λ) and
all valuations β, if 〈T, β〉 |= Φ then 〈T, β〉 |= ϕ. The local deducibility relation
has a deduction theorem, that is, for all formulae ϕ, ψ and sets of formulae Φ

Φ;ϕ `Λ ψ ⇔ Φ `Λ ϕ→ ψ

A logic Λ is complete with respect to a class X of frames if Λ = ThX; that is,
ψ ∈ Λ exactly when T |= ψ for all T ∈ X. Λ has the finite model property of
Λ = Th(FKrp(Λ)). Λ is decidable if there is an algorithm solving for each ϕ the
problem ‘ϕ ∈ Λ’ (which is the same as ‘`Λ ϕ’). A logic that has the finite model
property and is finitely axiomatizable is decidable.

Say that a logic Λ has the global finite model property if whenever Φ 1Λ ϕ
for finite Φ then for some finite T ∈ Mod(Λ) and some valuation β on T we have
〈T, β〉 |= Φ but 〈T, β〉 2 ϕ. And say that Λ is globally decidable if for finite Φ,
the question ‘Φ Λ ϕ’ is decidable. If a logic has global finite model property (is
globally decidable) then it has the finite model property (is decidable).

2.3 Axiomatizing the Logics of Trees

Let us turn now to the axiomatization of the logic of F–trees. Consider the logic
BCL(F ), obtained by adding the following axioms to K4:

(a) p→ �♦p (b) p→ �♦p
(c) p→ �♦p (d) p→ �♦p
(e) ♦p→ �p (f) ♦p→ �p
(g) ♦p→ �p (h) ♦♦p→ p
(i) ♦♦p→ ♦p (k) ♦♦p→ ♦p
(l) ♦> → ♦�⊥ ∧ ♦�⊥ (m) �⊥ → �⊥ ∧�⊥

We note first that the logic of the set of finite F–trees is not axiomatizable in
BOlt(F ). This is so because the one point structure in which all relations are re-
flexive is a model for the theory of F–trees. Furthermore, BCL(F ) is Sahlqvist,
hence canonical and complete with respect to (possibly infinite) Kripke struc-
tures. However, it is already complete with respect to finite F–trees. For let
ϕ 6∈ BCL(F ). Then there is a T, a Kripke frame for BCL(F ), a valuation β and
a point x such that 〈T, β, x〉 |= ¬ϕ. T can be unravelled from x into a (possibly
infinite) F–tree U. Let d be the modal depth of ϕ, and let y be a point such that
x can be reached from y in exactly d steps, going down. It is not hard to show



that we can select a finite subtree U of T of depth at most 2d and with root y
such that U |= BCL(F ) and 〈U, β, x〉 |= ¬ϕ.

Proposition 1. The logic BCL(F ) is complete with respect to finite F–trees.

This theorem is also a direct consequence of Theorem 1.
WCL(F ) (and CL(F )) is obtained from BCL(F ) by adding the following

axioms in addition to the axioms for the basic normal logic (here, �+ := ��∗)

(n) �
+(�

+
p→ p) → �

+
p (o) �

+(�
+
p→ p) → �

+
p

(p) �
+(�

+
p→ p) → �

+
p (q) �

+(�
+
p→ p) → �

+
p

(r) ♦♦p↔ ♦
∗
p ∨ ♦

∗
p

(t) ♦
∗
�⊥ (t) ♦

∗
�⊥

(u) ♦
∗
�⊥ (v) ♦

∗
�⊥

This axiomatization is not independent.

Theorem 1 ((Blackburn & Meyer–Viol & de Rijke)). WCL(F) is com-
plete with respect to finite F–trees.

There are two consequences of this theorem that are worth noting. The global
and the local consequence relation are closely interrelated, since it is possible in
WCL(F ) and CL(F ) to define the universal modality of Goranky & Passy [3],
denoted here by �.

Proposition 2 ((Goranko & Passy)). Define � by �ϕ := �
∗
�
∗
ϕ. Assume

that Λ ⊇ (W)CL(F ). Then

Φ Λ φ ⇔ �Φ `Λ φ

Hence if Λ has the finite model property (is decidable) it has the global finite
model property (is globally decidable).

Proof. Let Φ Λ ϕ. Assume that 〈T, β, x〉 |= �Φ for an F–tree T. Then for all
y ∈ T , 〈T, β, y〉 |= Φ, and so 〈T, β〉 |= Φ, by definition. Hence 〈T, β〉 |= ϕ and so
〈T, β, x〉 |= ϕ. This shows �Φ `Λ ϕ. Now assume that �Φ `Λ ϕ. Then obviously
�Φ Λ ϕ. Moreover, Φ Λ �Φ and so Φ Λ ϕ.

