
Constraints on Derivations ∗

1. Introduction

In (Kracht, 2001) we have proposed a theory of chains and compared
three concurrent types of syntactic representations: Copy Chain Struc-
tures (CCSs), Trace Chain Structures (TCSs) and Multidominance
Structures (MDSs). The first arise from copy movement as used in the
Minimalist Program (MP), the second from copy and delete as used in
GB (giving rise to traces), and the third arising from linking as used
in Linking Grammars. Moreover, there is a bijective correspondence
between derivations of structures of the respective types. Thus, viewed
from the standpoint of derivations, the representations are equivalent.
Moreover, there is a biunique correspondence between TCSs and MDSs,
so that the latter two representations are equivalent in all respects.

Motivations for this investigation as well as references may be found
in (Kracht, 2001). In this paper we will concentrate on the possible
derivations that can reach a given structure. This will help to eluci-
date the role that derivations play in syntactic theory, in particular in
answering theoretical questions such as whether there is a theoretical
need for derivations at all. The main question we ask is the following

Given a syntactic structure S, is there a derivation of this structure
meeting certain given derivational constraints?

Partial answers have been given in (Kracht, 2001). However, the paper
contains a mistake concerning MDSs, which we shall correct here. Evi-
dently, given a constraint γ and a structure S, we can simply enumerate
all derivations and see whether they satisfy γ. What we are aiming for is
therefore some answer to this question that does not require checking all
derivations. Moreover, as many constraints require the inspection of all
derivations, similar considerations concerning the need of investigating
the entire set arise. These considerations turn on the issue of locality,
whether or not the possibility of a step can be checked prior to its execu-
tion. Constraints that have been proposed are among others: cyclicity,
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freeze, shortest steps, minimum number of steps. Additionally, there
are principles concerning a single step: the antecedent must be local to
the trace. The best known of such principles is of course subjacency.
Freeze requires that no trace be unbound at any step of the derivation.
There is an antagonism between those principles that require steps to
be short (locality, shortest steps) and those that require steps to be long
(cyclicity, freeze). The number of steps turns out to be an invariant. It
is the same in all derivations.

In (Kracht, 2001), copying is defined as an operation that encodes an
explicit link between the upper and the lower copy. Therefore copying
preserves more information about the derivation than does linking. In
fact, a complete map of all possible derivations can be given by means
of an ordering between the copying steps, which means a reduction in
complexity from exponential to at most quadratic in size. Thus, copying
results in structures that carry all necessary information on their deriva-
tion. This is not so with the other two: given a trace chain structure,
there exist several derivations which differ fundamentally with respect
to important constraints on derivations. In particular, the structures do
not immediately reveal violations of locality. In a remnant movement
structure, the distance antecedent–trace may become evident only after
reconstruction:

(1) [α1 . . . [β t1]2 . . . t2]

Suppose that α has been extracted before [β t1]. The distance between
α and its trace is seen only when we undo the second step:

(2) [α1 . . . e . . . [β t1]]

Moreover, as we potentially need to check exponentially many different
derivations, the computational load may be very high. We shall show
that the situation is not so bad after all. The effect of removing a single
link on the minimum distance between the elements of the structure can
be established almost independently of the derivation. Further, one can
tabulate the dependency between the various derivational steps. After
that, the space of possible derivations can be compactly represented.
In particular, checking whether there exists a shortest steps derivation
satisfying locality (for any regular locality measure) is straightforward.

This paper starts off by reviewing some of my earlier papers on this
subject inasmuch as the material is needed here. This will allow me to
correct a mistake I made in (Kracht, 2001). Ideally, I would have liked
to make this a self–contained paper. However, space forbids to go into
many details, so the first sections will be rather terse.
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2. Trees and Command Relations

Before we begin, let us say a few words on the general setup. In order
to simplify the exposition, we have chosen to assume the following:
(a) movement is substitution, never adjunction, (b) there is no covert
or LF–movement, (c) there is no left–to–right ordering on the struc-
tures, and (d) trees are binary branching. None of the simplifications is
necessary, but without them the exposition would become rather imper-
spicuous and the essential insights will be lost. The interested reader is
referred to (Kracht, 1998) for the complications arising from adjunction
and (Kracht, 2001) for the complications arising from ordering and
covert movement.

DEFINITION 1. A tree is a pair 〈T,≺〉 such that the following holds.

1. T is finite.

2. ≺⊆ T 2.

3. <:=≺+ is irreflexive.

4. There is an r such that for all x 6= r: x < r.

5. For every x 6= r there is exactly one y such that x ≺ y.

An A–tree is a triple 〈T,<, `〉 such that 〈T,<〉 is a tree and ` : T → A
a function, the so called labelling function.

DEFINITION 2. x c–commands y if for all z > x: z ≥ y. x ac–
commands y if (a) x and y are incomparable, (b) x c–commands y,
(c) y does not c–command x.

A note of clarification. This version of c–command was first introduced
by (Barker and Pullum, 1990), who called it idc–command. How-
ever, since in present versions of transformational grammar there are
no nonbranching nodes, idc–command coincides with the classical c–
command defined in (Reinhart, 1981). Further, since there is no agreed
version of c–command in the literature, we have taken the liberty to
fix this one here as our starting point. Little that follows depends on
this particular choice of c–command, though we have not looked at the
matter deeply enough to make substantial claims.

In a tree, a lower set ↓x := {y : y ≤ x} as well as the (A–)tree
induced on it, are called constituents of that tree. x is called the
generator of ↓x. We say that ↓x covers ↓y if ↓y ⊆ ↓x, which is
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equivalent to y ≤ x. Further, ↓x c–commands ↓y if and only if x c–
commands y (and likewise for ac–command and analogous notions).
We use Gothic letters (C, D and so on) as variables for constituents.

Our main target of investigation are notions of locality. As we have
outlined in earlier work, locality is a central tool in transformational
grammar and can be adequately captured in terms of command rela-
tions. Given two nodes x, y, we pick the least node z dominating x and
y and study the paths [x, z] and [y, z]. Generally, it is required that
one of the nodes, let it be x, c–commands the second (y), while the
second can be further away (see (Koster, 1986)). As we have excluded
adjunction one of the two intervals is trivial (here [x, z]), consisting
of at most two nodes. Locality is then reduced to studying admissible
paths leading from one node to another. We assume that if x is local
to y and y ≤ y′ ≤ z then x is also local to y′ (this is reflected in the
property of monotonicity of command relations). Barker and Pullum
have surveyed the notions of locality used in the literature and given a
definition of command relation in (Barker and Pullum, 1990). (Kracht,
1993) proves a number of results on command relations, which we shall
briefly report here.

DEFINITION 3. Let 〈T,<〉 be a tree and R ⊆ T 2 a relation. R is
called a command relation if there is a function fR : T → T such
that (1) – (3) hold. R is called a monotone command relation if in
addition it satisfies (4), and it is called tight if it satisfies (1) – (5).

1. Rx := {y : x R y} = ↓fR(x).

2. x < fR(x) for all x < r.

3. fR(r) = r.

