
On the Logic of LGB Type Structures. Part I: Mul-
tidominance Structures

Marcus Kracht

Abstract

The present paper is the first part of a sequence of papers devoted to the modal logics
of structures that arise from Government and Binding theory. It has been shown in
Kracht (2001b) that they can be modeled by so-called multidominance structures
(MDSs). The result we are going to prove here is that the dynamic logic of the
MDSs is decidable in 2EXPTIME. Moreover, we shall indicate how the theory of
Government and Binding as well as the Minimalist Program can be coded in dynamic
logic. Some preliminary decidability results for GB are obtained, which will be
extended in the sequel to this paper.

1 Introduction

In recent years, the idea of model theoretic syntax has been getting more
attention. One of the advantages of model theoretic syntax is that because
it describes syntactic structures using a logical language fundamental theo-
retical questions can receive a precise formulation and can—hopefully—be
answered. This idea can be found already in Stabler (1992), where it was
argued that questions of dependency among different modules of grammar,
or independence questions for principles can be translated into logical ques-
tions. Stabler chose a translation into predicate logic, accompanied by an
implementation in Prolog. Thus, the questions could be posed to a computer,
which would then answer them. The problem with this procedure is twofold.
Often the predicate logic of a class of structures is undecidable and so not
all questions can effectively be answered (and it is impossible to know which
ones). Second, even if the logic is decidable we need to know about its com-
plexity so that we know how long we have to wait until we get an answer.
Thus, the best possible result would be one where we had not only a decid-
ability result but also a complexity result, preferably showing that complexity
is low.

Rabin has shown that the (weak) monadic second order logic (MSO) of

1

2 Marcus Kracht

trees is decidable, a result that James Rogers Rogers (1994) has applied to
syntactic theory. The main disadvantage of this approach is that it does not
cover LGB type structures.1 The obvious step was to reduce the latter to
the former. This is not always possible, but it led to a result (independently
proved by James Rogers and myself) that if head movement is bounded then
Minimality in the sense of Rizzi (1990) or Locality in the sense of Manzini
(1992) come down to the theory that the language is strongly context free.
However, nothing could be said about the case when head movement was
unbounded because the reduction fails in this case. Now, Rogers remarks
that adding free indexation makes the second order theory undecidable (it is
no longer monadic), and so the monadic second order theory of LGB type
structures might after all be undecidable.

The good news however is that this does not seem to be the case. In
this paper I shall show that the dynamic logic of a good many classes of
structures is decidable. An application to non-context free languages will be
given. Moreover, I shall describe how GB type structures as well as MP type
structures can be described using dynamic logic. The sequel to this paper
will generalise the result of this paper still further.2 It will emerge that many
theories of generative grammar are effectively decidable. This is hopefully
the beginning of a general decidability proof that covers the linguistically
relevant structures. The applications of the present results are manifold. We
are given a decision procedure to see whether certain principles of grammar
are independent or not, and we are given a decision procedure to see whether
or not a sentence is in the language.

I have tried to include into the paper all essential definitions. Neverthe-
less, this paper is not easy to read without some background knowledge. In
particular, I am relying on Kracht (2001b) for a discussion of the relevance of
the structures discussed below to syntactic structures known from generative
grammar. However, making the material accessible to an ordinary linguistic
audience would make this paper of book size length.

2 Multidominance Structures

In generative grammar, structures are derived from deep structure trees. In
Kracht (2001b) I considered three kinds of structures: trace chain struc-
tures (TCSs), copy chain structures (CCSs) and multidominance struc-
tures (MDSs). TCSs are the kind of entities most popular in linguistics.
When an element moves, it leaves behind a trace and forms a chain together
with its trace. The technical implementation is a little different, but the idea is

On the Logic of LGB Type Structures 3

very much the same. CCSs are different in that the moving element does not
leave just a trace behind but a full copy of itself. This type of chain structures
is more in line with recent developments (the Minimalist Program, henceforth
MP), rather than with Government and Binding (= GB). MDSs, however, are
different from both. In an MDS, there are no traces. Instead, movement to
another position is represented by the addition of a link to that position. Thus,
as soon as there is movement there are elements which have more than one
mother. Moreover, it was shown in Kracht (2001b) that MDSs contain ex-
actly the same information as TCSs, since there is an algorithm that converts
one into the other. MDSs, like TCSs, are based on an immediate dominance
relation, written �. (The converse of this relation is denoted by ≺.) In what
is to follow, we assume that structures are downward binary branching. Ev-
ery node has at most two daughters. To implement this we shall assume two
relations, �0 and �1 each of which is a partial function, and � = �0 ∪ �1. We
do not require the two relations to be disjoint.

Recall the definition of the transitive closure R+ of a binary relation R. It
is the least set S containing R such that if x ∈ S and there is y such that x R y
then also y ∈ S . Recall that R is loop free if and only if R+ is irreflexive. Also,
R∗ := R∪R+ is the reflexive, transitive closure of R.

Definition 1 A preMDS is a structure 〈M,�0,�1〉, where the following holds
(with �=�0 ∪ �1):

(P1) If y �0 x and y �0 x′ then x = x′.

(P2) If y �1 x and y �1 x′ then x = x′.

(P3) If y �1 x then there is a z such that y �0 z.

(P4) There is exactly one x such that for no y, y � x (this element is called
the root).

(P5) ≺+ is irreflexive.

(P6) The set M(x) := {y : x ≺ y} is linearly ordered by ≺+.

We call a pair 〈x,y〉 such that x ≺ y a link. We shall also write x;y to say that
〈x,y〉 is a link. An MDS is shown in Figure 1. The lines denote the immediate
daughter links. For example, there is a link from a upward to c. Hence we
have a ≺ c, or, equivalently, c � a. We also have b ≺ a. We use the standard
practice of making the order of the daughters implicit: the leftward links is
to the daughter 0. This means that a ≺0 c and b ≺1 c. Similarly, it is seen that

4 Marcus Kracht

Figure 1. An MDS

•
a
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

•c
@

@
@@•

b
�

�
�

�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
��

•d �
�

�
��

�
�
�
��

•
e

•f
@

@
@@

•

g

•
h

b ≺1 d and b ≺1 h, while c ≺0 d and g ≺0 h. It follows that M(a) = {c}, while
M(b) = {c,d,h}. A link 〈x,y〉 such that y is minimal in M(x) is called a root
link. For example, 〈b,c〉 is a root link, since c ≺+ d and c ≺+ h. A link that is
not a root link is called derived. A leaf is a node without daughters.

For technical reasons we shall split ≺0 and ≺1 into two relations each. Put
x≺00 y iff (= if and only if) x≺0 y and y is minimal in M(x); and put x≺01 y iff
x ≺0 y but y in not minimal in M(x). Alternatively, x ≺00 y if x ≺0 y and 〈x,y〉
is a root link. Let x ≺01 y iff x ≺0 y but but not x ≺00 y. Then by definition
≺00 ∩ ≺01=∅ and

≺0 = ≺00 ∪ ≺01 (1)

Similarly, we decompose ≺1 into

≺1 = ≺10 ∪ ≺11 (2)

where x ≺10 y iff x ≺1 y and y is minimal in M(x) (or, equivalently, 〈x,y〉 is a

On the Logic of LGB Type Structures 5

root link). And x ≺11 y iff x ≺1 and y is not minimal in M(x). We shall define

≺•0 := ≺00 ∪ ≺10 (3)
≺•1 := ≺01 ∪ ≺11 (4)

We shall spell out the conditions on these four relations in place of just ≺0
and ≺1. The structures we get are called PMDSs.

Definition 2 A PMDS is a structure 〈M,�00,�01,�10,�11〉 which, in addition
to (P1) – (P6) of Definition 1 satisfies

(P7) If y ∈ M(x) then x ≺•0 y iff x;y is a root link (iff y is the least element of
M(x) with respect to ≺+).

We note here that every MDS can be turned into a unique PMDS, and every
PMDS defines exactly one MDS. We shall work with PMDSs henceforth (but
prefer to call them MDSs). We assume that the leaves are linearly ordered in
the following way.

x @ y :⇔ (∃z)(∃u)(∃v)(x ≺∗•0 z ≺00 u �10 v �∗•0 y) (5)

This is not the only possible ordering; this establishes in fact the order at D-
structure. This is enough for the present purposes, though. It is verified that
a @ b @ e, for example.

Write R◦S for the relation {〈x,z〉 : there is y:xRyS z}. We can then restate
(5) as follows.

@ := ≺∗•0 ◦ ≺00 ◦ �10 ◦ �
∗
•0 (6)

Table 1 gives a synopsis of the various relations used in this paper.

Definition 3 An ordered MDS (OMDS) is a PMDS in which @ is transitive,
irreflexive and linear on the leaves.

Now, since ≺+
•0 is a tree ordering, we can extend @ to an ordering between any

two incomparable nodes (where x and y are incomparable if neither x ≺+
•0 y

nor y ≺+
•0 x nor x = y). In fact, the extension is exactly as defined by (5). De-

tails can be found, for example, in Kracht (2003b). Notice that in an OMDS,
≺0 ∩ ≺1= ∅. For suppose otherwise. Then for some x and y we have x ≺0 y
and x ≺1 y and therefore z @ z for every leaf z ≤ x, by definition of @. Con-
tradiction.