This means that the global consequence relation is reducible to the global con-
sequence relation in the present context. The next theorem immediately follows.

Corollary 1. WCL(F ) has the (global) finite model property and is (globally)
decidable.

We can use Theorem 1 to prove a theorem announced in Kracht [4].

Theorem 2. CL(F) is complete with respect to finite trees. Hence CL(F) has
the (global) finite model property and is (globally) decidable.



Proof. It suffices to show that CL(F ) has the finite model property. Moreover,
we assume F = ∅. This simplifies the notation somewhat. Let ψ be a formula of
Olt(F ). We associate a formula∇(ψ) with ψ as follows. For each χ in the Fischer–
Ladner–Closure of ψ we pick a new variable qχ. Then ∇(ψ) is the conjunction
of the following formulae

qp ↔ p q¬χ ↔ ¬qχ
qχ∨ω ↔ qχ ∨ qω qχ∧ω ↔ qχ ∧ qω
q〈χ?〉ω ↔ qχ∧ω q〈α∪β〉χ ↔ q〈α〉χ ∨ q〈β〉χ
q〈α;β〉χ ↔ q〈α〉〈β〉χ q〈α∗〉χ ↔ qχ ∨ q〈α;α∗〉χ

q〈α〉χ ↔ 〈α〉qχ α ∈ {up, down, left, right}

Notice that ∇(ψ) ∈ WOlt(F). It is not hard to see that for a model 〈T, β〉 based
on an F–tree T, if 〈T, β〉 |= ∇(ψ) then for any formula χ in the Fischer–Ladner–
Closure of ψ, 〈T, β〉 |= χ↔ qχ. Hence the following holds

`CL ψ ⇔ ∇(ψ) CL qψ

Furthermore, for Φ ⊆ WOlt(F) and ψ ∈ WOlt(F) we have

Φ CL ψ ⇔ Φ WCL ψ

From right to left is immediate, since CL(F) extends WCL(F). Moreover, sup-
pose the right hand side fails. Then there is a model M = 〈T, β〉 based on a finite
tree T such that M |= Φ but M 2 ψ. However, M also is a model for CL(F ),
and so the left hand side fails as well. So, `CL ψ iff ∇(ψ) WCL qψ. Finally, by
Proposition 2,

∇(ψ) WCL qψ ⇔ `WCL �∇(ψ) → qψ

Putting these three together we get that `CL ψ iff `WCL �∇(ψ) → qψ. Now sup-
pose that the last fails. Then there exists a finite model 〈T, β, x〉 |= �∇(ψ);¬ψ.
Then 〈T, β, x〉 |= ¬ψ. Moreover, T is a model for CL(F ).

Theorem 3. Let Φ be a finite set of variable–free formulae of Olt(F), and let
Λ := Olt(F )⊕Φ. Then Λ has the (global) finite model property and is (globally)
decidable.

Proof. (The argument is given in Kracht [4]. Therefore we will just sketch it.)
We may work with the case Φ = {ϕ} (for example, let ϕ be the conjunction of
all members of Φ). Now notice that the following holds for all ψ

Λ ψ ⇔ ϕ CL(F) ψ ⇔‡ `CL(F) �ϕ→ ψ

(where ‡ follows from Proposition 2). Now the theorem follows from Theorem 1.



3 Syntactic Codes

3.1 Boolean Grammars

Contrary to the usual definition in the theory of formal languages we will distin-
guish between the grammar and the lexicon. A language is generated by a pair
consisting of a grammar and a lexicon. Recall that a language over a set D is
simply a subset of D∗.

Definition 1. Let D and F be sets. An F–lexicon for D is a pair 〈D, γ〉, where
γ : D → ℘(F ). D is called the dictionary of L and γ the class assignment
function. 5

The concept of a (context free) grammar for F–trees is defined as follows.

Definition 2. A context free F–grammar is a triple G = 〈Σ,Ω,R〉 where
Σ and Ω are boolean F–terms, called the start term and the stop term, and
R ⊂ TmBoo(F )×TmBoo(F )+ a finite set, the set of rules. It is required that every
term in a rule from R is consistent. Rules are as usual written x → y0 . . . yk−1.
An F–tree T = 〈T,≺,@, ξ〉 is generated by G, in symbols G � T, if (i.) for
the root x: χ(ξ(x)) ≤ Σ, (ii.) for all leaves y: χ(ξ(y)) ≤ Ω, and (iii.) for all
non–leaves z, if z � yi, i < k, and yi @ yj iff i < j < k, then there exists
a → b0 . . . bk−1 ∈ R such that χ(ξ(z)) ≤ a and χ(ξ(yi)) ≤ bi for all i < k.