4. If x ≤ y then fR(x) ≤ fR(y).

5. If x < fR(y) then fR(x) ≤ fR(y).

The first class of CRs that we shall look at is the class of tight command
relations. Let T be a tree and P ⊆ T . We say, x P–commands y if
for every z > x with z ∈ P we have z ≥ y. We denote the relation of
P–command by K(P ). If we choose P = T we exactly get c–command.
The following theorem is from (Kracht, 1993).

PROPOSITION 4. Let R be a binary relation on the tree 〈T,<〉. R is
a tight command relation if and only if R = K(P ) for some P ⊆ T .

What we are really aiming at are not particular relations but rather
schemes of relations. These are uniformly defined on all A–trees.
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DEFINITION 5. A relation scheme over A–trees is a function R
that assigns to every A–tree T = 〈T,≺, `〉 a binary relation R(T). The
scheme of B–command for B ⊆ A is the scheme which assigns to
T the relation of `−1[B]–command. Any such scheme is called a tight
command scheme.

Let T be a tree. We denote by MCr(T) the set of monotone command
relations on T. This set is closed under intersection, union and relation
compositon. We even have

fR∪S(x) = max{fR(x), fS(x)},(3)
fR∩S(x) = min{fR(x), fS(x)},(4)
fR◦S(x) = (fS ◦ fR)(x).(5)

For we have

(R ∪ S)x

=Rx ∪ Sx

=↓fR(x) ∪ ↓fS(x)
=↓(max{fR(x), fS(x)})

Likewise for intersection. For relation composition we need monotonic-
ity. For if xR◦S y we can conclude that xR fR(x) and fR(x) S y. Hence
xR◦S y if and only if y ≤ fS(fR(x)), from which the claim now follows.
Now we set

(6) MCr(T) = 〈MCr(T),∩,∪, ◦〉

MCr(T) is a distributive lattice with respect to ∩ and ∪. What is more,
there are additional laws of distribution concerning relation composi-
tion. The following is from (Kracht, 1993).

PROPOSITION 6. Let R, S, T be from MCr(T). Then

1. R ◦ (S ∩T ) = (R ◦S)∩ (R ◦T ), (S ∩T )◦R = (S ◦R)∩ (T ◦R).

2. R ◦ (S ∪T ) = (R ◦S)∪ (R ◦T ), (S ∪T )◦R = (S ◦R)∪ (T ◦R).

DEFINITION 7. Let T be a tree, R ∈ MCr(T). R is called generated
if R can be produced from tight command relations by means of ∩, ∪
and ◦. R is called chain like if it can be generated from tight relations
with ◦ alone.

THEOREM 8. R is generated if and only if R is an intersection of
chain like command relations.
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The whole construction can be lifted to relation schemes.

DEFINITION 9. Let R be a relation scheme on A–trees. R is called a
(definable) command relation (scheme) if it can be produced from
tight command schemes by means of composition, union and intersec-
tion.

To see that the theory is nontrivial we give the following illustration. A
particular role is played in grammar by subjacency. The antecedent of
a trace must be 1–subjacent to the trace. This means that if x the trace
and y the antecedent, z the mother of y, then the path [x, z[ (excluding
z!) contains at most one barrier. As is argued in (Kracht, 1998) on the
basis of (Chomsky, 1986), this relation is

(7) K(IP) ◦K(CP)

DEFINITION 10. Let T = 〈T,≺, `〉 be an A–tree and U ⊆ T of the
form ↓ z for some z. Then put x ≺U y if y is the smallest node of U
such that x < y. Then T � U := 〈U,≺U , ` � U〉 is the subtree induced
by U .

If R is a command scheme and T a tree, we say that x R–commands
y in T if x R(T) y.

PROPOSITION 11 (Subset Property). Let R be a definable command
relation and T an A–tree. Further, let U ⊆ T and x, y ∈ U . Then if x
R–commands y in T, x R–commands y in T � U as well.

Proof. By induction on R. Suppose that R is tight, say it is B–
command for some B ⊆ A. Then x B–commands y in T if for the
first node z with label in B which is greater than x we have z ≥ y. (If
such a node does not exist, x B–commands y anyway, and then this is
so also in T � U .) Now take the least node z′ in U such that z′ > x and
`(z′) ∈ B. If it does not exist, x B–commands y in T � U . If it does,
then clearly z′ ≥ z. So, also in this case x B–commands y. The steps
for union and intersection are straightforward. Q. E. D.

3. Copy Chain Structures

Before we begin, we shall make a note of comparison with (Kracht,
2001). In the latter we have dealt also with LF–movement. The com-
plications are left aside here. Additionally, the terminology is simplified
as well. What appears in (Kracht, 2001) as a pre–chain, a preCCS or
a preMDS is now called a chain, a CCS or an MDS. This makes the
presentation less cumbersome.
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DEFINITION 12. Let T be a tree. A chain is a set of constituents
of T which is linearly ordered by ac–command. The highest member of
the chain (with respect to ac–command) is called its head, the lowest
is called its foot. A chain∗ is a pair 〈∆,Φ〉 such that ∆ is a chain and
Φ = {ϕC,D : C,D ∈ ∆} a family of isomorphisms such that

1. ϕC,C = 1C for all C ∈ ∆.

2. ϕC,D ◦ ϕD,F = ϕC,F for all C,D,F ∈ ∆.

If D immediately ac–commands C in ∆ we call the triple 〈D, ϕC,D,C〉
a link and the map ϕC,D a link map.

Evidently, a chain∗ is uniquely characterized by its links. For ordered
trees the isomorphisms are superfluous, since there is exactly one iso-
morphism between ordered trees if they are isomorphic. However, if
we assume that the trees are unordered in syntax, the isomorphisms
must be explicitly given (see (Kracht, 2001)). Note that (Kayne, 1994)
requires that order is definable from the constituent structure, so that
despite the fact that trees are unordered there is once again at most
one isomorphism between any two given trees.

If we use A–trees, then the definitions remain as they are. It follows
that if C = ↓x and D = ↓y are in the same chain, then `(x) = `(y). In
what is to follow, we shall be interested in the distance covered by an
element that is moved. This distance is measured on the basis of the
path set of the link.

DEFINITION 13. Let ϕ : ↓x → ↓y be a link map and z � y. The open
interval ]x, z[:= {u : x < u < z} is called the path set of ϕ. Moreover,
let ]x, z[= {ui : i < n} be an enumeration such that ui ≺ ui+1 for
all i < n − 1. Then the sequence 〈`(ui) : i < n〉 is called the path
expression of ϕ and denoted by Π(ϕ).

The following is easily checked.

PROPOSITION 14. Suppose that ϕ : ↓x → ↓y is a link map. Then x
B–commands y iff Π(ϕ) contains no occurrence of an element of B.

This means that for a given definable command relation R the path
expression is all that one needs to be able to determine whether x
R–commands y.

DEFINITION 15. A copy chain structure (CCS) is a pair 〈T,K〉
(which we often simply write K) where T is a tree and K a set of
chains∗ of T such that the following is satisfied.

Chain Existence Every constituent is a member of some ∆ ∈ K.
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Chain Uniqueness Every constituent is a member of at most one
∆ ∈ K.

