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ABSTRACT. It is shown that the dynamic logics corresponding to theo-
ries of generative grammar are decidable. The theorems establish fairly
general decidability results for structures that use a restricted form of
reentrancy. Our methods give effective algorithms and upper bounds for
the complexity of the decision problem. Although the bounds are fairly
high (sometimes in the order 2EXPTIME) it is hoped that the complex-
ity can be reduced in most cases. This opens the way to create effective
tools for testing grammars and theories, and for checking satisfiability of
web queries for reentrant structures.

1. INTRODUCTION

This paper is a continuation of [11]. Although the proofs are independent
of those of the previous paper, we omit here the motivations that lead to the
definitions of the structures whose logics we shall look at here.

A grammar can be seen as a theory of a class K of structures. A frame-
work admits classes of grammars, and so classes of classes of structures.
As I have shown in [9], the structures used in generative grammar since the
GB framework—thus including the theory of Principles and Parameters as
well as the Minimalist Program—are more complex than trees. Their geo-
metrical part consists of a relational structure of the form (M, <), where M
is finite, <* is cycle free, and for all x, {y : x < y} is linearly ordered by
<*. These are called multidominance structures. Everything else, start-
ing from categories, adjunction and subcategorisation can be dealt with by
adding suitable propositional constants or by considering lexical entries to
be structurally complex (see [11]). Adjunction complicates the matter inso-
far as it requires a more liberal notion of reentrancy. We shall deal at the end
of the paper with adjunction by proving a very general theorem that admits
structures that have any kind of relations added to trees. Thus, particular
grammars determine classes of MDSs. Theories of grammar determine sets
of grammars and thus—indirectly—sets of logics. Consider now a class of
structures K. We may now ask: what is the logic of these structures? In
the literature one typically settles either on monadic second order logic (see

[12]) or on modal logic. The disadvantage of MSO is that multidominance
1
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prohibits a straight application of Rabin’s Theorem. So far it is—to my
knowledge—not known, how Rabin’s Theorem can be applied to MDSs.
But it is not necessary to use such strong logics, whose complexity anyhow
is far beyond the practical needs. It turns out that everything that needs to be
said at all can be said in a relatively weak logic, using five modal operators.
The language allows to distinguish two different grammars and is therefore
expressive enough.

We shall show that virtually all theories formulated within GB and MP
are decidable. This is a big step forward. It technically means that one can
decide in principle whether a principle follows from a conjunction of other
principles, whether a grammar admits certain types of structures, whether
a given string is grammatical given a particular grammar, and so on. It
means that these questions can be settled once and for all in a formal way,
and not simply by looking at examples. For all those who do not wish to
perform such arguments themselves it may be said that since all methods
are constructive they can be executed by a machine as well and so it is also
possible to design work benches for syntacticians that allows to define a
grammar or even a constraint on grammars and see how it interacts with
other constraints, or whether it is satisfied in a grammar, and so on. It also
allows to check queries on linguistic structures for consistency with a given
theory, eliminating costly searches in the internet in case of unsatisfiability.

2. REENTRANCY STRUCTURES AND MULTIDOMINANCE STRUCTURES

In the previous papers we studied the logic of MDSs. It turns out that
MDSs can be coded in reentrancy structures. From a formal viewpoint,
reentrancy structures are somewhat easier to deal with. A reentrancy struc-
ture uses two kinds of relations: the ‘white’ relations <;, i < m, and the
‘black’ relations »; : j < n}. On the basis of these relations we set

+
(1) <= [U 4,-)
i<m
Definition 1. A reentrancy structure is a structure
2) M= (M {<;:i<m}{»;:j<n})

where (M,{<; : i < m}) is an m-branching tree with successor relations <,
i < m, and for every j < n, »; is a partial function such that »; C>. M is
narrow if forall j <n, «; := > also is a partial function.

3) q:= U <

i<m
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We use v; and Vv for the operators that use these relations. And we use V;
for the operator of the relation » ;.

Before we dive into technicalities let us indicate how we code MDSs by
means of narrow reentrancy structures. Recall from [11] the following.