6 Marcus Kracht

Table 1. Synopsis of Relations

Symbol Definition Meaning
1M {〈x, x〉 : x ∈ M} diagonal
R◦S (∃y)(xR yS z) concatenation
R∪S union
R+ R∪R◦R∪R◦R◦R · · · transitive closure
R∗ 1M ∪R+ reflexive and transitive closure
≺00 – left root daughter of
≺10 – right root daughter of
≺01 – left non-root daughter of
≺11 – right non-root daughter of
≺0 ≺00 ∪ ≺01 left daughter of
≺1 ≺10 ∪ ≺11 right daughter of
≺•0 ≺00 ∪ ≺10 root daughter of
≺+
•0 (≺00 ∪ ≺10)+ root descendant of
≺•1 ≺01 ∪ ≺11 non-root daughter of
≺ ≺0 ∪ ≺1 daughter of
@ ≺∗

•0 ◦ ≺00 ◦ �10 ◦ �
∗
•0 left of (at deep structure)

In presence of the ordering postulate, the conditions (P6) and (P7) can be
replaced by the following

The set M(x) := {y : x ≺ y} is linearly ordered by ≺+•0. (7)

This is easy to see. First we prove a

Lemma 4 Suppose that y ≺ y′ and that there is no x such that y ≺+ x ≺+ y′.
Then y ≺•0 y′.

The proof of the claim is in the fact that y′ ∈ M(y). If the link is derived it is
not minimal, so there is a z such that y′ ≺•0 z ≺+ y′. And conversely.

Suppose now that x ≺ y. Then there is a chain y = y0 ≺ y1 ≺ y2 ≺ · · · ≺

yn = y′. The longest such chain contains only nonderived links, by Lemma 4.
This means that x ≺+

•0 y. Now, ≺+
•0 is a tree ordering so that if y′ ∈ M(x), then

x ≺+
•0 y′ as well, and so either y = y′ or y ≺+

•0 y′ or y′ ≺+
•0 y, as promised.

Proposition 5 Let M be a PMDS. M is an OMDS iff the following holds: if
x is not the root, ≺10 is defined iff ≺00 is undefined on x.

On the Logic of LGB Type Structures 7

We shall prove the theorem and exhibit some useful techniques. We code
the elements of M by sequences in the following way. Let I be a chain
{xi : i < n+1} such that x0 is the root, and xi �•0 xi+1 for every i < n. (So we
are going down.) We call I a standard identifier for x and denote it by I(x).
n is called the standard depth of xn and we write sd(xn) to denote it.

Lemma 6 In an OMDS, every x has exactly one standard identifier. Hence,
the standard depth of x is uniquely defined.

(See also Kracht (2001b) on the notion of an identifier.) Let us see why the
standard identifier is unique.

We translate the identifier into a binary sequence b0b1 · · ·bn defined by

bi =

0 if xi �00 xi+1,
1 if xi �10 xi+1.

(8)

In this way, we associate a binary sequence with each node. Now recall
that (5) defines a linear ordering on the leaves. This means that the number
associated to x via (8) is unique. For if not, there are two distinct sequences,
b0b1 · · ·bn and c0c1 · · ·cm for xn. Let j be the least index such that b j , c j,
say b j = 0 and c j = 1. Then, by (5), if z ≤ xn is a leaf, z @ z. Contradiction.
Now, let x be given. It has a sequence b0b1 · · ·bn associated with it. Let
y �•0 x. Then y is defined by b0b1 · · ·bn−1, which is unique. So, ≺•0 is a
partial function. Conversely, if ≺•1 is a partial function, then the translation
into binary sequences is unique. Now define @ for sequences by b0b1 · · ·bn
and c0c1 · · ·cm iff for the first j such that b j , c j, b j = 0 < c j = 1. This is
exactly the order (5), spelled out for the representing sequences. This order is
loop free, transitive and linear on the maximal sequences (which correspond
to the leaves). We add that b0b0 · · ·bm is immediately to the left of c0c1 · · ·cn
if

b0b0 · · ·bm = b0b1 · · ·b j−101 · · ·1, (9)
c0c1 · · ·cn = b0b1 · · ·b j−110 · · ·0

(The lengths of these sequences need not be equal.)
I should emphasise that the identifiers do not necessarily form a tree do-

main. Recall that a tree domain T is a subset of N∗ such that the following
holds: (a) if ~xi ∈ T then ~x ∈ T , and (b) if ~x j ∈ T and i< j then also ~xi ∈ T . Prop-
erty (a) holds but (b) does not hold in general. For suppose that x �01 y and
x �10 z. Then I(z) = I(x)1. However since the link y; x is derived there is no
standard identifier of the form I(x)0. The identifier I(y) contains I(z) = I(x)1
as a prefix.

8 Marcus Kracht

3 Dynamic Logic

The language of dynamic propositional logic (PDL) is defined as follows.
Given any set Π0 of so-called basic programs,3 a set Γ of propositional con-
stants, and V of variables, the set of formulae is the least set satisfying:

+ If χ is a formula, χ? is a program.

+ If χ,χ′ are formulae, so are ¬χ and χ∧χ′.

+ If α,α′ are programs, so is α;α′ and α∪α; and α∗.

+ If α is a program and χ a formula, 〈α〉χ is a formula.

We put χ∨ χ′ := ¬(¬χ∧¬χ′) and [α]χ := ¬〈α〉¬χ, and similarly for other
boolean connectives. The minimal logic, denoted by PDL, is the least set of
formulae with the following properties:

1. All propositional tautologies are in PDL.

2. [α](χ→ χ′)→ ([α]χ→ [α]χ′) ∈ PDL.

3. 〈χ?〉χ′↔ (χ∧χ′) ∈ PDL.

4. 〈α∪α′〉χ↔ 〈α〉χ∨〈α′〉χ ∈ PDL.

5. 〈α;α′〉χ↔ 〈α〉〈α′〉χ ∈ PDL.

6. χ∧ [α∗](χ→ [α]χ)→ [α∗]χ ∈ PDL.

7. If χ ∈ PDL then [α]χ ∈ PDL.

8. If χ→ χ′ ∈ PDL and χ ∈ PDL then χ′ ∈ PDL.

9. If χ ∈ PDL, then s(χ) ∈ PDL for every substitution s.

Here, a substitution is defined to be a function s that assigns a formula s(p) to
every variable p. The formula s(χ) is obtained by replacing every occurrence
of a variable p by s(p), for every variable p. A dynamic logic is a set L⊇PDL
which has the properties (7) – (9). Let χ be a formula and L a dynamic logic;
then L⊕χ denotes the least dynamic logic containing L and χ. Similarly with
a set ∆ in place of χ.

Model structures are of the form F = 〈W,C,R〉, where W is a set (the set
of worlds or points), C : Γ→ ℘(W) a function assigning each constant a set
of worlds, and R :Π0→ ℘(W ×W) a function assigning each basic program a

On the Logic of LGB Type Structures 9

binary relation on W. A valuation is a function β : V → ℘(W). Based on this
we define the interpretation of complex programs as relations in the following
way.

R(α∪α′) := R(α)∪R(α′)
R(α;α′) := R(α)◦R(α′)

R(α∗) := R(α)∗

R(χ?) := {〈w,w〉 : 〈F,β,w〉 � χ}

(10)

The truth of a formula at a world is defined thus.

〈F,β,w〉 � ¬χ :⇔ 〈F,β,w〉 2 χ
〈F,β,w〉 � χ∧χ′ :⇔ 〈F,β,w〉 � χ;χ′

〈F,β,w〉 � 〈α〉χ :⇔ there is u: w R(α) u and 〈F,β,u〉 � χ
(11)

We write F � ϕ if for all valuations β and all worlds w: 〈F,β,w〉 � ϕ. The
logic of a class K of structures is

Th(K) := {ϕ : for all F ∈K: F � ϕ} (12)

It has been shown that PDL is the logic of all structures and that it is also
the logic of the finite structures. From this follows the decidability of PDL.
However, more is known.

Theorem 7 PDL is EXPTIME-complete.

This means that there are constants c and b and a polynomial p(x) such that
for every formula ϕ of length n > c the time needed to solve the problem
whether or not ϕ ∈ PDL takes bp(n) time. (Additionally, any problem of this
complexity can be coded as such a problem in polynomial time.)

4 Grammars as Logics

In context free grammars one distinguishes the terminal alphabet from the
rules. A similar distinction is made here as well. Nodes that have no daugh-
ters are called terminal. The lexicon is a set of declarations which state what
labels a terminal node may have. This is typically done by introducing a fi-
nite set of constants and the statement that all and only those nodes may be
terminal at which one of the constants is true. Since the constants are part
of the language the lexicon is effectively identified with a specific nonmodal
formula. In fact, we are more generous here and assume that the lexicon is a

10 Marcus Kracht

constant formula λ, which may involve modal operators. This is useful when
we want to assume that the lexicon also contains complex items, as is often
assumed in generative grammar. The grammar is a (finite) set of formulae
expressed in the above language. While the grammar is believed to be the
same for all languages, the lexicon is subject to variation.

The logic DPDL is obtained from PDL by adding the formula 〈α〉χ→ [α]χ
for every basic program. (Nonbasic programs will not necessarily satisfy this
postulate even if the basic ones do.) A frame is a frame for DPDL iff for every
basic program α: if x R(α) y and x R(α) y′ then y = y′. (One says that the
program α is deterministic, and this is the reason the logic is called DPDL.)
Furthermore, the logic of finite deterministic computations is obtained by
adding the formula

[α+]([α+]p→ p)→ [α+]p (13)

where α is the union of all basic programs (hence this definition requires that
Π0 is finite). If we want to mention the number n of programs, we write
DPDLn.f. The following is proved in Kracht (1999) (finite model property
and decidability) and Vardi and Wolper (1986) (EXPTIME-completeness).

Theorem 8 For every n, DPDLn.f is the logic of all finite structures with n
basic programs, where the basic programs are deterministic and their union
is loop free. DPDLn.f is decidable, it is EXPTIME-complete and complete
with respect to finite trees.

Theorem 9 For every n, the PDL-logic of n-branching trees has the finite
model property and is decidable.

Many of the basic results can also be obtained by using a translation of dy-
namic logic into monadic second logic (MSO). The disadvantage of using
MSO is that the complexity of the logic is for the most part nonelementary
(in the sense of recursion theory), while PDL is elementary (it is EXPTIME
complete). Second, the main result that we shall establish here, the decidabil-
ity of the dynamic logic of multidominance structures, cannot be derived in
this way, as far as we can see. For this reason we shall use dynamic logic.