Liberation If a member C of a chain∗ Γ ∈ K covers two distinct
members of some other chain∗, then C is the foot of Γ.

No Recycling Every link must be orbital.

We still have to define what it means that a link is orbital.

DEFINITION 16. Let 〈T,K〉 be a CCS, Γ = 〈∆,Φ〉 ∈ K. Put x ≈Γ y
iff x = ϕ(y) for some ϕ ∈ Φ. This is an equivalence relation. Further,
let ≈K be the smallest equivalence relation containing the ≈Γ, Γ ∈ K.

First, we define the depth dp of an element as follows. For the root r
we put dp(r) := 0, and else if x ≺ y we put dp(x) := dp(y) + 1. Let x
be an element. Then there is a unique element xr such that (a) xr ≈ x
and (b) dp(y) < dp(xr) for all y ≈ xr. This is called the root of x.

For given x there is at most one link map ϕ such that x ∈ dom(ϕ);
moreover, every non–root is in the range of exactly one link map.
It easily follows that for every x there exists a unique n ∈ N and a
sequence 〈ϕi : i < n〉 of link maps such that

(8) x = ϕn−1 ◦ ϕn−2 ◦ · · · ◦ ϕ0(xr)

This sequence (as well as the map defined by composing them as above)
is called the natural composition of x. Also note that for any map
χ, if χ is the composition of link maps, then the number of link maps
and their identity is unique. The following is immediate if we observe
that x ≈K y is equivalent with xr = yr.

PROPOSITION 17. In a CCS, x ≈K y iff there are natural composi-
tions ϕ and χ such that y = ϕ ◦ χ−1(x).

The root line of x is the set of all u ≈ x which c–command xr. The
peak of x, xπ, is the element in the root line of x of least depth. The
peak map of x, πx, is the natural composition of xπ.

DEFINITION 18. Let K be a CCS over T. The zenith xζ of x and
the zenith map ζx, are defined as follows. Let r be the root of T. Then
rζ := r and ζr := idT . For x 6= r, xζ := ζy(xπ), where y is the mother
of xπ; ζx := ζy ◦ πx.

In order to know where the surface equivalent of x is we have to look
at xζ . The zenith of xζ contains the orbital maps for x.

DEFINITION 19. A link map ϕ is orbital if there is an x such that
the decomposition of ζx into link maps contains ϕ.
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This clarifies the formal character of the postulates. What it means in
content, however, is that a link map may not move a constituent which
has been moved already. It is checked that No Recycling is exactly the
postulate that ensures this.

4. Multidominance Structures

Given a CCS, put

[x]K := {y : x ≈K y}(9)
M(T ) := {[x]K : x ∈ T}(10)
≺K := {〈[x]K , [y]K〉 : 〈x, y〉 ∈ K}(11)

M(K) := 〈M(T ),≺K〉(12)

Notice that for A–trees, if x ≈K y then `(x) = `(y). M(K) is a
multidominance structure, which is in general defined as follows.

DEFINITION 20. A multidominance structure (MDS) is a pair
〈M,≺〉 such that the following holds.

1. < :=≺+ is irreflexive.

2. There is a ρ ∈ M such that for all α 6= ρ: α < ρ.

3. For all α the set M(α) := {β : 〈α, β〉 ∈≺} is linearly ordered by <.

To facilitate reading this paper we use α, β, γ to range over points of
an MDS, while x, y and z range over points of a CCS. The following is
shown in (Kracht, 2001).

THEOREM 21. For every MDS M there exists a CCS K such that
M(K) ∼= M. There may exist nonisomorphic CCS K, K ′ such that
M(K) ∼= M(K ′).

Now, the literature in transformational grammar actually uses a third
kind of structure, which is similar to a CCS, only that chains consist
of an overt element (which for us is the head of the chain, since we
do not deal with LF–movement, but see (Kracht, 2001)), and several
empty elements, called traces. Such structures are called trace chain
structures (TCSs). It turns out that there is a biunique correspon-
dence between TCSs and MDSs. However, from a technical viewpoint,
MDSs are better behaved than TCSs (see (Kracht, 2001) for a discus-
sion). Hence we shall focus here on MDSs instead. We shall give the
construction here for completeness’ sake.
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DEFINITION 22. A trace is a one node tree with root label t. A trace
chain is a chain such that all but the head of the chain are traces.

Now, trace chain structures are those structures that arise from CCSs
by removing every node x such that x < y for some y such that ↓y is
not the head of a chain. It means that empty material is not layered.
This elimination will actually remove certain constituents from chains.
So a direct definition is difficult to obtain.

Given a trace chain Γ, put x ≈Γ y iff either x = y or x and y
are the generators of some constituents of Γ. Given a set K of trace
chains, ≈K is the least equivalence relation containing all ≈Γ, Γ ∈ K.
The postulate of No Recycling boils down to the requirement on trace
chains that the head of a chain may not be a trace (so it must be a
proper constituent). Now set once again:

[x]K := {y : x ≈K y}(13)
M(T ) := {[x]K : x ∈ T}(14)
≺K := {〈[x]K , [y]K〉 : 〈x, y〉 ∈ K}(15)

M(K) := 〈M(T ),≺K〉(16)

This is an MDS.
One main interest is in the construction of a K such that M(K) ∼= M

for any given M. In fact, while (Kracht, 2001) focusses on the deriva-
tions of a given CCS, here we are looking at derivations of a given MDS,
in particular with respect to locality conditions. Since any derivation of
the same CCS satisfies the same locality conditions, it is the different
CCSs that have the same MDS which are of interest when it comes to
locality.

A pair λ = 〈α, β〉 is called a link if it is in ≺. Two links λ = 〈α, β〉
and λ′ = 〈α′, β′〉 can be composed iff α′ = β, and the result of the
composition, denoted by λ ◦ λ′ equals 〈α, β′〉. ◦ is a partial function
from ≺2 to ≺. The following is easy to establish and will be needed
later.

LEMMA 23. There is a polynomial algorithm computing the relation
< running in at most O(n3) time.

Assume that ≺ = {µ(i) : i < ξ} for some ξ ∈ N. A path of length k
is a sequence Π = 〈λi : i < k〉, λi = 〈αi, βi〉 of links such that for all
i < k − 1 λi is composable with λi+1. The begin point of Π is α0,
and βk−1 is the end point of Π. An alternative definition is this: a
path is a sequence 〈αi : i < k + 1〉 such that for all i < k 〈αi, αi+1〉 is
a link. We write Π;Π′ for the concatenation of the path Π and Π′, and
also Π; α for the result of extending the path Π by α. (Sometimes ‘;’ is
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omitted.) Notice that if Π = 〈αi : i < k + 1〉 and Π′ = 〈βi : i < m + 1〉
then Π; Π′ = 〈γi : i < k + m + 1〉, where γi = αi if i < k + 1 and
γi = βi−k otherwise. Given α and β, we write d(α, β) for the minimum
of all lengths of paths from α to β. A path of length d(α, β) is called
a shortest path from α to β. Shortest paths are not unique. For
example, let M = 〈{0, 1, 2, 3},≺〉 with 0 ≺ 1 ≺ 2 ≺ 3, 0 ≺ 2 and 1 ≺ 3.
Then 0; 1; 3 and 0; 2; 3 are both shortest paths from 0 to 3.