Definition 2. A multidominance structure is a structure
4) (M, >00, >01>>10> >11)

such that

® (M, >q0, >01) is a tree with dominance relation (> U >19)*.
@ If thereis a'y <y; x for some i € {0, 1} then there is ay’ <o; x for
some j € {0, 1}.

® Forie{0,1}: If x >;1 ythen x (>90 U >19)" y.

@ Forie{0,1}: If x>pyand x >;; y theny =y’

® Forie{0,1}: >pN>1= 2.

® Forie{0,1}: >o N >1= @.
Let M(x) :={y : y >01 xory > x}. W is called narrow if |M(x)| < 1 for
every x € M.

It follows from the definitions that
%) (>00 U >01 U>10 U >11)" = (>0 U >10)"
Let Mt be given. For all i € {0, 1} we put
(6) < =>

Let M(x) := {y : x >+1 y}. By definition. M(x) is linearly ordered by the
tree order <. So, M(x) = {y; : i < p}, where y; < yy, forall k < p — 1.
Then put

Vi 40j 29 2= Y1, X <gj y; and x <1 yis

(7

Vi €129 2= Vi1, X <1 Yis1 and X <y Yig
First of all, let us note the following.
Lemma 3. »;; and «;; are functions.

Proof. Assume x <y, y and x €y y'. Then x,y € M(z) for some z, and
x,y € M(Z') for some 7. Now, z = 7/, otherwise M(z) N M(7') = @. To
see this, observe that x € M(z) N M(z'), which is to say that x > z as well
as x > 7. Moreover, by definition of <€y, x > z and x >y z’. This means
z=17. So,y =y, since y and y’ both are the next node up from x in the
tree order. Similarly for the other relations «;;. Now assume x »oy y and
x»oo Y. This again means x,y € M(z) for some z, x,y" € M(zZ") for some 7/,
from which z = 7. Since M(z) is linearly ordered by the tree order, y = y’,
by definition of » . Similarly for the other relations »;;. O
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Put
®) V) = (M A 1 <2}, {0500, <2))
It is not hard to see that »;; C >* for all i, j < 2. Hence we have

Lemma 4. v(9) is a narrow reentrancy structure.

We have to see how to recover 9t from v(91). Put
) >00 1= <o
(10) >10 = <y
This defines the same tree order underlying the MDS. Put
(11) < = < U «;

We define now: x > y iff there is a j < 2 and a sequence x = zp < 2| «;
43 4o, =y, n> 1. x>y yiff thereis a j < 2 and a sequence
X=20<j71 4;2, 4;73 " 41 Z, =y, n > 1. Given a reentrancy structure
9 put

(12) H) = (M, >01,>10, >10, >11)

This defines an MDS, a fact that follows immediately from the following
fact.

Lemma 5. For every MDS: u(v(9t)) = 9.

Proof. The tree order is identical, so we need to care only about >, and
>11. Suppose that in I x > y. Then y € M(x) and so we can enumerate
M(x) as z;, i < p + 1 such that x >4 z1 >}, 22 >}, 23+ >, 2p- Suppose
that x >g9 2o. Then x < z9. By definition of «;;, we have z; «; z;1 for all
i < p. Moreover, we have z,_; 4y z,. This is exactly the definition of (the
reconstructed version of) >, given above. Similarly for the other cases. O

For the next theorem we only need to remark that we can use the full
power of dynamic logic.

Corollary 6. The modal logic of reentrancy structures has the finite model
property and is decidable.

3. AXIOMATISATION

We work with polymodal logic. We shall now rehearse the details, and
refer instead to standard sources. Let Var := {p; : i € N} be the set of
variables. The set of constants is C. The boolean connectives are T, - and
A. For every white relation [>; we assume a modal operator [V;], and for
every black relation »; a modal operator [¥;]. (In fact, v; and v; are the
programs in the sense of dynamic logic, and modalities are formed from
them by using the brackets [—] or (—).) Finally, there is a master modality
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0. We also write B¢ := ¢ A O¢. The first set of postulates regulates that
the structure (M, {I>; : i < m}) is acyclic.