Boolean grammars manipulate only nonterminal symbols in the usual sense of
the word. Hence, Ω should not be thought of as a set of nonterminals, but as a
description of the lexical nodes. A grammar for an actual language is therefore
a pair 〈G,L〉, where G is an F–grammar and L an F–lexicon.

This split into grammar and lexicon will turn out to be crucial. Given an
F–tree T and a = 〈ai : i < k〉 ∈ D∗, let a ∈ Y(〈T,L〉) if the leaves of T are
xi, i < k, and xiLxj whenever i < j, and for all i < k we have γ(ai) = ξ(xi).
Y(〈T,L〉) is the set of strings modulo γ represented by T. For a set S of F–strings
we put

Lang(〈S,L〉) :=
⋃

T∈S

Y(〈T,L〉)

For a grammar G, we let

Lang(〈G,L〉) :=
⋃

G�T

Y(〈T,L〉)

We will give two examples of boolean grammars. Both will be needed later.
In both cases we do not use the boolean nature of the labels explicitly in the
notation, to keep matters simple. Distinct symbols denote distinct atoms of the
free boolean algebra generated by the features.

5 For technical convenenience we allow no lexical ambiguity. Also, each a ∈ D has a
unique syntactic category, and all categories are mutually exclusive. See also Sec-
tion 5.



A Grammar for Movement This grammar generates the language M :=
ab∗∪ b∗a. In transformational terms this language can be generated by writing a
right regular grammar that generates b∗a, and then having an optional movement
process that ‘topicalizes’ a. However, there is a regular grammar that generates
this language without movement. Put Σ := x, Ω := a ∨ b and let the set R of
rules be

x → a y
x → a
x → b z
y → b y
y → b
z → b z
z → a

Now M := 〈Σ,Ω,R〉. The lexicon is 〈{a, b}, γ〉, where γ(a) = {a} and γ(b) = {b}.
For let the first rule apply. Then we generate a ·y. It is easy to see that y →∗ b+.
If the second rule applies, the string generated is a alone. Now assume that the
third rule is applied. Then we get the string b · z. Moreover, z →∗ b∗ · a. Thus,
the grammar generates the preterminal strings of the forms a · b∗ ∪ b∗ · a. Hence,
with the lexicon as given, the language ab∗ ∪ b∗a is generated, as promised.

A Grammar for Reflexives The next grammar is a simplified grammar for
illustrating the behaviour of reflexives. It generates the language

R := {a[d∗ ∪ c+d(c ∪ d)∗ ∪ d+c(c ∪ d)∗]}∗a

This language can be more succinctly described as follows. It generates a string
x exactly if (i) x begins and ends with a and (ii) for any occurrence of c, a d
must also occur in between the occurrence of c and the next a either to the left
or to the right. To phrase condition (ii) into linguistic terminology suppose that
this languages is generated by a right regular grammar. Then we may say that
each occurrence of a c must a–command an occurrence of d that a–commands
the given c. Here, x a–commands y if for all nodes z properly dominating x
and also dominating an a, z dominates y. To see the connection with reflexives,
think of a as being a complementizer, of c as being a reflexives, and of d as an
antecedent. With some generosity we see that what is encoded is the requirement
that a reflexive only occurs in a sentence that also contains an antecedent. (We
trust that reader can see this. A sufficiently realistic grammar would be too
complicated for the present paper.) The set S of rules is the following.

u → a
u → a u ∨ q ∨ v ∨ w ∨ x
q → a q ∨ u
v → d v ∨ u

w ∨ y → d y x ∨ r → c r
y → c z ∨ u r → c s ∨ u
z → c ∨ d z ∨ u s → c ∨ d s ∨ u



Σ := x, Ω := a ∨ c ∨ d. R := 〈Σ,Ω, S〉. The lexicon is 〈{a, c, d}, κ〉 where
κ(a) = {a}, κ(c) = {c} and κ(d) = {d}. (To see that this grammar generates
R, let U be the language produced by u. Observe that q produces a+ · U , v
produces d+ · U , w produces d+c(c ∪ d)∗ · U and x produces c+d(c ∪ d)∗ · U .
Let P := d+ ∪ d+c(c ∪ d)∗ ∪ c+d(c ∪ d)∗ and Z = a+ ∪ P . Then we get U =
a∪(a[Z∪{ε}])U . So, U = (a[Z∪{ε}])∗a. We may actually rewrite this as (aP )∗a.
So, U = R, as required.)

3.2 Quasi Context Free Sets

We say that a set S of finite F–trees is a context–free set if there exists an F–
grammar G such that S = {T : G � T}. Now, given a rule ρ = x → y0 . . . yk−1

we define

γ(ρ) := x → ♦(¬♦> ∧ y0 ∧ ♦(y1 ∧ ♦(y2 ∧ . . . ∧ ♦(yk−1 ∧ ¬♦>) . . .)))