DEFINITION 24. Let M = 〈M,≺〉 be an MDS. Let T (M) denote the
set of all paths ending at the root. Further, we put Π ≺T Π′ if Π = α; Π′

for some α ∈ M and Π ≈ Π′ if Π and Π′ begin at the same point.

So, Π ≈ Π′ iff there are α and Σ, Σ′, arbitrary, such that Π = α; Σ and
Π′ = α; Σ′. It is immediately verified that 〈T (M),≺T 〉 is a tree. Define
a map τK : T → T (M) as follows. If r is the root of T, set τK(r) := [r]K .
If τK is defined on y and x ≺ y then put τK(x) := [x]K ; τK(y).

PROPOSITION 25. Then 〈T (M),≺T 〉 is a tree. Moreover, for a CCS
〈T,K〉, T is isomorphic to 〈T (M(K)),≺T 〉.

Proof. (i) τK is injective. For this it is enough to show that if x, x′ ≺ y
and [x]K = [x′]K then x = x′. Now let x, x′ ≺ y and [x]K = [x′]K . Then
there exist natural compositions ϕ and χ such that x = ϕ ◦ χ−1(x′).
Equivalently, x = ϕ(xr), x′ = χ(xr). By induction on the length of ϕ it
is shown that ϕ and χ are identical. (ii) τK is surjective. This is shown
by induction. If Π = [r]K , the case is clear. If Π = [x]K ; Π′, there is a y
such that Π′ = [y]K ; Π′′. By induction hypothesis there is a y′ such that
Π′ = τK(y′). Then there is a x′ ≺K y′ such that x′ ≈K x. It follows
that Π = [x′]K ; Π′ so that Π = τK(x′). (ii) x ≺K y iff τK(x) = τK(y).
This is shown for example by induction on the depth of y. Q. E. D.

LEMMA 26. Let 〈T,K〉 be a CCS. Then x ≈K y iff τK(x) ≈ τK(y).

Proof. x ≈K y iff [x]K = [y]K iff τK(x) begins with the same element
as τK(y) (by construction of τK , τK(x) begins with [x]K). Q. E. D.

So, given an MDS we can actually recover the tree structure, and
also the equivalence relation induced by the chains in their totality. This
does not mean, however, that we can recover the individual chains.
Nevertheless, we can recover for each x the peak of x (as it is the
highest member of the root line) and the zenith of each element (which
is defined by recursion over the tree structure and the peaks). This
allows us to recover the surface structure.

DEFINITION 27. Let M = 〈M,≺〉 be an MDS. A link λ = 〈α, β〉 is
maximal if β is the largest element of M(α) with respect to <. µ(M)
denotes the set of maximal links of M. Further, a path Π is a surface
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path if Π ∈ µ(M)∗, that is, if it consists entirely of maximal links. For
each α ∈ M the surface path of α is the unique surface path beginning
with α. It is denoted by σM(α).

DEFINITION 28. Let λ = 〈α, β〉 be a link. Define µ(α;β) as follows.
(a) µ(α;α) := α. (b) If 〈α, γ〉 ∈ µ(M) and γ < β then µ(α;β) :=
α;M(γ;β). (c) If 〈α, β〉 ∈ µ(M), put µ(α;β) := α;β. Otherwise,
µ(α;β) is undefined.

5. Derivations of CCSs and MDSs

In (Kracht, 2001) we have defined a so–called blocking order on the
link maps. It turns out that for any linear order on the link maps
that extends the blocking order there is a derivation that inserts the
link maps in just that given order. This gives a complete overview
over the possible derivations of a given CCS. In this section we do
something similar for MDSs. However, here matters are more delicate.
In a CCS, the paths defined by the link maps are fixed and do not vary
between the derivations. Hence, the question of shortest links does not
arise. It only arises when we look at MDSs. Although (Kracht, 2001)
has given algorithms for constructing CCSs from a given MDS, it was
not shown how to systematically enumerate all possible MDSs and
moreover determine in an efficient way the length of the arising links.
This is what we shall do now.

We define the notion of a 1–step extension for a chain and use this
to define a step in a derivation of CCSs.

DEFINITION 29. Let ∆ and Σ be chains. ∆ is a 1–step extension
of Σ if ∆ = {Ci : i < n + 1}, Σ = {Ci : i < n} for a certain n ∈ ω and
constituents Ci, and Cn ac–commands all Ci, i < n.

Analogously for chains∗. So, a 1–step extension is a chain with one
more chain link. For chains? we also have to define a new chain link?

〈Cn, ϕn−1,n,Cn−1〉, with the new isomorphism ϕn−1,n. The full set of
isomorphisms of the new chain? is obtained by closing the old set plus
ϕn−1,n under composition and inverse. For the purpose of the next
definition, let m(Γ) be the set of nodes contained in a constituent of Γ.
Further, if U is a subtree of T, the chain Γ is the residue of the chain
∆ if m(Γ) = m(∆)∩U and if C ∈ Γ then C ∈ ∆. A constituent C =↓ x
is in zenith position if xζ = x. Notice that the zenith is relative to
the tree in which the node is contained.
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DEFINITION 30. Let K1 = 〈T1,K1〉 and K2 = 〈T2,K2〉 be CCSs.
K2 is obtained from K1 by (1–step) copy–movement if the following
holds.

1. T1 ⊆ T2.

2. C := T2 − T1 is a constituent of T2.

3. C is in zenith position in K2.

4. Every chain of K1 is the residue of a chain of K2.

5. There is exactly one nontrivial chain Γ such that m(Γ) ∩ T1 6= ∅
and m(Γ) ∩ C 6= ∅. Moreover:

a) m(Γ) ∩ C = C.
b) C is the highest element of Γ.
c) For the second highest element D of Γ: D is in zenith position

of K1.

L is obtained from K by copy–movement iff there exists a sequence
Ki, i < n + 1, such that K = K0, L = Kn and Ki+1 is obtained from
Ki by 1–step copy–movement. The sequence 〈Ki : i < n + 1〉 is also
called a derivation of K. This derivation has length n.

DEFINITION 31. A CCS is a tree if no chain has more than one
member.

THEOREM 32. For every CCS K there is a tree K0 and a derivation
of K from K0.

In (Kracht, 2001) the following definition is given. Say that β is not
derived if either β is the root or M(β) = {γ}, where γ is not derived.
(So, above β the relation < is linear.) The following is a corrected
version of Definition 59 of (Kracht, 2001).

DEFINITION 33. Let M = 〈M,≺M 〉 and N = 〈N,≺N 〉 be MDSs. N
is a 1–step link extension of M if N = M and ≺N = ≺M ∪{〈α, β〉},
where 〈α, β〉 6∈ ≺M and β is not derived and such that there is no link
〈α′, β′〉 such that α ≤ α′ < β < β′. N is a link extension of M if there
exists a finite sequence 〈Ni : i < n + 1〉 such that N0 = M, Nn = N
and Ni+1 is a 1–step link extension of Ni for i < n.