5 The Logic of Multidominance Structures

Let us agree on the following notation. For each of the relations �i j we in-
troduce a program Oi j, which is interpreted by a relation that we write �i j or

On the Logic of LGB Type Structures 11

�i j rather than R(Oi j). Structures are of the form

〈M,�00,�01,�10,�11〉. (14)

We use O0 in place of O00 ∪O01, O1 for O10 ∪O11 and O for O0 ∪O1. The
programs O0 and O1 are interpreted as partial functions. Also, the notation
O•0 :=O00∪O10 and O•1 :=O01∪O11 is frequently used. Finally, let us write

u := O∗ (15)

(u stands for “universal”.) A structure is called generated if there is a single
element w such that the least set containing w which is closed under taking
successors along all basic relations is the entire set of worlds. (In our case
this is exactly true if the structure is a constituent.) The following is easy to
see.

Lemma 10 Let M be a generated PDLn-structure with root x. Then we have
〈M,β, x〉 � [u]ϕ iff for all w: 〈M,β,w〉 � ϕ.

Our first goal is axiomatise the logic of all PMDSs. There is an important
tool that we shall use over and over. A formula is constant if it contains no
variables.

Theorem 11 Suppose that L is a logic containing PDLn which has the finite
model property, and let χ be a constant formula. Then the logic L⊕χ also
has the finite model property.

Proof. Suppose that ϕ is consistent with L⊕ χ. Then ϕ; [u]χ also is L⊕ χ-
consistent, and a fortiori L-consistent. Thus it has a finite model 〈〈F,R〉,β, x〉.
We may actually assume that for every y, x

u
→ y. Then y � χ, and so the frame

is a frame for L⊕χ, since χ is constant. 2

This theorem has interesting consequences worth pointing out. It allows
us to focus on the grammar rather than the lexicon. This reduces the problem
to some degree.

Definition 12 Let

PM := DPDL4.f (16)
⊕ 〈O10〉>→ [O11]> (17)
⊕ 〈O00〉p→ [O01]> (18)
⊕ 〈O•1〉p→ 〈O+•0;O〉p (19)

12 Marcus Kracht

The axioms (17) and (18) make sure that each node has at most one left hand
daughter and at most one right hand daughter. The postulates are constant
and can be added without sacrificing decidability, by Theorem 11.

Postulate (19) ensures that the structures are trees at deep structure. That
means that �•0 is a tree order. This is because if z ≺•1 y then there is a path
along nonderived links to y, as we shall show.

Lemma 13 Suppose F is a structure in which every basic program is deter-
ministic and loop free and satisfies

L. For all w and u: if w �•1 u then there is a y such that
w �+

•0 y and y � u.

Then F is a structure for PM.

Proof. It suffices to show that F satisfies (19). Choose a valuation β and a
point w such that

〈F,β,w〉 � 〈O•1〉p (20)

So there is a u ≺•1 w such that u � p. By assumption on F, there is a y such
that w �+

•0 y and y � u. From the second we get y � 〈O〉p, and from the first

〈F,β,y〉 � 〈O+•0〉〈O〉p (21)

This shows the claim. 2

Using this we prove that the axioms of PM are valid in all PMDSs. This
is Lemma 14 below. This is one half of the characterisation, Theorem 19,
which asserts that a finite structure satisfies the axioms of PM exactly it is
actually a PMDS. The other half is constituted by Lemma 18.

Lemma 14 Finite PMDSs are PM-structures.

Proof. To see this, we shall verify that they satisfy the property given in
Lemma 13. To this end, take a PMDS 〈M,�00,�01,�10,�11〉. Suppose that
x�•1 y. Then x ∈M(y), and there is, by assumption, an element u ∈M(y) such
that u ≺+ x. (Notice that by (P7) of Definition 2, x cannot be the least element
in M(y) with respect to ≺+ since the link 〈x,y〉 is derived.) Choose a path
Π0 = u; · · · ; x. If this path contains only root links we are done. Otherwise,
let the path contain v;v′, a derived link. Then there is a path ∆ = v; · · · ;w;v′

such that w ≺•0 v′, by a similar argument. Replace the pair v;v′ in Π0 by ∆.
This gives a path which is longer than Π0. Thus, as long as we have derived

On the Logic of LGB Type Structures 13

links we can replace them, increasing the length of the path. However, ≺ is
loop free and the structure finite. Hence, the procedure must end. It delivers
a path without derived links, as promised. 2

In the connection of the following lemma, we say that R(α) satisfies the
fixed point property if for all formulae ϕ, frames F, valuations β and points
x:

〈F,β, x〉 � 〈α∗〉ϕ↔ ϕ∨〈α;α∗〉ϕ (22)

Lemma 15 Let 〈F,R〉 be a finite frame β a valuation, and R(α) be loop free.
Then for all x and ϕ:

〈F,β, x〉 � 〈α∗〉ϕ↔ ϕ∨〈α;α∗〉ϕ (23)

Proof. In PDL, ϕ→ 〈α∗〉ϕ and 〈α;α∗〉ϕ→ 〈α∗〉ϕ are generally valid. Hence
we only have to establish

〈F,β, x〉 � 〈α∗〉ϕ→ ϕ∨〈α;α∗〉ϕ (24)

By assumption on R(α), for every x there is a sequence x= x0
α
→ x1

α
→ x2 · · ·

α
→

xn where xn has no R(α)-successor. We proceed by induction on maximum
length of such a chain starting at x. Call this the height of x. If the height is
0, x has no R(α)-successors. Then 〈α;α∗〉ϕ is false, and so the claim reduces
to

〈F,β, x〉 � 〈α∗〉ϕ→ ϕ (25)

which is correct. Now let x be of height n+ 1 and the claim proved for all
points of height ≤ n. Suppose 〈α∗〉ϕ is true at x. Then there is a chain of
length ≤ n+ 1: x = x0

α
→ x1

α
→ x2 · · ·

α
→ xk, and ϕ is true at xk. Two cases

arise. k = 0, in which case x � ϕ and we are done. Or k > 0. Then, by
inductive hypothesis, since x1 has height ≤ n, 〈F,β, x1〉 � 〈α∗〉ϕ and so we
have x � 〈α;α∗〉ϕ, as promised. 2

Say that a program α is progressive in L if R(α) is loop free in every
structure for L. In that case we say that a node x has α-height n if there is
no sequence x

α
→ x1

α
→ x2 · · ·

α
→ xn+1. If x has α-height 0 it means that it has

no α-successors. The important fact to note is that we can restrict ourselves
in the present context to progressive programs, and these are the programs
which have the fixed point equation property. We say that α is contained in β,
in symbols α ⊆ β, if L ` 〈α〉p→ 〈β〉p. If L has the finite model property this

14 Marcus Kracht

is equivalent to R(α) ⊆ R(β) in every finite L-structure. If L′ ⊇ L and α ⊆ β in
L, then this holds also in L′. α and β are equivalent in L if α ⊆ β as well as
β ⊆ α in L. If α is progressive then so are αn (n > 0) and α+. The following
theorem rests on the fact that the logic of finite computations has a maximal
progressive program.

Lemma 16 In PDLn.f every program is equivalent to a program of the form
ϕ?, α, or ϕ?∪α, where α is progressive.

Proof. Notice that α is equivalent to ⊥?∪α, so we do not need a separate
case for progressive programs. Let ζi, i < n, be the basic modalities. Put

γ := (ζ0∪ ζ1∪ · · ·∪ ζn−1)+ (26)

In PDLn.f, γ is progressive. Then γ;γ as well γ+ are likewise progressive.
Every η that is contained in a progressive program is also progressive. What
we shall show is that every program η that is not a test can be written as ϕ?∪α
where α is contained in γ. Before we start, notice that if χ is a test and α ⊆ γ
then χ?;α ⊆ α ⊆ γ and likewise α;χ? ⊆ α ⊆ γ.

We note that ϕ?;χ? is equivalent to (ϕ∧χ)? and that ϕ?∪χ? is equivalent
to (ϕ∨χ)?. Finally, (ϕ?)∗ is equivalent to >?, so that the program operators
reduce on tests to a single test. Now, suppose that η1 = ϕ1?∪α1 and η2 =

ϕ2?∪α2 with α1,α2 contained in γ. Then

η1∪η2 = (ϕ1?∪α1)∪ (ϕ2?∪α2)
= (ϕ1∨ϕ2)?∪ (α1∪α2)

(27)

is of the desired form.

η1;η2 = (ϕ1?∪α1); (ϕ2?∪α2)
= (ϕ1?;ϕ2?)∪ (ϕ1?;α2)∪ (α1;ϕ2?)∪ (α1;α2)
⊆ (ϕ1∧ϕ2)?∪ (ϕ1?;α1∪α2;ϕ2?∪α1;α2)

(28)

which is again of the desired form. Finally, let η = ϕ?∪α. We observe that
η ⊆ >?∪α. Furthermore, since star is monotone, η∗ ⊆ (>?∪α)∗ = >?∪α+.
Now, α ⊆ γ, and so α+ ⊆ γ+ ⊆ γ, since γ is transitive. 2

Definition 17 The Fisher Ladner closure FL(ϕ) of a formula ϕ is the small-
est set containing ϕ such that the following is satisfied.

1. If χ∧ψ ∈ FL(ϕ) then χ,ψ ∈ FL(ϕ).

On the Logic of LGB Type Structures 15

2. If ¬χ ∈ FL(ϕ) then χ ∈ FL(ϕ).

3. If 〈α∪β〉χ ∈ FL(ϕ) then 〈α〉χ, 〈β〉χ ∈ FL(ϕ).

4. If 〈α;β〉χ ∈ FL(ϕ) then 〈α〉〈β〉χ ∈ FL(ϕ).

5. If 〈α∗〉χ ∈ FL(ϕ) then χ, 〈α〉〈α∗〉χ ∈ FL(ϕ).

6. If 〈ψ?〉χ ∈ FL(ϕ) then ψ,χ ∈ FL(ϕ).

7. If 〈α〉χ ∈ FL(ϕ), α basic then χ ∈ FL(ϕ).

We remark that |FL(ϕ)| is linear in the length of ϕ. This is shown by induction
on ϕ. This means that complexity can be measured either in terms of the size
of the formula or in terms of the size of FL(ϕ).