Given an F–grammar G = 〈Σ,Ω,R〉 let

γ(G) := (¬♦> → Σ) ∧ (¬♦> → Ω) ∧
∨
ρ∈R

♦> → γ(ρ)

We call γ(G) the characteristic formula of G. It is not hard to see that for a
finite F–tree T, G � T iff T |= γ(G). The following is now immediate.

Proposition 3. Let S be a context–free set of finite n–branching F–trees. Then
ThS is axiomatizable over CLn(F ) by formula in BOlt(F ).

The converse need not hold. For a characterization of the language in which only
context–free sets can be defined see Rogers [9].

Let G ⊆ F and T = 〈T,≺,@, ξ,T〉. Define the projection TG of a T onto G
by TG := 〈T,≺,@, ζ,T〉, where ζ(x) := ξ(x) ∩G. Likewise, the projection SG of
a class S of F–structures is defined by SG := {TG : T ∈ S}.

Definition 3. Let S be a set of finite F–trees. S is called quasi context–free
if there exists a finite set G and a context–free set T of F ∪ G–trees such that
S = TF .

There is a characterization of quasi context–free sets of finite F–trees in Rogers
[8] and Kracht [5]. This characterization is given in terms of logic.

Grammars define well–formed sets of structures. In our case we assume that
these structures are finite F–trees, where F is an arbitrary but fixed set of
features. It follows that a grammar may be viewed as a logic. This view has
been defended in Kracht [4]. It is not entirely unproblematic for the reason that
logics typically admit infinite structures while grammars do not generate such
structures. We will see here that the logics we will be studying in connection
with context–free grammars are complete with respect to their finite structures,
so that the infinite structures — though not excluded by the logics — can be
ignored in practice. This is similar to non–standard models of the real line. The



difference between a logic and a grammar is roughly the following. A logical
system is just a description of the legitimate objects with no indication of how
to obtain one, while a generating device allows to obtain just the right set of
structures with no indication of their characteristic properties apart from the
immediate ones. For a generating device it is therefore not immediate how to
recognize the structures that it produces, though in the case of context sensitive
language such recognizing algorithms can easily be obtained (though they may
not be efficient, but that is another matter). It would be preferrable if one
had a method to mediate between generative systems on the one hand and
descriptive systems on the other. Such a method has been proposed in Kracht
[5]. It shows how to construct a grammar from a description. These descriptions
may not contain variables, however, and the outcome is always a context–free
grammar. Though that is known to be a restriction, since natural languages are
not necessarily context–free, we will deal with that case throughout this paper.

Theorem 4 (Coding Theorem). Let Λ be an axiomatic expansion of CLn(F ).
Λ is the logic of a quasi context–free set iff Λ = CLn(F ) ⊕ Φ for a finite set
of variable–free formulae from Olt(F ). Moreover, there is an algorithm which,
given Φ, computes a set G, formulae ϕg ∈ Olt(F ) for g ∈ G, and an F ∪ G–
grammar G such that (i) the set of finite structures of Λ is exactly the projection
to F of the set of F ∪G–trees generated by G and (ii) a F ∪G–tree T is generated
by Λ iff TF is a Λ–structure and T |= g ↔ ϕg for each g ∈ G.

The theorem expresses not only that given a logic axiomatized by constant for-
mulae there exists a context free grammar over an expanded set of features that
generates a set T of which the set of finite Λ–models is a projection. It also says
that we can compute formulae that explicitly tell us how the additional features
are distributed with respect to the set of original features.

4 Inessential and Eliminable Features

4.1 Inessential Features

In intuitive terms, a feature (by which we mean a boolean constant in this
connection) is called inessential if its distribution is fixed by the other features.
To give an example, [slash : np] is inessential, for it can be reconstructed from a
tree in which it is not present. (This claim, however, is not trivial and depends
on assumptions on movement in syntax.)

Definition 4. Let S be a set of F–trees and G ⊆ F . Put H := F − G. G is
inessential in S if for every T ∈ SH there exists exactly one U ∈ S such that
T = UH .

(This definition can obviously be generalized to general structures.) Thus, given
an arbitrary set of F–trees, and a set G of features, SH is the projection of S
onto the complement of G in F . If T ∈ SH then, by definition of SH , there
exists at least one U of which T is the projection. G is inessential in S if there



exists no two F–trees of which T is the projection, for all T ∈ SH . This means
that the features of H alone suffice to identify a tree in S. However, it is by
no means clear that given the projection TH of T onto H we can produce T
from TH by some algorithm. In the general case this is impossible. However, in
the present discussion we are interested in sets of trees definable by means of
axioms. The reader is asked to verify that a set G is inessential in S iff all g ∈ G
are inessential. Thus, we will often specialize without warning to the case of a
single feature rather than a set.