The following is a correct version of Theorem 60 of (Kracht, 2001).

THEOREM 34. Every MDS is a link extension of a tree. More pre-
cisely, the following holds.
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1. If L is isomorphic to a 1–step extension of K then M(L) is iso-
morphic to a 1–step link extension of M(K).

2. If M = M(K) and N is a 1–step link extension of M then there
exists a 1–step extension L of K such that M(L) ∼= N. L is unique
up to isomorphism.

Proof. The first claim follows from the other claims by the fact that
every CCS is derived from a tree. The proof that a one step extension of
K gives rise to a link extension of M and conversely remains to be given.
Let 〈T,K〉 be a CCS. So, let 〈T,K〉 be a CCS and M the corresponding
MDS. We identify T with T (M). Let us make a 1–step extension by
adding a constituent. It is shown in (Kracht, 2001) that this corresponds
to the addition of a nonderived link 〈α, β〉. We wish to establish further
that there is no link 〈α′, β′〉 in M such that α ≤ α′ < β < β′. (Case 1.)
α = α′. Here, we have a link 〈α, β′〉 in M such that β < β′. This means,
however, the following. Since β is underived, so is now β′, and there
are unique paths Π and Π′ starting at β and β′, respectively. They
are the surface paths of β and β′, respectively, and Π′ is a suffix of Π.
The surface path of α is therefore α; Π′ in K and α; Π in L, which is a
longer sequence. So, α; Π does not c–command α; Π′. However, α; Π is
the generator of the moved constituent. Contradiction to the definition
of a chain. (Case 2.) α < α′. Similar to the first case. Now, we show the
converse: let M correspond to K and let N be a link extension of K. We
show that there is a 1–step extension L of K such that M(L) ∼= N. We
put L = 〈U, L〉, U := T (N). Now, the link extension adds a link 〈α, β〉,
hence (1) and (2) are clear. (3) β is underived. This means that there
is a unique sequence Π starting in β. This means that Π is in zenith
position in K (under the identification x 7→ τK(x)). Let α; Σ ∈ µ(M)+

be the surface sequence for α. The new link map is Ξ;α; Σ 7→ Ξ;α; Π.
To see that this defines an extension of some chain, α; Π must ac–
command α; Σ. For that, Π must be a proper suffix of Σ. Hence, we
have to show that β can be reached from α following only maximal
links. If not, however, there is an α′ such that α ≤ α′ < β and a link
〈α′, β′〉 such that β′ � β. This is excluded by assumption. So, what
we have defined is indeed a 1–step link extension of some chain. The
remaining conditions are immediate to verify. Q. E. D.

Now that N differs from M by one link only we may say the follow-
ing. Call a link 〈α, β〉 a root link in an MDS if for every γ 6= β such
that 〈α, γ〉 is a link, then β ≺+ γ.

DEFINITION 35. Let M = 〈M,≺〉 be an MDS, H the set of root links
of M. A derivation of M is a sequence σ = 〈λi : i < n〉 such that:

1. λi is a non–root link of M for every i < n.
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2. λi 6= λj whenever i 6= j.

3. 〈M,H∪{λi : i < j+1}〉 is a link extension of 〈M,H∪{λi : i < j}〉.

A derivation is a pair 〈M, σ〉 such that σ is a derivation of M.

We shall derive the following consequence.

COROLLARY 36. Let 〈M, σ〉 be a derivation and let 〈M,≺i〉, i < n,
be the ith MDS in the derivation. Then ≺+

i =≺+
0 for all i < n.

Proof. By induction. The claim holds for i = 0. Suppose it holds for i,
i < n−1. Then Mi+1 is obtained by adding λi = 〈αi, βi〉. By definition
of an MDS, M(αi) is linearly ordered by <i+1 in Mi+1. So, there is a
γ such that αi ≺i γ and γ ≺+

i+1 βi. However, since ≺i+1 is cycle free
we do not have γ ≺∗

i+1 αi, and so no path in Mi+1 from γ to βi goes
through αi. This means that γ ≺+

i βi, whence αi ≺+ βi. Q. E. D.
It follows that in a link 〈α, β〉 we have α < β. Furthermore, a link is

a root link in a 1–step extension of M iff it is a root link of M (a fact,
which can be proved directly as well).

6. Constraints on Derivations

One particular constraint on a derivation is one that concerns only the
individual steps. In a sense to be made precise they may not become
too long. So, first we want to establish for any given derivation what
the path expressions of the individual links are. What we have to avoid
is to calculate the CCS in its entirety, for its size may be exponential
in the size of M. Fortunately, this is not necessary.

PROPOSITION 37. Let M be an MDS and N a 1–step link extension
of M by the link 〈α, β〉. Let K and L be CCSs such that M(K) ∼= M
and M(L) ∼= N. Then the path of the link map that is added to K is
Π, where σM(α) = α; Π; σM(β). Moreover, Π 6= ε. The link map is as
follows.

(17) ϕ : Ξ; α; Π; σM(β) 7→ Ξ;α;σM(β)

Proof. We have seen earlier, that if 〈α, β〉 can be added to form a link
extension then the expression µ(α;β) is actually defined and obviously
unique. Moreover, notice that in K the surface path of α is α; Π; µ(β; ρ),
where ρ is the root, and the surface path of β is µ(β; ρ). It follows that
Π is the path of the link 〈α, β〉. Moreover, if Π = ε, β � α, which
means that the link has already been there. This is a contradiction to
the definition of a 1–step link extension. Q. E. D.
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Hence, given a derivation, it is straightforward to compute the path
expressions in polynomial time. (The time consumption is O(n2) (n
the size of the MDS) for each link, hence in total O(n3) for the entire
derivation.) Now there is a unique cyclic derivation in which all paths
are shortest. Furthermore, it will follow that not only are paths shortest
in this derivation, this derivation will satisfy all nearness conditions if
there is any derivation that does so.

DEFINITION 38. Π as defined in Proposition 37 is called the move-
ment path of λ.

Movement paths are the sort of things that are constrained by com-
mand relations. Recall that the antecedent has to c–command its trace,
while the trace needs to R–command its antecedent, where R is a
command relation which is determined by the type of constituent that
is being moved. R–command is computed using the path expression
of the movement path (see Proposition 4). In a CCS, movement paths
are unique, but we shall see that a given MDS a link may have several
paths of different length.

Here are now some constraints on derivations. We use the metaphor
of movement. We say that C is moved at some step in the derivation
if it is the head of the chain that is extended. Effectively, this means
that a constituent cannot be moved out of a derived position. This is
the principle

Freeze. If C ( D and C is in a nontrivial chain, then D is the foot
of its chain.

A slightly different condition is the following.
Bound Traces. Every trace must be bound.

The second says that given a set Q of nodes, any derivation must move
the lower nodes first. However, ‘lower than’ is counted using the Q–
nodes:

Q–Cyclicity. Suppose that C and D are in non–trivial chains. If C
has been moved before D, then D Q–commands C.