R1) o(@p — p) - Op.
(R2) For alli < m: (v;)p — <p.
(R3) For alli < m: (v;)p — [Vi]p.

The proof is not repeated here. Using unravelling one can show that the
structures all derive from finite trees by collapsing certain subtrees.

The logic with the axioms (R1) — (R3) is the logic of acyclic structures.
We call it AC,,. If we expand the language into dynamic logic we get the
logic DPDL,, f, also called the logic of finite deterministic computations
on m programs. This logic was shown in [8] to be complete with respect to
finite m-branching trees. Although we are not dealing with a dynamic logic,
it was proved in [11], that the star can be added with impunity, since all pro-
grams are terminating in finite structures. Technically, therefore, although
the language defined above contains no programs in the sense of PDL, we
can add them in the form of abbreviations in the following way.

(@UB) =y V Bx
(a; B)x = (aXB)x
Oy =0 Ay
(@) =08 e x Viay) —q

(13)

where in the last line ¢ is a variable not occurring in y or @ and « is cycle
free. The last reduction works in general for every program, since R(«) can
be shown in PDL.f to be always of the form R(6?7) U R(B) for a cycle free
B. To be a bit more precise, let us be given a formula ¢ in the language
of DPDL.f. Then for every formula y in the Fisher-Ladner closure we
introduce a variable g, and replace ¢ by

(14) ED(e) = g,
where D(¢p) is the conjunction of the following formulae:

Qa:pys < Gay(B)o
Giaup)s Gcars V 4ipys
dams <qy N 45
Gioys G5 V Glaarys
Gwis ©(Vigs
Gos ©<gs

(15)

Moreover, as we have explained in [11], it is possible to add the converse @~
with impunity provided that R(a™) is a partial function and that we have a
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formula c equivalent to [@~] L. In order to replace @™, suppose the following
holds at the root of the frame:

(16) Bl < (x Aco) Viag)

Then g is true at a node u iff [@ " ]y. Then (@™ )y < g A —c, by functionality
of @~ and the definition of c. Alternatively, add to D(¢p) the following:

17 qs < 4s Nqe NV Giazars

(This will require adding g(,..-)s to the set of variables, and some more vari-
ables for the subformulae, whenever (@~ )¢ is in the Fisher-Ladner closure.)

What we need, however, is the constant c. If, for example, we are inter-
ested in inverting the dominance relation, >, we can do the following. If ¢
is consistent, so is ¢ A O-. Thus, we can always assume that our model
satisfies ¢ only at the root. In that case, the desired c is ¢ itself. It is likewise
possible to invert >; for all i < m.

Thus, adding the converse does not increase expressibility as long as one
can define ¢ and the converse is a partial function. It follows that for ev-
ery regular expression formed from programs which have this property, is
also definable. However, one may not to use * in programs that contain
basic programs as well as their converses, since the resulting program may
contain cycles.

The next batch of postulates concerns the axiomatisation of reentrancy
structures.

(R4) Forall j <n: (v;)p — <p.

(R5) Forall j <n: (v;)p — [v;]p.

(R6) Forall j <n:(v;)p — (v")p.

(R7) Foralli < j <m: (V)T = ~(V;)T.

The axioms (R4) — (RS5) are unproblematic, see the discussion above. They
in fact give us the logic of finite computations for m+n programs. (R6) adds
the requirement that >; is contained in the closure of the <i;. (R7) finally
makes the models trees. For it says that any node can have only one mother
via < so that reentrancy is eliminated for the white relations. Notice that
we have used the converse here; so although this postulate seems to use no
variables, it abbreviates a formula that does.

Finally, we present an axiom for narrow reentrancy structures. Before
we begin we draw attention to the fact that in trees one can effectively use
nominals; these are variables which are true at exactly one point (see [1]).
Set

(18) n(p) :===E-pAB(p = [V]-p) A~ /\ (Vs VIOP A(Vj5V)D)

i<j<m
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Lemma 7. Suppose I = (M, {r>; : i < m}) is a tree with root w. Then
M, B, w)y & n(p) iff B(p) = {x} for some x € M.