Definition 5. Let Λ be an F–logic Λ and G ⊆ F a set of features. We say that
G is inessential in Λ if it is inessential in Mod(Λ).

The notion of being inessential can be rephrased in logical terms using the notion
of an implicit definition.

Definition 6. Let Λ be a logic extending CLn(F ) and let ϕ(p, q) be a formula.
ϕ(p, q) is called a global implicit definition of p if

ϕ(p, q);ϕ(r, q) Λ p↔ r

In this definition, ϕ may also contain the constants from F . The next theorem
considers the case where p replaces the occurrences of a given boolean f ∈ F .
For the purpose of that theorem ϕ[p/f] is the result of uniformly replacing each
occurrence of f by p.

Proposition 4. Let Λ = CL(F )⊕ϕ be an F–logic. f is inessential in Λ iff ϕ[p/f]
is a global implicit definition of p in Λ. Moreover, if ϕ is a constant formula, f
is inessential in Λ iff it is inessential in FKrp(Λ).

Proof. Let f be inessential in Λ. Assume that 〈T, β〉 |= ϕ[p/f];ϕ[q/f]. Then
〈T, β, x〉 |= p exactly if 〈T, β, x〉 |= f. Hence T |= ϕ, which implies that T ∈
Krp(Λ). Furthermore, also 〈T, β, x〉 |= q iff 〈T, β, x〉 |= f, and so 〈T, β〉 |= p↔ q.
This shows that ϕ[p/f] implicitly defines p. The converse is immediate. For the
second claim notice that Λ has the finite model property. This implies among
other that ϕ[p/f];ϕ[p/f] Λ p↔ q iff for every finite model T and valuation β, if
〈T, β〉 |= ϕ[p/f];ϕ[q/f] then β(p) = β(q).

Theorem 5. Let Λ = CL(F )⊕ϕ for a constant formula ϕ and let f ∈ F . Then
it is decidable whether or not f is essential in Λ.

Proof. f is essential iff ϕ[p/f];ϕ[q/f] Λ p↔ q. By Proposition 2 this is equivalent
to

`Λ �ϕ[p/f] ∧�ϕ[q/f].→ .(p↔ q)

Now, Λ is decidable by Theorem 3 and this establishes the claim.



4.2 Eliminable Features

Let Λ be a logic (= grammar) and f an inessential feature. We know then that
the distribution of that feature is fixed by the distribution of the other features.
Nevertheless, it may not be possible to know in what way it must be distributed.

Definition 7. Let S be a set of F–structures, and f ∈ F . f is eliminable in
S if there is a formula χ(p) such that for all T ∈ S

〈T, β〉 |= χ(p) ⇔ 〈T, β〉 |= p↔ f

Definition 8. Let Λ be a logic and ϕ(p, q) an implicit definition of p. ψ(q) is
called a (corresponding) explicit definition of p in Λ if ϕ(p, q) Λ p↔ ψ(q).

Definition 9. An inessential feature f of Λ ⊇ CL(F ) is called eliminable if
there exists an explicit definition in Λ.

Now assume that f is eliminable in Λ. Then it is inessential, and we have

Λ = CL(F )⊕ ϕ
= CL(F )⊕ ϕ⊕ f ↔ ψ
= CL(F )⊕ ϕ[ψ/f]⊕ f ↔ ψ

Thus, an axiomatization of Λ can be given that uses the structural axiom ϕ[ψ/f],
in which f does no longer occur, plus an explicit axiom f ↔ ψ defining the
distribution of f. In that case we may simply pass to the language over the set
H := F − {f}. Define

Λ−f := CL(F − {f})⊕ ϕ[ψ/f]

Then Λ−f axiomatizes the logic of the structures Mod(Λ)H .

Proposition 5. Let Λ = CL(F )⊕ϕ be an F–logic, and f ∈ F . Put H := F−{f}.
Suppose that f is eliminable with explicit definition ψ. Then

Th(Mod(Λ)H) = CL(F )⊕ ϕ[ψ/f]

A good illustration of these concepts is Chomsky [2]. Here it is argued that the
additional features distinguishing levels in X–bar syntax are inessential since
they can be deduced from the structure with the categorial labels alone. It is not
hard to see that the level attributes are also eliminable. However, eliminability
is not always guaranteed.

Theorem 6. There exists a logic Λ axiomatized by constant formulae and an
inessential feature which is not eliminable.

For a proof take the example of Kracht [5] of a logic Λ ⊇ CL3({f, g}) which
axiomatizes the logic of ternary branching trees such that g is is true along the
branches of a binary branching subtree, while f holds at those leaves exactly
where g holds. Then g is inessential. For let T = 〈T,≺,@, ξ〉 be an {f}–tree.