The next principle is formulated using MDSs and CCSs. Since the
length of links is the same in all derivations of the same CCS, there is
nothing to choose from. However, suppose that we are not interested
in the CCSs but in the MDSs.

Shortest Steps. A derivation of an MDS M must be such that the
movement path for any given link is a subset of the movement path
of that link in any other derivation.

LEMMA 39. Let M be an MDS and N a 1–step link extension of M
by the link 〈α, β〉. Let K and L be CCSs such that M(K) ∼= M and
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M(L) ∼= N. Let Π be the movement path of the link 〈α, β〉, and ϕ the
link map. Then the following holds for the surface paths.

1. If σM(γ) = Ξ;α; Π; Σ then σN(γ) = ϕ(σM(γ)) = Ξ;α; Σ.

2. Otherwise σN(γ) = σM(γ).

So, the surface path of an element in the link extension is a circumfix
of the surface path of M. Here, ~x ∈ A∗ is a circumfix of ~y if there
are ~u,~v, ~w ∈ A∗ such that ~x = ~u ~w and ~y = ~u~v ~w. Let us call ~v the
nucleus of ~y with respect to the circumfix ~x. (The nucleus is in general
not unique, but in the present case it is.) The nucleus is exactly the
movement path of the link.

7. Classifying Link Interactions

The idea that we shall follow is that we take an MDS and try to remove
the non–root links one by one such that the inverse process, the addition
of the links, is a derivation. We shall look for a derivation of a given
MDS that satisfies certain locality conditions. For that, we try to find
derivations in which the paths are as short as possible. We know that
it is quite straightforward to find a derivation in which paths are as
long as possible, namely the so called Freeze–derivation. After having
found the Freeze–derivation we try to commute the links and reduce
the lengths of paths. First, we shall focus on pairs of links. We shall
determine how they can ordered with respect to each other and then
calculate how the derivations can look like in these cases.

We shall proceed to the classification of link geometries. Let λ =
〈α, β〉, λ′ = 〈α′, β′〉 be distinct (non–root) links. Then α < β and
α′ < β′. Write α q α′ if α and α′ are incomparable via ≤.

1. α q α′. Then we say that λ and λ′ are parallel and also write
λ q λ′. If the links are not parallel, we may assume without loss of
generality that α ≤ α′.

2. α = α′. Then without loss of generality β < β′. (Since the links are
distinct, β 6= β′.) In this case we say that λ is coeffluent with λ′.

3. α < α′. Then either β ≤ β′ or β′ ≤ β. (Notice that ≤=≺∗
0, and so

in an MDS if β, β′ ≥ α they are comparable via ≺∗
0.)

a) β ≤ α′. We say that λ is lower than λ′.
b) α′ < β < β′. We say that the two links cross.
c) β = β′. This does not arise in a binary branching structure.
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Figure 1. Parallel Links

d) β′ < β. Then we call the links concentric. Also we say that λ′

is inside of λ.

It is easily checked that the list is exhaustive. In this section we shall
establish for a given MDS and links λ and λ′ whether in a derivation
λ can be added before λ′.

7.1. Parallel Links

Let M1 := 〈{0, 1, 2, 3, 4},≺1〉 with

(18) ≺1 := {〈3, 2〉, 〈2, 1〉, 〈1, 0〉, 〈3, 0〉, 〈4, 2〉, 〈4, 1〉}

(See Figure 1 on the left.) Then the root links are 〈3, 2〉, 〈2, 1〉, 〈1, 0〉 and
〈4, 2〉. The non–root links are 〈4, 1〉 and 〈3, 0〉. These links are parallel
since 3 q 4. The paths are

(19) 4210, 3210, 410, 210, 10, 30, 0

This defines the tree for 〈T1,K1〉. The nontrivial equivalence classes
are [4210]K1 = {4210, 410} and [3210]K1 = {3210, 30}. There are two
ways to derive M1. (A) We add the link 〈4, 1〉 before the link 〈3, 0〉.
(B) We add the link 〈3, 0〉 before the link 〈4, 1〉. The movement paths
and the link maps coincide in the Case (A) and (B). For the link 〈4, 1〉
the link map is 4210 7→ 410. If there is a constituent attached to 3, we
would have the map Ξ; 4210 7→ Ξ; 410. Hence the movement path is 2.
Now for the link 〈3, 0〉 the link map is Ξ; 3210 7→ Ξ; 30 so the movement
path is 21.

It turns out that if two links are parallel, the movement paths
are identical for all elements, no matter which order we choose. (See
Figure 1 to the right.)
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Figure 2. Coeffluent Links

7.2. Coeffluent Links

See Figure 2 Let M2 := 〈{0, 1, 2, 3},≺2〉 with

(20) ≺2 := {〈3, 2〉, 〈2, 1〉, 〈1, 0〉, 〈3, 1〉, 〈3, 0〉}

Then the root links are 〈3, 2〉, 〈2, 1〉, and 〈1, 0〉. The non–root links
are 〈3, 1〉 and 〈3, 0〉. These links are not parallel. We have a case of
coeffluent links. The paths are

(21) 3210, 310, 30, 210, 10, 0

This defines the tree for 〈T2,K2〉. The only nontrivial equivalence class
is [3210]K2 = {3210, 310, 30}. There is only one way to derive M2,
namely we add the link 〈3, 1〉 before the link 〈3, 0〉.

The movement paths and the link maps are as follows. For the link
〈3, 1〉 the link map is Ξ; 3210 7→ Ξ; 310. Hence the movement path is 2.
Now for the link 〈3, 0〉 the link map is Ξ; 310 7→ Ξ; 30 so the movement
path is 1.

Suppose we first add 〈3, 0〉. Then the link map is Ξ; 3210 7→ Ξ; 30,
with movement path 21. The second link map would be Ξ; 30 7→ Ξ; 310,
which is excluded, since 310 does not c–command (and therefore not
ac–command) 30.

So what we have here (translated into derivations) is the case of an
extension of a chain that has more than one member.

7.3. Hierarchically Ordered Links

See Figure 3. Let M3 := 〈{0, 1, 2, 3, 4},≺3〉 with

(22) ≺3 := {〈4, 3〉, 〈3, 2〉, 〈2, 1〉, 〈1, 0〉, 〈4, 2〉, 〈2, 0〉}
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Figure 3. Hierarchically Ordered Links

Then the root links are 〈4, 3〉, 〈3, 2〉, 〈2, 1〉, and 〈1, 0〉. The non–root
links are 〈4, 2〉 and 〈2, 0〉. These links are not parallel since 4 ≤ 2. The
paths are

(23) 43210, 4210, 420, 4320, 3210, 320, 210, 20, 10, 0

This defines the tree for 〈T3,K3〉. The nontrivial equivalence classes
are [43210]K3 = {43210, 4210, 420, 4320}, [3210]K3 = {3210, 320} and
[210]K3 = {210, 20}. There is only one way to derive M3, namely we
add the link 〈4, 2〉 before the link 〈2, 0〉.