Proof. (=). First, w £ = [0 —p guarantees that the set S(p) is nonempty.
Next, since w £ E(p — [V']-p) and w is the root, for every x € M:
x £ p — [V']=p. This means that the set S(p) is an antichain with respect
to >*. Forif x>* y and x £ p then y £ p cannot hold. Finally, this antichain
has only one point. For if it contains two different points y and y’ then there
isazand u, u such that y <" u <; z and y’ <"’ < z fori < j. Thus
2BV V)p;(Vj; V') p, which is also excluded. (<). Basically similar. O

(R8) Forall j < n: n(p) -» G(Y)p = [V*;¥;]-p)

The logic RS the logic axiomatised over K., .1 by (R1) — (R7), while NRS
is the logic obtained by adding to K,,;,,.;1 the axioms (R1) — (R8).

Lemma 8. A reentrancy structure is narrow iff it satisfies the postulate (RS).

Proof. (). Suppose Mt is not narrow; say, x «goy,y with y>*y’. Define
B(p) := {x} and the above axiom is violated at y (and, as is not hard to see,
also at the root). From Lemma 7 follows that at the root w:

(19) (ML, B, w) E n(p)
Nevertheless,
(20) wEB(Y)p = [V V;]-p)

For we have y £ (v;)p. However, y ¥ [V"; ¥;]-p since y >" y" and x «;
y" whence y" £ (¥v;)p. (=). Now, conversely, assume that 9t is narrow.
Assume that § is such that

(21) (M, B, w) E n(p)
Then by Lemma 7, B(p) = {x} for some x. Let y be such that
(22) YELY)P

Then y " x, since p is only true at x. Let y* <" y be such that y £ (v;)p.
Then y" > x. However, also y > x £ p. Since the structure is a narrow RS,
y =Y. Contradiction. Hence, y’ £ =(V;)p, and since y" was arbitrary,

(23) YELVV,]=p

as promised. O
We are ultimately interested in the logic of the class of structures of the
form v(9). It is obtained by adding to NRS a few postulates. Namely,
notice first that the relations >, » ¢ and »( are mutually exclusive. A node
can only have one left daughter. Similarly for right hand daughters. And
finally, if a node has a right hand daughter it also has a left hand daughter:
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(R9) Forall i < 2: (V)T — (Yo, T A (VY 1)T) A(Y)T = ~(V,T A
(V) T) ALY )T = (VT A (V) T)
(R10) (¥o)T VAVIT VAViDT) = (Yoo) T V(VoT V(Vi0)T)
It is clear that these axioms characterise the described properties; also, they
are constant and therefore will be left out of consideration in the sequel,
since constant axioms preserve decidability and also complexity.
In what is to follow we shall give a proof that both RS and NRS have the
finite model property, and so characterise exactly the class of finite (narrow)
RSs.

4. SoME Basic Resurts oN COMPLEXITY

Call a finite structure linearisable if there exists a linear irreflexive or-
der < computable in linear time such that (1) for every modal operator m,
R(m) C<, and for every modal operator m either (2a) there is a number k
such that m no point has more than k successors via m, or (2b) there is a
number k such that for every point x, [{y : x <y, =(x R(m) y)}| < k.

Lemma 9. Truth in a linearisable model is computable in linear time.

Proof. Suppose that we have a well-order <« on the domain of the model
such that if x R(m) y then x < y for all basic modalities m. Let A(w) := |{z :
w < z}|. Assume that for all subformulae ¢ of ¢ and all z > w, truth at z is
computed. Truth at w of a subformula ¢ is a matter of checking a bounded
boolean combination of formulae. O

This can be applied to our logics as follows. Each node is given an ad-
dress in the following way. The root has address . If x <I; y and y has
address ¢, then x has address ¢ - j. By assumption, every node has a unique
address. As order we take ¢ < Ziff ¢ is a prefix of ¢ or there are j, ¢ and 7
suchthat &= p-0-gand € = p-1-7. This takes care of the basic modalities.
O still is tricky. Notice, however, that for a node ¢, ¢ £ Qg iff ¢- 0 £ ¢; O,
¢- 1 £ ¢; O, so that truth at ¢ is a bounded boolean combination of truth at
some nodes later in the order.