Now let At(ϕ) be the set of all conjunctions of formulae (or their nega-
tions) from the Fisher Ladner closure of ϕ. (This set has a size exponential in
the size of ϕ, which induces a rise in complexity for the logic of PMDSs in
Theorem 19 from EXPTIME to 2EXPTIME.) Set

X(ϕ) := {〈O•1〉δ→ 〈O+•0;O〉δ : δ ∈ At(ϕ)} (29)

Lemma 18 ϕ is consistent with PM iff ϕ; [u]X(ϕ) is consistent with DPDL4.f.

Proof. (⇒). If ϕ; [u]X(ϕ) is inconsistent in DPDLn.f, ¬ϕ can be proved
from [u]X(ϕ) in DPDL4.f. However, [u]X(ϕ) can be proved in PM. Hence
¬ϕ is provable in PM. (⇐). Now let us suppose that ϕ; [u]X(ϕ) is DPDL4.f-
consistent. Then by Theorem 8 it has a finite model based on a frame

M = 〈M,�00,�01,�10,�11〉 (30)

with root w0 and valuation β. So,

〈M,β,w0〉 � ϕ; [u]X(ϕ) (31)

We may assume that the relation ≺•0 induces a tree ordering on the set of
worlds, though with multiple roots (thus we have what is known as a forest).
We shall construct a finite PM-model from this. Let S be the closure of w0
under the relation �•0, that is, S is the least set which contains w0 and is
closed under �•0. Members of S are called standard points. Let

E := {w : there is v ∈ S such that w ≺•1 v} (32)

16 Marcus Kracht

For a point w, let a(w) be the unique δ ∈ At(ϕ) such that

〈M,β,w〉 � δ (33)

Now choose a w ∈ E. Let v be a standard world such that w ≺•1 v. By choice
of X(ϕ),

〈M,β,w0〉 � [u](〈O•1〉a(w)→ 〈O+•0;O〉a(w)) (34)

where w0 is the root. Hence

〈M,β,v〉 � 〈O•1〉a(w)→ 〈O+•0;O〉a(w) (35)

Since a(w) is true at w and since w ≺•1 v, we have

〈M,β,v〉 � 〈O+•0;O〉a(w) (36)

Hence there is a standard u ≺+
•0 v and u∗ ≺ u such that a(u∗) = a(w). By

definition of E, u∗ is either standard, or in E. For each w, pick such a point
and say that it is linked from w and write w L u∗. Thus, L is a function from
E to E∪S . We note the following. w L u∗ does not mean that u∗ is standard.
However, already u has greater standard depth as w, and if u∗ < S then u∗ ∈ E
and so u∗ can in turn be linked to some node. It follows that for every w ∈ E
there is a standard v such that w L+ v. For suppose not. Then there is a w ∈ E
of maximal depth which cannot be linked to a standard point. But it can be
linked to a point in E. The latter has greater depth. Contradiction.

Now we define a new frame S as follows. The set of points is S . Put
x �00 y iff x ≺00 y, x �10 y iff x ≺10 y; put x �01 y iff there is a u such that
u ≺01 y and u L+ x; x�11 y iff there is a u such that u ≺11 y and u L+ x. Finally,

S := 〈S ,�00,�01,�10,�11〉 (37)

The valuation β′ is defined by β′(p) := β(p)∩S . (If constants are present, the
value of a constant c in S is the value of c intersected with S .) We shall prove
for every w ∈ S and every χ ∈ FL(ϕ):

〈S,β′,w〉 � χ ⇔ 〈M,β,w〉 � χ (38)

The basic clause is
(Case 1.) χ = p, a variable (or constant). Then 〈S,β′,w〉 � p iff w ∈ β′(p) iff

On the Logic of LGB Type Structures 17

w ∈ β(p) iff 〈M,β,w〉 � p, by definition of β′.
(Case 2.) χ = ¬ϑ.

〈S,β′,w〉 � ¬ϑ iff 〈S,β′,w〉 2 ϑ (39)
iff 〈M,β,w〉 2 ϑ
iff 〈M,β,w〉 � ¬ϑ

(Case 3.) χ = ϑ∧ϑ′.

〈S,β′,w〉 � ϑ∧ϑ′ iff 〈S,β′,w〉 � ϑ;ϑ′ (40)
iff 〈M,β,w〉 � ϑ;ϑ′

iff 〈M,β,w〉 � ϑ∧ϑ′

Now let χ = 〈α〉ϑ. The claim will be proved by induction on the syntactic
complexity of α.
(Case 4.) α = α′∪α′′.

〈S,β′,w〉 � 〈α′∪α′′〉ϑ′ iff 〈S,β′,w〉 � 〈α′〉ϑ∨〈α′′〉ϑ (41)
iff 〈M,β,w〉 � 〈α′〉ϑ∨〈α′′〉ϑ
iff 〈M,β,w〉 � 〈α′∪α′′〉ϑ

(Case 5.) α = α′;α′′.

〈S,β′,w〉 � 〈α′;α′′〉ϑ iff 〈S,β′,w〉 � 〈α′〉〈α′′〉ϑ (42)
iff 〈M,β,w〉 � 〈α′〉〈α′′〉ϑ
iff 〈M,β,w〉 � 〈α′;α′′〉ϑ

We use (i) the fact that α′ is syntactically less complex than α′;α′′ and (ii)
the inductive hypothesis for 〈α′′〉ϑ.
(Case 6.) α = ψ?.

〈S,β′,w〉 � 〈ψ?〉ϑ iff 〈S,β′,w〉 � ψ;ϑ (43)
iff 〈M,β,w〉 � ψ;ϑ
iff 〈M,β,w〉 � 〈ψ?〉ϑ

Using the inductive assumptions on ψ and ϑ.
(Case 7.) α = α′∗. Now, in virtue of Lemma 16 we may assume that α′ is
progressive, so

〈α′∗〉χ↔ χ∨〈α′〉〈α′∗〉χ (44)

18 Marcus Kracht

is a theorem of PDL. Further, α′ is of lesser complexity than α′∗.

〈S,β′,w〉 � 〈α′∗〉ϑ iff 〈S,β′,w〉 � ϑ∨〈α′〉〈α′∗〉ϑ (45)
iff 〈M,β,w〉 � ϑ∨〈α′〉〈α′∗〉ϑ
iff 〈M,β,w〉 � 〈α′∗〉ϑ

(Case 8.) α = O00. Then the claim follows since ≺00=�00.
(Case 9.) α = O10. Likewise.
(Case 10.) α = O01. We show first (⇒) in (38). 〈S,β′,w〉 � 〈O01〉ϑ implies
that there is a v�01 w such that 〈S,β′,v〉 � ϑ. v is standard, and by induction
hypothesis, 〈M,β,v〉 � ϑ. By construction, w �01 u for a u ∈ E such that
u L+ v. This means that a(u) = a(v) and so 〈M,β,u〉 � ϑ; hence 〈M,β,w〉 �
〈O01〉ϑ. Now we show (⇐) in (38). Assume 〈M,β,v〉 � 〈O01〉ϑ and v ∈ S .
Then there is a w ∈ E such that w ≺01 v and 〈M,β,w〉 � ϑ. By construction
there is a standard u such that w L+ u, and so 〈M,β,u〉 � ϑ, since a(u) = a(w).
By inductive hypothesis, 〈S,β,u〉 � ϑ. Again by construction, v �01 u, so
〈S,β,v〉 � 〈O01〉ϑ.
(Case 11.) α = O11. Similar.

The next step is to verify that S is a PM-frame. To that effect we have to
ensure that the union of the basic programs is deterministic and loop free and
that the structure satisfies (19). First, let w ∈ S . Recall the definition of the
standard depth. It is easy to see that the standard depth of points is the same
in both structures. Now suppose that w � u. We claim that sd(w) > sd(u).
(Case 1.) w �•0 u. Then w ≺00 u or w ≺10 u, and by definition of standard
depth, sd(w) = 1+ sd(u). (Case 2.) w �01 u or w �11 u. In this case there is a
y such that w �01 y or w �11 y such that y L+ u and w �+ u′ for some standard
u′. This means that sd(u) ≥ 2+ sd(w). Next, to show that the programs are
deterministic, observe that the original programs were deterministic, and each
link was replaced by just one link. Finally, from Lemma 13 it follows that the
constructed structure satisfies PM.

Now, from (38) it follows that

〈S,β,w0〉 � ϕ (46)

This shows the claim. 2

Theorem 19 The logic of PMDSs is PM. Moreover, this logic has the finite
model property, is finitely axiomatisable and therefore decidable. Its com-
plexity is 2EXPTIME.

On the Logic of LGB Type Structures 19

The complexity bound follows from the fact that the formula to be satisfied
has length O(2n), and that DPDL4.f is in EXPTIME.

6 Single Movement MDSs

There is an important class of MDSs, those where M(x) has at most two el-
ements. This means in practice that each element is allowed to move only
once. This class of structures is very important, since the now current Mini-
malist Program requires each movement step to be licensed. These structures
are the topic of a sequel to this paper. Here we are interested only in the
axiomatisation of these structures. We have noted earlier that root links are
always the lowest links. Therefore, for every node x there is at most one y
such that x ≺•0 y. On the other hand there can be any number of non-root
links. The narrowness determines the maximum number of non-root links.

ν(p) := (p→ [O+]¬p)∧¬(〈O00;O∗〉p∧〈O10;O∗〉p) (47)

Lemma 20 Let β be a valuation such that 〈F,β〉 � ν(p). Then |β(p)| ≤ 1.