The movement paths and the link maps are as follows. For the link
〈4, 2〉 the link map is 43210 7→ 4210. If there is a constituent attached
to 4, we would have the map Ξ; 43210 7→ Ξ; 4210. Hence the movement
path is 3. Now for the link 〈2, 0〉 the link map is Ξ; 210 7→ Ξ; 20 so the
movement path is 1.

In fact, if we are just interested in movement paths, we may com-
mute the links. If we first add the path 〈2, 0〉, the surface path of 4
becomes 4320. If we then add the link 〈4, 0〉 it becomes 420. Although
on the paths there is no problem, the ordering is introduced for abstract
reasons (it is not mirrored by a CCS derivation).

What we have here is a case where there is apparently a choice
between two kinds of derivations. However, it is agreed that the lower
link must be added prior to the higher link. (This is enshrined in the
postulate Liberation.)
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Figure 4. Crossing Links

7.4. Crossing Links

See Figure 4. Let M4 := 〈{0, 1, 2, 3},≺4〉 with

(24) ≺4 := {〈3, 2〉, 〈2, 1〉, 〈1, 0〉, 〈3, 1〉, 〈2, 0〉}

Then the root links are 〈3, 2〉, 〈2, 1〉, and 〈1, 0〉. The non–root links are
〈3, 1〉 and 〈2, 0〉. These links do not commute since 3 ≤ 2. We have a
case of crossing links. The paths are

(25) 3210, 320, 310, 210, 20, 10, 0

This defines the tree for 〈T4,K4〉. The nontrivial equivalence classes
are [3210]K4 = {3210, 310, 320} and [210]K4 = {210, 20}. There is only
one way to derive M4, namely we add the link 〈3, 1〉 before the link
〈2, 0〉.

The movement paths and the link maps are as follows. For the link
〈3, 1〉 the link map is Ξ; 3210 7→ Ξ; 310. Hence the movement path is 2.
Now for the link 〈2, 0〉 the link map is Ξ; 210 7→ Ξ; 20 so the movement
path is 1.

Suppose we first add 〈2, 0〉. Then the surface path of 3 is 320. The
link map would be Ξ; 320 7→ Ξ; 310. There is no movement path. In
particular, 310 does not ac–command 320, so we do not have a proper
link map.

Translated into CCSs, this means that we have a case of remnant
movement.

7.5. Concentric Links

See Figures 5 and 6. Let M5 := 〈{0, 1, 2, 3, 4},≺5〉 with

(26) ≺5 := {〈4, 3〉, 〈3, 2〉, 〈2, 1〉, 〈1, 0〉, 〈4, 0〉, 〈3, 1〉}

derive.tex; 6/09/2003; 12:39; p.21



22

•
4

• 3

• 2

• 1

•
0

�

�

�

� •
43210

�
�

�
�

�
�

�
�

�
�

�
�

��

6

•3210 ����������1•210

•
10

@
@

@@

•
0

@
@

@@

• 310

•
4310

• 40

Figure 5. Concentric Links: Freeze–Movement
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Figure 6. Concentric Links: Piggy Backing

Then the root links are 〈4, 3〉, 〈3, 2〉, 〈2, 1〉, and 〈1, 0〉. The non–root
links are 〈4, 0〉 and 〈3, 1〉. The paths are

(27) 43210, 4310, 40, 3210, 310, 210, 10, 0

This defines the tree for 〈T5,K5〉. The nontrivial equivalence classes
are [43210]K5 = {43210, 4310, 40} and [3210]K5 = {3210, 310}. There
are two ways to derive M5, namely (A) we add the link 〈4, 0〉 before
the link 〈3, 1〉 and (B) we add the link 〈3, 1〉 before the link 〈4, 0〉.

The movement paths and the link maps are as follows. Case (A).
For the link 〈4, 0〉 the link map is 43210 7→ 40. The movement path
is 321. If there is a constituent attached to 4, we would have the map
Ξ; 43210 7→ Ξ; 40. Now for the link 〈3, 1〉 the link map is Ξ; 3210 7→
Ξ; 310 so the movement path is 2.
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Case (B). For the link 〈3, 1〉 the link map is ϕ : Ξ; 3210 7→ Ξ; 310
with movement path 2. Notice that the surface paths have changed.
Now the surface path of 4 is ϕ(43210) = 4310. The surface path of 0
is 0. Hence the link map is now Ξ; 4310 7→ Ξ; 40, with movement path
31.

If we compare (A) and (B) we see that in (B) the path of the link
〈4, 0〉 is 31 rather than 321. It has been shortened by the movement
path of 〈3, 1〉. This is the only genuine case of choice that allows to
shorten paths. The first derivation takes long paths, and is Freeze–
compatible. The second is Shortest Steps compatible. Here, the lower
element takes a free ride upstairs (piggy backing).

8. Enumerating Derivations

Now that we have looked at the link geometry, we shall turn to deriva-
tions. It is clear first of all that the question whether or not a link can
be added at a given moment depends on its configuration with respect
to all other links. Hence, we must now take care of that as well. This
is however not hard to do.

DEFINITION 40. Let λ = 〈α, β〉 and λ′ = 〈α′, β′〉 be links. Then we
say that λ precedes λ′, in symbols λ � λ′, if either

1. λ is lower than λ′, or

2. λ′ and λ are coeffluent and β < β′, or

3. λ′ and λ cross and α < α′.

The following is clear from the previous section.

LEMMA 41. Let 〈M, σ〉 be a derivation of M, σ = 〈λi : i < n〉. Then
λi � λj implies i < j.

THEOREM 42. Let M be an MDS, σ = 〈λi : i < n〉 an enumeration
of the non–root links of M. Then 〈M, σ〉 is a derivation if and only if
λi � λj implies i < j.

Proof. We use Theorem 34. Suppose we want to add the link λi =
〈αi, βi〉. Then we must make sure that βi is not derived in the structure
〈M,H ∪ {λj : j < i}〉 and that the link does not cross or is lower than
any of the previous links. If it does, then λi � λj , contradiction. Next
we have to show that M(γ) has exactly one element for all γ ≥ β.
Suppose not. Then there is a γ ≥ β such that γ = αj for some j < i.
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Look at the link λj = 〈αj , βj〉. We have αj ≥ βi > αi. Then the link
λj is higher than λi. This is excluded since λi � λj . Q. E. D.

So � gives us a complete map of the possible derivations. Any
linear order extending � gives rise to a derivation, and moreover any
derivation induces a linear order on the links that is compatible with
�. So, how do we decide which is the shortest? To this end, we first
look at parallel links. Obviously, if we exchange adjacent parallel links
in a derivation, the paths remain the same. However, it would not do to
simply exchange a pair of parallel links, since this may not even result
in a derivation. The general definition is therefore this one.

DEFINITION 43. Let 〈M, σ〉 and 〈M, σ′〉 be derivations, and assume
that σ = 〈λi : i < n〉 and σ′ = 〈λπ(i) : i < n〉 for some permutation
π of the numbers < n. Then say that the derivations are equivalent
if the following holds: If λi and λj are concentric and λi is inside λj,
then from i < j follows π(i) < π(j) and conversely.