Then there is at most one way to turn T into an {f, g}–tree. Namely, let U :=
〈T,≺,@, ζ〉 such that f ∈ ζ(x) iff f ∈ ξ(x) and g ∈ ζ(x) iff there exists a leaf
y ≺+ x such that f ∈ ξ(y). Then if T is the projection of a {f, g}–tree V, V = U.
So, g is indeed inessential. It it not hard to come up with a formula ϕ(p, q) which
implicitly defines p in the way prescribed. But g is not eliminable. A proof can
be found in Kracht [7].

5 On the Descriptive Complexity of Language

5.1 Naturalizing the Feature System

We are going to exemplify the usefulness of these concepts by illustrating how
they allow to determine the complexity of languages. This complexity is not mea-
sured in terms of time or space complexity bounds for the recognition problem
(or other problems) but rather in terms how of complicated it is to describe the
facts of the language. We have considered four languages which we will discuss
now: the language of boolean expressions, the basic language, the weak language
and the (full) language for F–trees. Suppose that the language is given to us a
subset of D∗, D the dictionary. We need to introduce a set F of features to begin
with. Already here some assumptions must be made.

Definition 10. Let S ⊆ D∗ be a language over D, and let a ∈ D. Put CS(a) :=
{〈x,y〉 ∈ D∗×D∗ : x·a·y ∈ S}. Call a and b syntactically indistinguishable
if CS(a) = CS(b).

Let F be a set of features. A class (over F ) is a subset of F . A class assign-
ment function on D is a function γ : D → ℘(F ). A class assignment is proper
if CS(a) = CS(b) implies γ(a) = γ(b); it is minimal if γ(a) = γ(b) implies
CS(a) = CS(b). We are interested in proper and minimal class assignments.
Proper assignments are such that they assign the same class to syntactically in-
distinguishable elements. Minimal assignments put all indistinguishables in one
class. Given γ and a class C ⊆ F , let Eγ(C) = {a : γ(a) = C} and call it the
lexical extension of the class C. If the lexical extension of C is not empty, we
call C a lexical class. Now, if there are for example three classes, there must be
at least two features. But then we have four classes, so one of the classes has
empty lexical extension and is therefore not lexical. Roughly, the theory of the
lexicon 〈D, γ〉 is the set of all lexical classes. Formally, we put

M(γ) :=
∨

Eγ(C) 6=∅

χ(C)

Given an F–lexicon L = 〈D, γ〉 and a set G ⊆ F , put γG(a) := ℘(a) ∩ G and
LG := 〈D, γG〉.

Definition 11. Let D be a dictionary, S ⊆ D∗ a languange over D and L =
〈D, γ〉 an F–lexicon. G is a natural subset of F if LG is a proper and minimal
class assignment. If G is natural, LG is called the naturalization of L with
respect to S. If L = LG, L is called natural with respect to S.



A lexicon may possess different naturalizations with respect to one and the same
language. To see this, take two features, f1 and f2, and assume that only the
classes {f1} and {f2} are lexical. This is the case with S = {ab}, and γ(a) = {f1},
γ(b) = {f2}. Then both {f1} and {f2} are natural subsets. (One can also show
that natural subsets need even not be equal size. Namely, the boolean algebra of
subsets of {a, b, c, d} is generated by {{a}, {b}, {c}} and also by {{a, b}, {b, c}}.)
However, take two natural sets G and H. Then each member of H can be ex-
pressed as a boolean term over G, and each member of G by a boolean term
over H. Since we generally care about definitions only up to interdefinability, we
allow ourselves to speak about the natural subset and in particular about the
naturalization of a lexicon.

5.2 Descriptive Complexity

We are now approaching the definition of a complexity hierarchy for languages.
The idea is very simply put the following. We require that the language S be
the language of a set U of F–trees. We now try to eliminate all features that
are not in the natural set. The complexity of the language is measured in terms
of the complexity of the defining formulae for the nonnatural features. To make
this absolutely restrictive we require that each constituent has a class that is
also lexical. This forbids the features to be used in combinations in which they
do not occur in the lexicon.

Definition 12. Let S be a set of F–trees, L := 〈D, γ〉 a lexicon and L :=
Lang(〈S, γ〉). S is a natural set of F–trees with respect to L, if L is a
proper and minimal lexicon with respect to L and for all 〈T,<,@, ξ〉 ∈ S and all
nodes x, ξ(x) is a lexical class.

Definition 13. Let S be a set of F–trees and L a lexicon. Let G be a subset of F
such that SG is natural with respect to L. Then T := SG is the naturalization
of S. Let ϕ ∈ Olt(G) be such that

ThT = CL(G)⊕M(γ)⊕ ϕ

Then CL(G)⊕M(γ)⊕ ϕ is called the natural theory of S.