Proof. Suppose that x,y ∈ β(p). Then x ≺+
•0 y cannot hold; for then y �

p but y 2 [O+]¬p. Likewise y ≺+
•0 x cannot hold. If however x and y are

incomparable there are points u, v and v′ such that v , v′ and x ≺+ v ≺ u as
well as y ≺+ v′ ≺ u. Then however u � 〈O00;O+〉p; 〈O10;O+〉p. Contradiction.
2

Definition 21 An MDS is called n-narrow if |M(x)| ≤ n+1 for all x. An MDS
is called narrow if it is 1-narrow.

Put

ξ(p) :=[u]ν(p)
→ [u](〈O•1〉p→ [O•0;O∗](〈O〉p→ 〈O•0〉p))

(48)

Lemma 22 A MDS satisfies ξ(p) iff it is narrow.

Proof. Suppose the MDS is not narrow. Then there is a y and z,z′ ∈ M(y)
such that z ≺+ z′ and both links y;z and y;z′ are not root links. Then put
β(p) := {y}. Then throughout the MDS, p→ [O+]¬p holds. Also, there is no
point u such that u �00 v, u �10 v′ and y ≺∗ v as well as y ≺∗ v′. It follows that
z � 〈O•1〉p;¬〈O〉p and z′ � 〈O•1〉p. However, z′ R(O•0;O∗) z. So the formula
is false under this valuation. Now assume that the MDS is narrow. Take a
valuation such that ν(p) everywhere. By the preceding lemma, either β(p) is

20 Marcus Kracht

empty or β(p) = {u} for some u. In the first case no node satisfies 〈O•1〉p, so
the second part of ξ(p) is true. Now assume β(p) = {u} and let y be a node
such that y � 〈O•1〉p. Then say u ≺•1 y. We have to show

y � [O•0;O∗](〈O〉p→ 〈O•0〉p) (49)

To this end let z and z′ be such that z ≤ z′ ≺•0 y and z � 〈O〉p. Then z � u.
Since the structure is narrow, u ≺•0 z, showing z � 〈O•0〉p. 2

7 Extending and Reducing the Language

The fact that we are dealing with cycle free structures has a great effect on
the expressivity of the language; basically, using implicit definitions all pro-
gram constructors of PDL can be eliminated; conversely, many seemingly
more powerful constructs can be effectively mimicked. We consider here two
devices: nominals (see Blackburn (1993)) and the converse. A nominal is a
variable that can be true only at a single world. It emerges from the discus-
sion above that nominals actually do not add any expressive strength to our
language. Consider a formula ϕ(i) which contains a nominal i. Now consider
the formula

ν(p)∧〈O+〉p→ ϕ[p/i] (50)

This formula has a model 〈F,β, x〉 only if β(p) is a singleton. The conse-
quence of this is the following

Theorem 23 For every first-order universal formula ζ using atomic formulae
of the form x R(α) y or x= y there is a modal formula ϕ such that for any MDS,
F � ζ iff F � ϕ.

Proof. Let ζ = (∀x0x1 · · · xn−1)α. Introduce nominals i0, i1, · · · , in−1 and define
the following translation:

(xp = xq)† := 〈O∗〉(ip∧ iq)

(xp R(α) xq)† := 〈O∗〉(ip∧〈α〉iq)

(¬α)† := ¬α†

(α∧α′)† := α†∧α′†

(51)

It is not hard to see that 〈F,β, x〉 � ¬α† iff F 2 ζ. The sought after formula is

ν(p0)∧ ν(p1)∧ · · ·∧ ν(pn−1)→ α†[pk/ik : i < n] (52)

On the Logic of LGB Type Structures 21

This completes the proof. 2

Also, let me recall a few other reductions that we have achieved. The
following equivalences hold:

〈α∪α′〉p↔ 〈α〉p∨〈α′〉p (53)
〈α;α′〉p↔ 〈α〉〈α′〉p (54)
〈ϕ?〉χ↔ ϕ∧χ (55)

This means that the program constructors union, concatenation and test are
eliminable if they occur as outermost program constructors. However, we
have also shown that every program is a union of a test and a progressive
program and that for progressive programs the following holds in finite struc-
tures:

〈α∗〉p↔ p∨〈α〉〈α∗〉p (56)

This allows to eliminate the star as follows:

Lemma 24 Let α be progressive and δ a formula not containing q. Then

〈F,β〉 � q↔ 〈α∗〉δ⇔ 〈F,β〉 � q↔ δ∨〈α〉δ (57)

Proof. Directly from Lemma 15. 2

Lemma 25 Let α be progressive in F and χ and δ formulae such that δ does
not contain q. Then

F � χ[〈α∗〉δ/q]⇔ F � [u](q↔ δ∨〈α〉q)→ χ (58)

Proof. Using the previous lemma. (⇒) Suppose F � χ[〈α∗〉δ/q]. Pick β and
x. Suppose 〈F,β, x〉 � [u](q↔ δ∨ 〈α〉q). We have to show that 〈F,β, x〉 � χ.
Now, 〈F,β〉� q↔ δ∨〈α∗〉δ. Then 〈F,β〉� q↔〈α∗〉δ (by the previous lemma),
and so we can interchange q by 〈α∗〉δ, giving us 〈F,β, x〉 � χ. (⇐) Choose
any valuation β. Suppose that F � [u](q↔ δ∨〈α〉δ)→ χ, and choose β′ such
that β′(p) = β(p) for all p , q and β′(q) = {y : 〈F,β,y〉 � 〈α∗〉δ}. (For this
to be noncircular we need that δ does not contain q.) Now 〈F,β′, x〉[u](q↔
δ∨〈α〉δ) by the previous lemma, and so we get 〈F,β′〉 � χ. By definition of
β′ this is 〈F,β〉 � χ[〈α∗〉δ/q]. β was arbitary, giving us F � χ[〈α∗〉δ/q]. 2

Notice that q does not need to occur in χ. We may strengthen our language
further by adding an operator on programs, the converse (see de Giacomo
(1996)). This will allow to talk about going up the tree. This makes the state-
ment of some restrictions easier. We shall show for a large enough portion

22 Marcus Kracht

of the newly added formulae that they do not add expressive power, they just
make life easier. The good news about them is that they can be added without
having to redo the proofs.

Recall that for a binary relation R,

R` := {〈y, x〉 : x R y} (59)

The language PDL` extends PDL by a unary operator `, and we require that

R(α`) = R(α)` (60)

PDL` is axiomatised over PDL for all programs plus for every program α:

p→ [α]〈α`〉p, p→ [α`]〈α〉p (61)

It turns out that it is enough to just add the converse for every elementary
program, for we have

(R∪S)` := R`∪S ` (62)

(R◦S)` := S ` ◦R` (63)

(R∗)` := (R`)∗ (64)

Also, notice that

R((ϕ?)`) = R(ϕ?) (65)

Thus, rather than looking at PDL`
4 (four basic programs and a converse op-

erator) we may look at PDL8 (eight basic programs, no converse), where the
postulates (61) have been added just for the basic programs. We shall not take
that route, though, since it produces needless complications. Rather, we shall
make the following observation.

Lemma 26 Let F= 〈F,R〉 be a frame, x ∈ F a world, and 2, �, and � modal-
ities such that R(�)=R(2)` is a partial function and � an operator such that
x R(�) y for all y. Then for any two formulas χ and δ, δ not containing q, and
any valuation β:

〈F, x〉 � �((�⊥→ q)∧ (♦>→ (δ→2q)∧ (¬δ→2¬q)))→ χ (66)

iff

〈F, x〉 � χ[�δ/q] (67)

On the Logic of LGB Type Structures 23

Proof. Pick a valuation β. We claim that

〈F,β, x〉 � �((�⊥→ q)∧ (♦>→ (δ→2q)∧ (¬δ→2¬q))) (68)

iff β(q) = {u : u � �δ}. This establishes the claim as follows. Assume (66)
holds. Pick β and choose β′ such that (68) holds with β′ in place of β. This is
exactly the case if β′(q) = {u : 〈F,β,u〉 � �δ}. Now we have both 〈F,β′, x〉 � χ
(by (66)) and 〈F,β′, x〉 � q↔�δ. Thus we have 〈F,β′, x〉 � χ[�δ/q]. For this
we get 〈F,β, x〉� χ[�δ/q], since q does not occur in this formula. Conversely,
suppose (67) holds. Choose β. (Case 1) β(q) = {u : 〈F,β,u〉 � �δ}. Then
〈F,β〉 � χ, and so (68) holds. Also, (66) holds. (Case 2) β(q) , {u : 〈F,β,u〉 �
�δ}. Then (68) does not hold, so (66) holds as well.

Now (68) is equivalent to

〈F,β〉 � (�⊥→ q);♦>→ (δ→2q)∧ (¬δ→2¬q) (69)

Pick z. We have to show that z � q iff z � �δ. Two cases arise. (Case 1.) z has
no R(�)-successor. Then �⊥ is true at z and so is both q and �δ. (Case 2.)
z has a R(�)-successor. Then this successor is unique by assumption. Call
it y. By assumption we have y R(2) z. Furthermore, as x R(�) y, we have
y � δ→ 2q as well as y � ¬δ→ 2¬q. Suppose z � �δ. Then y � δ, from
which y � 2q, and so z � q. If z � ¬�δ then y � ¬δ, by functionality of R(�).
Hence y � 2¬q and so z � ¬q. 2

This lemma can be used to introduce converses for the programs O00 and
O10, since they are backwards deterministic. This seemingly allows for the
reduction of any program to a forward looking program. However, recall that
the elimination of star used the fact that every program is basically progres-
sive. With converses added this is no longer the case. So, star is eliminable
only if the program either contains only downward looking modalities or only
upward looking modalities. Tests belong to either class (can be included as
only downward looking in the first case, or as only upward looking in the
second). Call such a formula a finite turn formula.