LEMMA 44. Suppose that σ and σ′ are equivalent derivations of the
same structure. Then the movement paths of the links are the same in
both derivations.

So, there is nothing to choose between equivalent derivations. This
leaves only one configuration where we can manipulate the lengths:
concentric links. Here we have α < α′ < β′ < β. We may either decide
to add first the link 〈α, β〉 and then the link 〈α′, β′〉. If we choose
the second option, no path will be longer than if we had chosen the
first, while some paths are shorter. Call λ′ a transporter for λ if (a)
α < α′ < β′ < β, (b) there is no λ′′ such that λ �+ λ′′ �+ λ′. It
is clear from the preceding calculations that if λ′ is a transporter for
λ, then links are shorter (though not always strictly) for all links if λ′

precedes λ in the derivation.

LEMMA 45. Let M be an MDS and λ a transporter of λ′. Let σ and σ′

be two derivations such that (a) λ′ precedes λ in σ, (b) σ′ results from
σ by exchanging λ and λ′. Further, let Sσ(µ) be the path set of µ in σ,
Sσ′(µ) the path set of µ in σ′. Then Sσ′(µ) ⊆ Sσ(µ) for all non–root
links µ.

Hence we have the following theorem.

THEOREM 46. The following holds for every MDS.

1. Up to equivalence, there is a unique derivation for a given MDS
such that λ precedes λ′ iff λ′ is a transporter for λ. This derivation
satisfies Freeze.
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2. Up to equivalence, there is a unique derivation for a given MDS
such that λ precedes λ′ iff λ is a transporter for λ′. This derivation
satisfies Shortest Steps.

The consequences are immediate. If nearness conditions on movement
are formulated using definable command relations (such is the case with
subjacency) then there is a derivation satisfying it if and only if the
(up to equivalence unique) Shortest Steps derivation satisfies it. This
follows from the subset principle.

Let us close with the principle Bound Traces.

THEOREM 47. Let M be an MDS. M has a derivation satisfying
Bound Traces iff there are no crossed links. In this case every deriva-
tion of M satisfies Bound Trace.

So, unbound traces occur whenever there is no remnant movement.
Our task is not yet finished. We need to establish the movement

paths of the individual links. To that end, notice the following. Let
λ = 〈α, β〉 be a link. Then compute the path µ−(α;β) in M with λ
eliminated. (It can be defined as follows: let β− be the element directly
lower than β in M(α). Then µ−(α;β) := α;µ(β−;β).) It turns out that
this is exactly the movement path in a Shortest Steps derivation. For
let λ′ = 〈α, β′〉 be any link such that β′ < β. Then by our observations,
λ′ precedes λ. Also, if α < γ < β and 〈γ, β′〉 is a link such that β′ ≤ β,
then this link will precede λ. So, the surface path between α and β
in the structure derived just before λ is added is exactly as described.
So, locality conditions can in fact be computed very fast for a Shortest
Steps derivation.

THEOREM 48. Let M be an MDS and λ = 〈α, β〉 be a non–root link.
Then the movement path of λ in a derivation satisfying Shortest Steps
is exactly µ−(α;β).

9. Cyclicity

Cyclicity is the condition that lower links precede higher links. That
condition has to be precisified. One natural precisification is the fol-
lowing, which we spell out first for CCSs.

DEFINITION 49. Let Q ⊆ A. We say that 〈C, ϕ,D〉 is Q–inferior
to 〈C′, ϕ′,D′〉 with C = ↓x, C′ = ↓x′ if there is a node y such that
x < y < x′ and `(y) ∈ Q. A derivation 〈M, σ〉 with σ = 〈λi : i < n〉 is
Q–cyclic if for all i, j < n: if λi is Q–inferior to λj then i < j.
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This definition can also be rendered using command relations. We may
think of a partitioning of the tree in shells in the following way. Say
that x and y are Q–equidistant if they Q–command each other. If
x Q–commands y but not conversely, say that y asymmetrically Q–
commands x. Then the above condition says that if ↓y and ↓x are
moved and x asymmetrically Q–commands y then ↓y must be moved
before ↓x. Cyclicity is therefore a constraint on a derivation, however,
one which can be checked by comparing pairs of links.

Cyclicity is easily implemented.

DEFINITION 50. Let M be an MDS, and λ = 〈α, β〉 and λ′ = 〈α′, β′〉
be non–root links. If λ and λ′ are concentric, write λ oQ λ′ if µ(α;α′)
contains an occurrence of a Q–node.

The following is easily shown on the basis of Theorem 42.

THEOREM 51. Let M be an MDS, σ = 〈λi : i < n〉 an enumeration
of the non–root links of M. Then 〈M, σ〉 is a Q–cyclic derivation if and
only if

1. λi � λj implies i < j.

2. If λi oQ λj then i < j.

COROLLARY 52. Let M be an MDS. Then up to equivalence there is
a unique derivation of M satisfying Q–cyclicity.

So, Cyclicity and Shortest Steps are opposing principles. In fact, Freeze
is identical to A–Cyclicity. For if every node is cyclic, the order of
nonparallel links is totally fixed, and in the Freeze–order.

We are ready to conclude the following theorem. A nearness con-
dition is a condition that the trace R–commands its antecedent, for a
given definable command relation R.

THEOREM 53. There is a polynomial algorithm deciding whether a
given structure 〈M,≺, `〉 is an MDS satisfying any conjunction of the
following: Freeze, Shortest Steps, Q–cyclicity, Nearness.

Proof. By Lemma 23 we can decide in polynomial time whether the
structure is an MDS. Second, the results above show how Freeze, Short-
est Steps and Q–Cyclicity basically establish an ordering — via a
binary precedence table — on the links. The table can be produced
in polynomial time. Finally, to see whether any of them defines a
derivation satisfying Nearness for given R, we choose the one with
the shortest links among all possible derivations. Then we compute the
movement paths. Q. E. D.
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10. Conclusion

We have studied the space of possible derivations for a given MDS (or
TCS, for that matter). Given an MDS M, there exist in the worst case
exponentially many derivations for M, namely, if all links are concen-
tric. It is however possible to map the space of all possible derivations
in polynomial time. This is done in the form of an ordering relation on
the links which must be respected by all derivations. Moreover, using
this representation it is possible to compute the length of link maps.
This allows to establish very swiftly (in polynomial time) whether a
(cyclic) derivation exists that satisfies certain nearness conditions. 1
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of Computational Linguistics (LACL ’96). Heidelberg, pp. 68 – 95, Springer.

1 It should be noted here that (Michaelis, 2001) has shown that Minimalist Gram-
mars in the sense of (Stabler, 1997) are weakly equivalent to Linear Context Free
Rewrite Systems (LCFRSs), from which it follows that they can even be parsed in
polynomial time. However, these grammars do not impose any (explicit) constraints
on derivations. On the other hand, the fundamental assumptions of transformational
grammar are in constant flux, so it is not clear that grammars in the sense of Stabler
adequately reflect the minimalist paradigm as a whole, which at least initially was
based largely on constraints on derivations.

derive.tex; 6/09/2003; 12:39; p.27