Of course, ϕ is not uniquely determined. However, it is clear from the definition
that the logic CL(G)⊕M(γ)⊕ϕ is uniquely determined by G. Now, if a different
natural set is chosen, we get a logic CL(H) ⊕ M(δ) ⊕ ψ, and formulae χg ∈
TmBoo(H), g ∈ G, ωh ∈ TmBoo(G), h ∈ H, such that

1. M(δ)[ωh/h : h ∈ H] is derivable in CL(G)⊕M(γ),
2. M(γ)[χg/g : g ∈ G] is derivable in CL(H)⊕M(δ),
3. ψ[ωh/h : h ∈ H] is derivable in CL(G)⊕M(γ)⊕ ϕ,
4. ϕ[χg/g : g ∈ G] is derivable in CL(H)⊕M(δ)⊕ ψ.

The two logics are interpretable in each other modulo boolean expressions, and
hence the natural theory is unique up to boolean interpretation.



Definition 14. Let S be a set of F–trees, L a lexicon and G a natural subset.
The descriptive complexity of S is defined as follows. S has complexity pc (b,
w, pdl) if for a nonnatural feature f, there exists a formula ϕ(p) from TmBoo(G)
(BOlt(G), WOlt(G), Olt(G)) such that

SG |= f ↔ ϕ[f/p]

The reader may verify that the complexity class does not depend on the choice
of G. Moreover, if S is quasi context free and has complexity α where α 6= pc,
then ThS can be axiomatized by a sentence of complexity α as well. The only
exception is pc. Here, the sentence is of complexity b. For take the charactistic
axiom of the context free grammar defined in Section 3.1). Now replace in it
the unnatural features by their explicit definitions. This returns a formula of
identical complexity. In a last step we define the complexity class of a language.

Definition 15. Let D be a dictionary, and L ⊆ D∗ a language. L has com-
plexity α if there exists a set of features F , a set S of F–trees, and an F–lexicon
L such that L = Lang(〈S, γ〉) and S has complexity α.

5.3 Examples

We are giving examples of languages which are of different complexity class. The
languages we choose are simplified languages displaying certain phenomena of
natural language. Looking at these examples we will demonstrate that natural
language has at least complexity pdl.

Languages of Complexity pc. Let us begin with the lowest complexity class.
By definition, if L is a context free language of complexity pc, the defining for-
mulae for the nonnatural features are booleans. That means, nonnatural features
serve no structural purpose, and we are in effect dealing with a class of grammars
that we call natural. They are defined as follows.

Definition 16. Let 〈G,L〉 be a grammar for the language S ⊆ D∗. We say that
〈G,L〉 is a natural context free grammar if the assignment of the lexicon is
proper and minimal, and for the theory of the lexicon M(γ) we have Σ ≤ M(γ),
Ω ≤ M(γ) and for every rule a → b0 . . . bk−1, a ≤ M(γ) and bi ≤ M(γ) for all
i < k.

The second part of the definition is equivalent to the requirement that G � T
only if for every node x, ξ(x) = CS(a) for some a ∈ D.

Consider the case where D = {a}. Then there are no natural features. In
a natural grammar the rules have the form > → > . . .>. Hence, a natural
context free grammar over the empty set of features is uniquely identifiable
by the set of branching numbers for its rules. The reader may verify that the
language {a} is generated by a natural context free grammar, while {an} is not,
for every n > 1. Natural grammars look like a very restricted class of grammars.
But they are not. Natural languages are to a large part generable by a natural



context free grammar. Simply observe that in many cases a constituent can
be replaced in a structure by a single lexical element. The ‘nonnaturalness’ of
natural languages is largely induced by longdistance effects (movement, binding)
as well as coordination.

Languages of Complexity b. Languages of complexity b allow elements to
exercise influence over elements that are a specified number of nodes apart. This
is the case for example in case assignment or selection of multiple arguments. It
can be shown that all finite languages are of complexity b; as we have seen, not
all of them are of complexity pc. To take a more interesting case, let us discuss
the language M := ab∗ ∪ b∗a. We know it can be generated by the grammar M
above. However, only the sets {a} and {b} are natural. Let us take G := {a}.
We have M(γ) = (a ∧ −b) ∨ (b ∧ −a). We have x ↔ �⊥, so x is definable in
BCL(G). However, y and z are not definable, as one can at least intuitively see.
It does not follow, though, that the language M is not of complexity b. To see
this, take the following grammar.

x → a b
x → b a
x → a
b → b b

Σ := x, Ω := a ∨ b. This grammar generates M , and we have x ↔ �⊥. So M is
of complexity b, but not of complexity pc.