Theorem 27 Suppose a class of constituents is axiomatisable with some fi-
nite turn formulae using the operators M00, M10 and M•0 in addition to Oi j.
Then it can be axiomatised without the use of M00 and M10.

This can be used in the following way. We have said earlier that the PMDSs
are not necessarily ordered in the standard sense. To enforce this we need to
add another postulate. The linear order from (5) is modally definable by

α :=M∗•0;M•0;O•1;O∗•0 (70)

24 Marcus Kracht

In the definition we have made use of upward looking programs. It is straight-
forward to verify that

x @ y ⇔ 〈x,y〉 ∈ R(α) (71)

This would ordinarily involve adding the converse operator. We have seen,
however, that there is a way to consider the converse operators as abbrevia-
tions. Thus we may define the following.

Definition 28 Let

OL := PM
⊕〈M00〉>→ [M10]⊥
⊕〈M10〉>→ [M00]⊥
⊕〈M00〉p→ [M00]p
⊕〈M10〉p→ [M10]p

(72)

Using Theorem 11 we see that

Theorem 29 OL is decidable in 2EXPTIME.

8 Nearness

The above results are encouraging; unfortunately, they are not exactly what
we need. There typically is a restriction on the distance that an element can
move in a single step. We take as our prime example the subjacency definition
in Chomsky (1986). As I have argued in Kracht (1998), perhaps the best
definition is this. The antecedent of a trace can be found within the next
CP which contains the next IP properly containing the trace. This definition
uses that concatenation of the two command relations of IP-command and
CP-command.

One is tempted to cash this out as the following axiom.

〈O•1〉p→ 〈O•0〉〈(¬CP?;O))∗; (¬IP;O)∗〉p (73)

Here, CP, IP are constants, denoting phrasal nodes of category CP and IP.
This formula says that for every node x, if there is a derived downward link
from x to some y, then there is a path to y following first a nonderived link,
then following down non-CP nodes and finally non-IP nodes. Unfortunately,
matters are not that easy. The program (¬ϕ;O)∗ can be transcribed as “while
¬ϕ go one step down”. This is a nondeterministic program, capturing the

On the Logic of LGB Type Structures 25

relation 〈x,y〉 where there is no node ϕ on the path from y to x. (ϕ may hold
at y, but not at x.)

However, this gives the wrong results (cf. Kracht (2001a)). Consider a
VP and an NP that scrambles out of it. Consider a movement of the VP that
passes the NP, whereupon the NP moves to pass the VP again.

NP1 [· · · t1 · · ·]VP2 • t1 t2 (74)

Then the formula above maybe true even if there was a step of the NP that
crossed a barrier at •. I do not know of a natural example of this kind, but
the formalisation should work even if none existed. Furthermore, the prob-
lem is with the NP movement, so it cannot be dismissed on the ground that
the VP has crossed a barrier. Interestingly, the latter objection can easily be
eliminated; for we can assume that the VP has moved into spec of CP before
leaving the barrier. And in that case it has blocked the chances of the NP to
do the same.

So, why does (74) pose a problem with (73)? Let us display some more
consistuents:

X[NP1 Y [[· · · t1 · · ·]VP2 • t1 [t2]Z]Y]X (75)

The constituent (= node) X has NP1 as a derived daughter. (73) requests that
we find a path following first a nonderived link and so that if we ever cross
a CP we do not cross an IP after that. We shall give such a path. First we
go to Y . From Y we go to VP2 and down to t1 = NP1. Recall that we are in
an MDS, so whenever you see a trace there is actually a constituent, and it
is the same as the antecedent of the trace. In particular, Y is mother to VP2,
and Z mother to t2, both are mothers of the same VP2 constituent. And so the
path inside the upper VP2 is the same path as the one in the lower copy. And
likewise, to go to t1 is to go to NP1 because they are the same.

What went wrong? Formula (73) asks for the existence of some path of
the required kind, but it may not be the one that the constituent actually took
when it moved. It is not enough to say, therefore, that some alternative path
satisfies the nearness condition, we must somehow require that it is the actual
path that was used in the movement that satisfies the nearness condition. It is
possible to find such a formula, but it is unfortunately quite a complex one.
The particularly tricky part here is that the structure almost looks as if the
NP has been moving with the VP only to escape after the VP has crossed the
barrier (= pigggy backing). But that is not what happened (we have a trace
witnessing the scrambling).

26 Marcus Kracht

So, nearness constraints are not easily captured in model theoretic terms
because the structure does not explicitly say which link has been added be-
fore which other. Indeed, notice that one and the same MDS allows for
quite different derivations. There is (up to inessential variations, see Kracht
(2003a)) exactly one derivation that satisfies Freeze, and exactly one that sat-
isfies Shortest Steps. The problem is with the Shortest Steps derivations.

As it turns out, however, at least Freeze derivations are easy to charac-
terise. The idea is that the longest path between two standard elements is
actually the one following standard links. Suppose we want to define the sub-
jacency domain for Freeze. (Notice the slightly different formulation of the
command domain from (73). Both can be used, and they differ only mini-
mally. This is anyhow only an example.)

σ := 〈O•1〉p→ 〈(O•0;¬CP?)+; (O•0;¬IP?)+;O〉p (76)

Lemma 30 M � σ iff there is a Freeze derivation such that movement is
within the IP◦CP-domain.

Proof. Suppose that movement is such that each step is within the IP ◦CP-
domain of the trace. Then in the MDS, every path between these nodes re-
spects these domains. Conversely, let x be a node in an MDS and y �•1 x. Put
β(p) := {x}. Then y � 〈O•0〉p. Hence, by assumption,

〈M,β,y〉 � 〈(O•0;¬CP?)+; (O•0;¬IP?)+;O〉p (77)

which says that there is a standard path first along nodes that do no satisfy
CP and then along nodes that do not satisfy IP to some node z which domi-
nates x immediately. The standard path is the movement path in the Freeze
derivation. This shows the theorem. 2

This can be generalised to any requirement that says that a path must re-
spect a regular language, which is more general than the definable command
relations of Kracht (1993). The general principle is therefore of the form

Dist(c;�) = 〈O•1〉(c∧ p)→ 〈�;O〉p (78)

where c is a constant and � is an expression using only O•0 and constants. (It
may not even use O00 or O10.) Moreover, as we shall see, one can mix these
postulates to have a particular notion of distance for phrases and another one
for heads, for example. In general, any mixture of distance postulates is fine,
as long as it is finite.

On the Logic of LGB Type Structures 27

Theorem 31 The logic of MDSs which have a Freeze derivation satisfying a
finite number of postulates of the form Dist(R) has the finite model property
and is decidable.

Proof. We replay the proof of Lemma 18. Let Dist(ci;�i), i < n, be the
distance postulates.

Y(ϕ) := {〈O•1〉(ci∧δ)→ 〈�i;O〉δ : δ ∈ At(ϕ), i < n} (79)

Now define the linking in the following way. If w ≺•1 u and w � ci, then

u � 〈�i;O〉a(u) (80)

Hence there are w′, u′ such that u′ ≺•0 u, w′ ≺ u′ and the standard path from
u to u′ is contained in �i, and a(w′) = a(w). We then put w L w′. Thus, the
condition on Freeze derivations is respected. The rest of the proof is the same.
2

9 First Example: Movement

We shall present an example of a language that is trans-context free and can
be generated from a context free language through movement. Furthermore,
it shall follow from our results that the logic of the associated structures is
decidable. Take the following grammar.

S→ aT S→ aX
T→ bU X→ bc (81)
U→ cS S→ S

This grammar generates the language {(abc)n : n > 0}. Now, we shall allow
for movement of any element into c-commanding position. Movement is
only constrained by the fact that it is into c-commanding position, nothing
else. Since we have added the rule S→ S, the base grammar freely generates
sites to which a constituent can adjoin.

In order to implement this, we need to add constants. For each terminal
and each nonterminal element there will be a constant denoted by underlining
it; for example, U is the constant denoting nodes with label U. This will be
our new language. We also add the condition that the constants from C are
mutually exclusive:

Exc(C) := {X→¬Y : X , Y and X,Y ∈C} (82)

28 Marcus Kracht

Also, we express the fact at each node at least one constant from C must be
true by

Suf(C) :=
∨
〈X : X ∈C〉 (83)

These two together ensure that each node satisfies exactly one constant. Next
the context free grammar is described by a set of rules:

ρS := S→ 〈O00〉a∧〈O10〉T (84)
∨〈O00〉a∧〈O10〉X
∨〈O00〉S∧¬〈O10〉>

ρT := T→ 〈O00〉b∧〈O10〉U
ρU := U→ 〈O00〉c∧〈O10〉S
ρX := X→ 〈O00〉b∧〈O10〉c

ρa := a→ ¬〈O〉>

ρb := b→ ¬〈O〉>

ρc := c→ ¬〈O〉>

Now we are looking at the following logic Mv, where C := {S,T,U,X,a,b,c},
with

Mv := OL⊕Exc(C)⊕Suf(C)⊕{ρX : X ∈C} (85)

Since the added postulates are constant, it is a matter of direct verification
that the structures for this logic are the PMDSs in which the underlying tree
(using the nonderived links) satisfies the context free grammar given in (81).
Any constituent may move, and it can move to any c-commanding position.

It is interesting to spell out which linear order we use for the surface con-
stituents. To this end, let x≺s y if y is the highest member of P(x); we also call
the link x;y a surface link. It is not hard to show that ≺+s defines a tree order
on the worlds. Moreover, let x ≺s0 y if x ≺s y and x ≺0 y; similarly, x ≺s1 y iff
x ≺s y and x ≺1 y. We say that for two leaves x and y that x surface-precedes
y, in x symbols x ∝ y.

x ∝ y :⇔ (∃u)(∃v)(∃w)(x ≺+s u ≺s0 v �s1 w �+s y) (86)

This order is not modally definable. However, this does not defeat the useful-
ness of the present approach. There are two fixes; one is to introduce a surface
relation. Like we did for the root links, we introduce relations ≺s0 and ≺s1
explicitly. The proofs so far go through without a change. Decidability is
again guaranteed.

On the Logic of LGB Type Structures 29

10 Adjunction

The next generalisation we are going to make concerns adjunction. Recall
from Kracht (1998) that it is not enough to leave adjunction implicit. We
must add an explicit statement which nodes are maximal. An adjunction
structure is therefore obtained by adding a subset Q of M. (Intuitively, this
set represents the maximal nodes of a category.)

xµ := the least y ∈ Q such that y �∗ x (87)

The category of x is defined as follows.

C(x) := {y : yµ = xµ} (88)

A category is a subset of M of the form C(x). y is a segment of C(x) if
y ∈ C(x). Two categories are either equal or disjoint; hence the categories
form a partition of M. Categories must also be linear. To ensure this it is
enough to require the following of the set Q:

L C. if y and y′ are distinct daughters of x then
y ∈ Q or y′ ∈ Q (or both).

For suppose y,y′ < Q. Then yµ, (y′)µ ≥ x, when it is easy to see that yµ = (y′)µ

and so C(y) =C(y′) =C(x). On the other hand, if y ∈ Q then yµ = y ≺ x, while
(y′)µ ≥ y and so C(y) is disjoint from C(y′).

Finally, in adjunction structures c-command is revised as follows. Say
that y includes x if all segments dominate x. x c-commands y iff the least
z including x dominates y. Now we require that chains are linearly ordered
through ac-command. This is reflected in the following conditions.

The set M(x) gets replaced by the set P(x), which is formed as follows.
Suppose that x ≺+ u, where u is minimal in its category (so that the category
is the least one that includes x), and there is a path Π from x to u going
only through nonminimal nodes, and following derived links. Then u ∈ P(x).
As before, P(x) reports about the movement history of x. But now that c-
command is no longer defined using the one-node-up version (idc-command
in the sense of Barker and Pullum (1990)), we need to define a different set
of nodes that need to be compared. This is why we chose P(x) to be the
mothers of the ultimate landing site of a complex formed through successive
adjunction. The link that adjunction creates is always counted as derived. We
shall see below an example of where this arises naturally.

In fact, adjunction has been taken to be more restrictive. Typically, when
an element adjoins, it must adjoin to the maximal segment of the existing

30 Marcus Kracht

category. And so we shall simplify the task as follows. Call x infimal if there
is no y ≺ x which is nonmaximal (that is to say, x is the least member in its
category).

P(x) := {y : y � x and x infimal or
there is a noninfimal z and y �•0 z �•1 x} (89)

Definition 32 A pseudo-ordered adjunction MDS (PAMDS) is a structure
〈M,Q,�00,�01,�10,�11〉, where the following holds:

(A1) Q ⊆ M.

(A2) If y �0 x and y �0 x′ then x = x′.

(A3) If y �1 x and y �1 x′ then x = x′.

(A4) If y �1 x then there is a z such that y �0 x.

(A5) There is exactly one x such that for no y, y � x (this element is called
the root).

(A6) If x �•1 y then y ∈ Q. (Adjoining elements are maximal segments.)

(A7) If x ≺ y and x′ ≺ y and x, x′ < Q then x = x′. (Only one daughter is a
nonmaximal segment. Categories are linear.)

(A8) The set P(x) is linearly ordered by ≺+
•0 and if y is minimal with respect

to ≺+ then y �•0 x.

As before, we need to define the logic of these structures and then show
that the defined logic has the finite model property, which shall establish its
decidability. First, let us notice a few facts about these structures. Adjunction
typically is head adjunction because here the new notion of c-command takes
effect. A head adjoins to a higher head, but in the new position it does not
idc-command its trace, it just c-commands it. The postulates are as follows.
We shall introduce a constant Q whose interpretation is the set Q. First, let
us agree on the following notation.

A := 〈O〉¬Q (90)

H := (¬A?;O•1)∪ (O•0; A?;O•1) (91)

A is true on the node to which one has adjoined; 〈y, x〉 ∈ R(H) iff y ∈ P(x).

On the Logic of LGB Type Structures 31

Definition 33 Let

PAM = DPDL4.f
⊕ 〈O00〉¬Q→ [O10]Q

⊕ 〈O10〉¬Q→ [O00]Q

⊕ [O•1]Q

⊕ 〈H〉p→ 〈O+•0; (>?∪H)〉p

(92)

Lemma 34 Every finite PAMDS satisfies the postulates of PAM.

Proof. (a) The postulates of DPDL4.f are satisfied, by similar arguments.
(b) Suppose M is a PAMDS, and let x ∈ M, x � 〈O00〉¬Q. Then there is a
y ≺00 x which is not in M. By (A7), if z ≺10 x, z must be maximal, whence
z � Q. z was arbitrary (in fact, if it exists, it is unique). Therefore, x � [O10]Q.
Similarly for the second axiom. (c) x � [O•1]Q. For let y≺•1 x. Then by (A6),
y ∈ Q, whence y � Q. (d) Suppose x � 〈H〉p. This means that there is a y such
that x ∈ P(y). By (A8), if x �•1 y, then x is not minimal in P(y). Hence, there
is a z such that x �+ z and z ∈ P(x). This means either that z is minimal in
P(x), in which case z � 〈>?〉p, or else that z is not minimal, but then z � 〈H〉p.
By assumption on P(y), we have that x �+

•0 z. Hence z � 〈(>?)∪H〉p and so
x � 〈O+

•0;H〉p. 2

Now we turn to the converse. Put

Z(ϕ) := {[u](〈O•1〉δ→ 〈O+•0; (>?∪H)〉δ) : δ ∈ At(ϕ)} (93)
∪{[u](〈O00〉¬Q→ [O10]Q), [u](〈O10〉¬Q→ [O00]Q)}

∪ {[u][O•1]Q}

Lemma 35 ϕ is consistent with PAM iff ϕ;Z(ϕ) is consistent with DPDL4.f.

Proof. (⇒.) Clear. (⇐). Let Z(ϕ);ϕ be consistent with DPDL4.f. Then
it has a finite generated model based on M = 〈M,Q,�00,�01,�10,�11〉, the
valuation β and w0 such that

〈M,β,w0〉 � Z(ϕ);ϕ (94)

(a) By choice of Z(ϕ), w0 � [u](〈O00〉¬Q→ [O10]Q). Take z ∈ M. Then, by
definition of u, z � 〈O00〉¬Q→ [O10]Q). Suppose now that y is nonmaximal
and z �00 y. Then z � 〈O00〉¬Q. Whence z � [O10]Q. So, if z �10 u, then u is
maximal. Similarly it is seen that if z �10 y and y is nonmaximal, and z �00 u

32 Marcus Kracht

then u is maximal. This establishes linearity (A7). (b) z � [O•1]Q. Hence if
y �•1 z, y is maximal. Thus, (A6) is satisfied. (c) Now we deal with the most
problematic formula, the last axiom. We replay the proof of Theorem 18.
The only change is that we define the relation L differently. For as before, S
is the set of standard points, and E the set of immediate, derived daughters
of standard points. We shall have to verify that L is cycle free, and that the
structure obtained by identifying all points L-related to each other is a PAM-
structure and the resulting model satisfies ϕ. Basically, the proof of the latter
is as in Theorem 18. So let us see why the structure is a PAM-structure. For,
this we need to establish that P(x) is linearly ordered by �+. 2

It follows that the logic PAM is in 2EXPTIME. There are typically other
requirements that are placed on adjunction structures. The first is that head
adjunction takes place to the right only. Thus, if y is a zero level projection
and x �•1 y, then y must be to the right, so • = 1. This is captured as follows.
There is a constant H which is true of exactly the zero-level projections. So
we say

H→ [M10]⊥ (95)

Next, at least in the standard theory, the head-head complex cannot be taken
apart by movement again. (The phenomenon is known as excorporation.)
Structurally, it means that an adjoined element cannot have two mothers.
Thus, if x, x′ �•1 y and y is zero level, then x = x′. This must be added to
the list of requirements if needed. This is a universal first-order formula, so
only have to appeal to Theorem 23 to see that it can be axiomatised modally.

11 Second Example: Swiss German

It is worth seeing a concrete example of how the present ideas can be made
to work. We choose Swiss German to exemplify the interplay between move-
ment and adjunction. Our analysis will be the cyclic head adjunction analysis
put forward in the 80s for Dutch and German.

We shall assume that lexical items have internal structure, which is also
binary branching. For simplicity, we denote the relations below the lexical
level by another symbol (? and >). (For all those worried about decidability:
these relations are dispensable. We could introduce a constant L, which is true
of all sublexical nodes. Then we put > = O; L? and ? = L?;M.) The lexicon
contains complex nodes whose leftmost part is a string. The other nodes are
auxiliary and carry phonetically empty material, here one of the following:
α, δ and σ. They are mutually exclusive (just like the other labels). α is a

On the Logic of LGB Type Structures 33

Figure 2. Some Lexical Trees

d’chind
•

NP •�
�

��

NP
•
@

@
@@
α
•

laa
•

V •�
�

�
�

�
�
�

V •
@

@
@@
α
•

V
•
@

@
@@
σ
•

feature for accusative case, δ for dative case and σ for the selection of an
infinitival complement. The following are the lexical trees that we shall use;
Figure 2 shows two of them in tree format. (By the way, we abandon now the
underscore notation for constants.)

[d’chind α]NP (96a)
[em chind δ]NP (96b)
[aastriche α]V (96c)
[[hälfe δ]V σ]V (96d)
[[laa α]V σ]V (96e)

The grammar for the deep structure is this:

VP→ V1 VP VP→ V NP (97)

V1→ V NP VP→ NP VP (98)

We shall assume that the surface structure is created through successive cyclic
head adjunction. That is to say, any head is allowed to move and adjoin to the
next higher head; adjunction is always to the right, but it need not be cyclic.
Suppose we have four heads V1 V2 V3 V4. Then we can first adjoin V3 to
V4, giving [V4 V3], then V1 to V2, giving [V2 V1], and then finally [V2 V1] to
[V4 V3] to give [[V4 V3] [V2 V1]]. This can be excluded, see below.