Languages of Complexity w. It is not difficult to see that the language
{bnacn : n ∈ ω} ∪ {abncn : n ∈ ω} is not of complexity b. Take the grammar

x → a
x → b x c
y → a z
z → b z c
z → b c

Σ := x ∨ y, Ω := a ∨ b ∨ c. Then z ↔ �
∗¬a, y ↔ �> ∧ ♦z, and x ↔ �⊥ ∧ ¬y.

Thus movement in this case can be defined by formulae of complexity w. Indeed,
we conjecture that movement is in general of complexity w, as long as it is into
c–commanding position.

Languages of Complexity pdl. Finally, we look at the complexity pdl. Take
the language R of reflexives. This language is regular. To express the distribu-
tion of the additional features we claim that formulae of complexity w are not
sufficient. We sketch the argument. An elementary formula α is modally defin-
able if it is equivalent in predicate calculus to a formula that is composed from
positive atomic formulae using conjunction, disjunction and restricted quanti-
fiers. Moreover, the formula can be rewritten in such a way that each subformula



contains exactly two free variables (see for example Kracht [7]). To verify that
α holds in a structure, one can start a Fraissé–Ehrenfeucht game. Since at every
stage of such a game the subformula under consideration contains only two free
variables, we can actually check α using a game in which the players play with
two pebbles that are placed on the structure and may be moved one at a time in
the game along a relation. (Thus the memory is restricted from infinitely many
to just two variables.) Now, it is easy to see that for conditions of the form in
between two occurrences of x, if there is a y then there is a z no winning strategy
can be formulated in such a game. For as soon as we have fixed our occurrences
of x, we have exhausted our storage capacity. This argument is independent of
any structural analysis we assume for the language R. Thus, reflexives require
the expressive power of pdl.

6 Conclusion

In Rogers [8] and subsequent work, James Rogers has advocated the use of
monadic second order logic as a tool in the analysis of language. This gives rise
to yet another language to talk about F–trees, which we denote here by L2(F ).
The L2(F )–logic of the finite trees is denoted by MSOlt(F ). This gives us the
following hierarchy of languages

BOlt(F ) ⊂ WOlt(F ) ⊂ Olt(F ) ⊂ L2(F )

L2(F ) is expressively sufficient if we assume that for some extension L2(F ∪G)
by nonlexical features all facts can be expressed. Namely, suppose there exists
a G and a ϕ such that the set S of well–formed F–trees is the projection of
a L2(F ∪ G)–definable set T . Then S = {T : T |= (∃x)ϕ[x/g])}. Hence, the
elimination of a feature (whether it be essential or not) is a trivial matter.
This is bought at a price, though. We no longer need to know exactly how the
features are distributed with respect to the other features in order to know that
they are eliminable. Moreover we contend that the language Olt(F ) is sufficient
in all respects. To that end we note that all relevant locality domains can be
expressed in Olt(F ). This of course is far away from being a proof. To turn this
into a real argument, one needs to investigate quite closely the role of movement
in syntax. This has been done in Rogers [8] and Kracht [5]. Both have given
explicit reductions to Olt(F ) of some theories. Also, in Kracht [6] it is shown
how phrasal levels can be eliminated along the lines requested by Chomsky
[2]. We need to warn the reader, however, that the preceding discussion makes
sense only with the assumption that natural languages are context free. If not,
matters are more complex. In order to be able to deal with natural language in
its full complexity, we need to assume different classes of structures, more general
than F–trees. The notions developed here can be extended to the general case,
and we believe that the results also carry over. This, however, awaits further
investigation.



References

1. Patrick Blackburn, Wilfried Meyer-Viol, and Maarten de Rijke. A Proof System
for Finite Trees. In H. Kleine Büning, editor, Computer Science Logic ’95, number
1092 in Lecture Notes in Computer Science, pages 86 – 105. Springer, 1996.

2. Noam Chomsky. Bare Phrase Structure. In Gert Webelhuth, editor, Government
and Binding Theory and the Minimalist Program, pages 385 – 439. Blackwell, 1995.

3. Valentin Goranko and Solomon Passy. Using the universal modality: Gains and
Questions. Journal of Logic and Computation, 2:5 – 30, 1992.

4. Marcus Kracht. Is there a genuine modal perspective on feature structures? Lin-
guistics and Philosophy, 18:401 – 458, 1995.

5. Marcus Kracht. Syntactic Codes and Grammar Refinement. Journal of Logic,
Language and Information, 1995.

6. Marcus Kracht. On Reducing Principles to Rules. to appear, 1996.
7. Marcus Kracht. Tools and Techniques in Modal Logic. Habilitationsschrift, 1997.
8. James Rogers. Studies in the Logic of Trees with Applications to Grammar For-

malisms. PhD thesis, Department of Computer and Information Sciences, University
of Delaware, 1994.

9. James Rogers. Strict LT2: regular – Local: recognizable. this volume, 1997.