34 Marcus Kracht

The rules, together with the lexicon can be translated into constant axioms
as follows. (Recall from (90) the definition A := 〈O〉¬Q. Furthermore, >2

0 :=
>2;>2.)

ρVP := VP→ (〈O00〉V1∧〈O10〉VP) (99)
∨ (〈O00〉V∧〈O10〉NP)
∨ (〈O00〉V∧〈O10〉VP)

ρV′ := V1→ 〈O00〉V∧〈O10〉NP (100)

ρNP := NP→ (〈>2
0〉(d’chind∨Hans∨ · · ·)∧〈>1〉α)) (101)

∨ (〈>2
0〉(em chind∨em Hans∨ · · ·)∧〈>1〉δ))

ρN
V := (V∧¬A)→ (〈>2

0〉(aastriche∨ · · ·)∧〈>1〉α) (102)

∨ (〈>2
0〉(〈>0〉hälfe∨ · · ·)∧〈>1〉δ)∧〈>1〉σ)

∨ (〈>0〉(〈>0〉laa∨ · · ·)∧〈>1〉α)∧〈>1〉σ)

ρA
V := (V∧A)→ 〈O00〉V∧〈O11〉(V∧Q) (103)

ρα := α→ [>]⊥ (104)
ρδ := δ→ [>]⊥ (105)
ρσ := σ→ [>]⊥ (106)

Notice that it is possible to enforce cyclic head adjunction by issuing the
following formula in place of ρA

V:

γA
V := (V∧A)→ 〈O00〉(V∧¬A)∧〈O11〉(V∧Q) (107)

This says that the left hand daughter must be infimal, hence that daughter is
lexical. The right hand daughter may however be complex.

Case government is implemented as follows.

κα := V∧〈>∪>2〉α→ 〈M;>〉α (108)

κδ := V∧〈>∪>2〉δ→ 〈M;>〉δ (109)

Selectional restriction concerning the infinitive is the formula

σ := V∧〈>〉σ→ 〈(¬VP?);M)∗;O〉VP (110)

Notice that these formulae are all constant. They describe the restrictions that
apply at D-structure.

On the Logic of LGB Type Structures 35

The only derivational steps are head adjunction, as shown above. The
crucial fact here is that head adjunction is local; so we restrict the condition
(7) in Definition 32 by saying that the distance between two members of P(x)
must be small. The head movement constraint is embodied in the following
formula

Q
h

:= 〈H〉p→ 〈O2
•0; (>?∪H)〉p (111)

This formula is somewhat crude, saying that movement is only two steps
up. It suffices for our purposes, thanks to the particular grammar chosen. It
would be no problem to formulate a more sophisticated version which says
that a head may only move to the next head.

Definition 36 Call Swiss the logic

OL⊕Exc(C)⊕Suf(C)⊕{ρVP,ρV′ ,ρNP,ρ
N
V,ρ

A
V, κα, κγ,σ,Qh

} (112)

Swiss is decidable. This follows from our results. The language is trans-
context free. To see this we must first define the surface order. This means
that we have to spell out which of the links is a surface link. This is the
standard link if the element is not a V, and it is not adjoined. Otherwise, it is
a derived link.

〈≺s0〉p↔ ((¬V∧¬A)→ 〈≺00〉p))∧ ((V∨A)→ 〈≺01〉p) (113)
〈≺s1〉p↔ ((¬V∧¬A)→ 〈≺10〉p))∧ ((V∨A)→ 〈≺11〉p) (114)

Notice that although we have introduced new symbols, ≺s0 and ≺s1, they are
eliminable, so they are in effect just shorthands.

After that we define the left-to-right order on the surface and finally the
relation ∝s, which is like the surface ∝, but it skips intervening empty heads.

∝ := ≺∗s;≺s0;�s1;�∗s (115)
c := σ∨α∨δ

∝s := ∝; (c?;∝)∗;¬c

Now, x is immediately to the left of y in surface order if x R(∝s) y. x R(Λs) y if
y is the next phonetically nonempty element to the right of x. So, the question
whether the following sequence is derivable

de chind em Hans es huus hälfe aastriche (116)

now becomes the question whether the following formula has a model:

[∝`
s]⊥∧〈∝s〉(de chind∧〈∝s〉(em Hans∧〈∝s〉(es huus

∧〈∝s〉(hälfe∧〈∝s〉(aastriche∧〈∝s〉[Λ]⊥))))) (117)

36 Marcus Kracht

12 Conclusion

Let us briefly review what has been achieved and what remains to be done.
We have established a way to reduce a grammar to a logic L, the lexicon to
a constant formula λ. As a result, parsing becomes a satisfiability problem
in a given logic (here L⊕ λ). (See Kracht (1995, 2001a) for an extensive
discussion.) Provided that the logic L is decidable, the logic L⊕ λ is also
decidable and the following questions become decidable:

• Given a string ~x and a particular lexicon λ, is ~x derivable in L⊕λ?

• Is a given PDL-definable principle α satisfiable in a structure of L⊕λ?
Or does L⊕λ refute α?

• Is a given regular language included in the language derived by L⊕λ?

Since principles are axioms, our results establish decidability of these ques-
tions only on condition that L falls within the range of logics investigated
here (or expansions by constant formulae). In particular, this means that
movement is assumed to satisfy Freeze. (This has consequences only for
the formulation of nearness conditions.)

It should be said that there are questions that are known to be undecidable
and so there is no hope of ever finding an algorithm that decides them once
and for all. One problem is the question whether a given grammar generates
less sentences than another one. This is undecidable already for context free
grammars.

The reader might wonder what happened to surface structure and LF.
These two pose no problems, as far as I can see. All that needs to be done
is to split the relations ≺i into four different ones (which are not mutually
exclusive). In this way, practically the full theory can be axiomatised within
PDL. It is to be noted, however, that while the lexicon consists of constant
formulae, the theory (consisting of general structural axioms) is phrased with
formulae containing variables.

The results obtained in this paper support the claim that properties of gen-
erative grammars developed within GB or the Minimalist Program are in fact
decidable as long as they can be expressed in PDL. In Part II of this sequence
we shall show that this holds true also for the logic of narrow multidomi-
nance structures. These are structures where a given trigger licenses only one
movement step. Decidability will be shown for theories that admit narrow
structures with Freeze-style movement and command relations to measure
distance. This will hopefully be taken up in Part III, where we plan to study
Minimalism in depth.

On the Logic of LGB Type Structures 37

Notes

1. The shorthand ‘LGB’ refers to Chomsky (1981) as a generic source for the kinds
of structures that Government and Binding uses.

2. Added in February 2008. I noted with dismay that none of the promised pa-
pers have reached satisfactory stage yet. Some of the generalisations have been
obtained, but a thorough analysis of the MP is still missing.

3. The reader may find it confusing that we talk about programs here. The reason
is simply that PDL is used to talk about the actions of a computer, and this has
given rise to the terminology. Here however we shall use PDL to talk about trees.
As shall be seen below, the interpretation of a program is actually a relation over
the constituent tree. So, when I write “program” it is best to think “relation”.

References

Barker, Chris and Geoffrey Pullum
1990 A theory of command relations. Linguistics and Philosophy, 13: 1–

34.
Blackburn, Patrick

1993 Nominal tense logic. Notre Dame Journal of Formal Logic, 39: 56–
83.

Chomsky, Noam
1981 Lecture Notes on Government and Binding. Foris, Dordrecht.
1986 Barriers. MIT Press, Cambrigde (Mass.).

de Giacomo, Giuseppe
1996 Eliminating “Converse” from Converse PDL. Journal of Logic, Lan-

guage and Information, 5: 193–208.
Kracht, Marcus

1993 Mathematical aspects of command relations. In Proceedings of the
EACL 93, pp. 241 – 250.

1995 Is there a genuine modal perspective on feature structures? Linguis-
tics and Philosophy, 18: 401 – 458.

1998 Adjunction Structures and Syntactic Domains. In Uwe Mönnich
and Hans-Peter Kolb, (eds.), The Mathematics of Sentence Structure.
Trees and Their Logics, number 44 in Studies in Generative Grammar,
pp. 259 – 299. Mouton–de Gruyter, Berlin.

1999 Tools and Techniques in Modal Logic. Number 142 in Studies in
Logic. Elsevier, Amsterdam.

2001a Logic and Syntax – A Personal Perspective. In Maarten de Rijke,
Krister Segerberg, Heinrich Wansing, and Michael Zakharyaschev,
(eds.), Advances in Modal Logic ’98, pp. 337–366. CSLI.

2001b Syntax in Chains. Linguistics and Philosophy, 24: 467 – 529.
2003a Constraints on derivations. Grammars, 6: 89–113.
2003b The Mathematics of Language. Mouton de Gruyter, Berlin.

38 Marcus Kracht

Manzini, Maria R.
1992 Locality – A Theory and Some of Its Empirical Consequences. Num-

ber 19 in Linguistic Inquiry Monographs. MIT Press.
Rizzi, Luigi

1990 Relativized Minimality. MIT Press, Boston (Mass.).
Rogers, James

1994 Studies in the Logic of Trees with Applications to Grammar For-
malisms. Ph.D. thesis, University of Delaware, Department of Com-
puter & Information Sciences.

Stabler, Edward P.
1992 The Logical Approach to Syntax. Foundation, Specification and Im-

plementation of Theories of Government and Binding. ACL-MIT
Press Series in Natural Language Processing. MIT Press, Cambridge
(Mass.).

Vardi, Moshe and P. Wolper
1986 Automata theoretic techniques for modal logics of programs. Journal

of Computer and Systems Sciences, 32: 183 – 221.