The following is from [13].

Theorem 10 (Volper & Vardi). Satisfiability in DPDL.f is globally (and
locally) EXPTIME-complete.

5. PRELIMINARIES

Let M, B, ¢ be fixed. We assume that ¢ contains only basic modalities;
everything else is just an abbreviation as defined above. Let SF(¢) denote
the set of subformulae of ¢. For A C SF(¢) put

(24) awgH) = Axn /\

X€EA XE€SF(p)—A
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If M and B are clear from the context, we drop them and write a(H). Such
formulae are called p-atoms. Let At(p) denote the set of all p-atoms. For
a set A of formulae, the notation SF(A) and At(A) are used in the obvious
way. For w € M, let a(w) denote the atom which is true at w.

Here is a general result on how to make new models from old ones. Fix a
set A closed under taking subformulae. Let (i, 8) be a model and x,y € M.
Write x ~, yif for all 6 € A: (I, B, x) k delta ift (I, B,y) E 6.

Lemma 11. Let (M, {<; : i < m}) be a frame, B a valuation. Now let N C M
and <; be relations such that the following holds for all i < m, x € M and
z€N:

@ If x <; y then there exists ay ~, y such that y € N and x<;y’.
@ If z<,y then there exists ay ~, y such that x <; y'.

Then forall y € N and 6 € A:
(25)  AMA<;i:i<nh),ByEd & (NAiti<n}).By)Eo

Proof. By induction on the complexity of ¢. If ¢ is a variable, the claim
is trivial. The induction steps for — and A are immediate. Now let 6 = <.
Then 9 € A, by assumption. (=). Assume that (I, 8, y) £ <. Then there
exists a z € M such that y <; z and (9, 5,z) £ . By assumption there is
a7 ~a zsuchthat 77 € N and y<;z’. Hence (I,B,7’) £ . By inductive
hypothesis, (),5,7’) £ 9 and so (N, B,y) £ O, (). Assume now that
(M, B,y E O, Then there is a z € N such that y<I;z and (N, B,z) £ . By
assumption, there is a 77 ~, z such that y <; . By inductive hypothesis,
(M, B, z) E®and so (M, B,7") £ J. From this we get (I, B, y) £ O O

Call w minimal if w £ a(w) A [V*]=a(w). No two minimal points with
same atom are comparable via <. Equivalently, if a(w) = a(v) and v and
w are both minimal, and v < w then w = v. We shall show how to build
a model on some set of minimal points. First, observe that we may choose
the root of the model to be minimal. Let the depth of w be the defined by

(26) dpw) := [{a(x) : x < w}|

Call w egregious iff either (a) dp(w) = 0 and w is the root and minimal, or
(b) dp(w) = n+ 1 > 0 and for the unique x such that w < x and dp(x) = n,
and y such that w < y <t x w is the leftmost minimal member of the set

27) {z:z2<x,a(z) = a(y)}

(Here leftmost is defined as follows: if x <1; y and x” <1; y then x is left of x’
iff i < j. In general, x is left of x” iff there are u, " and z such that x < u <;z
and x’ <u' <juandi< j.)
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The definition makes sure that for every egregious x which has a daugh-
ter, there is a unique egregious w with depth dp(x) + 1 below that daugh-
ter. We denote by x® the unique egregious point u# such that u < x and
a(u) = a(x).

We shall prove a rather general theorem on the logic of finite trees based
on m primitive relations and one master O.

Theorem 12. For every RS-model (I, B, x) £ ¢ where < is a tree order,
there is an RS-model for ¢ such that < is a tree order, and which has at
most 2°" points.

Proof. Assume that (0,8, w) £ ¢. Let E := {x° : x € M} be the set of
egregious points of (i, B). For a relation R put R := {{x,y®) : (x,y) € R}.
Put

(28) C:=(EASNE*:i<m}{»;,NE": j<n})

It is not hard to see that the order > is a tree order. First we notice that for
egregious points y and y’: y<y’ iff y < y’. This is shown by induction on the
number of egregious points between y and y’. Suppose this number is zero.
(=). We have y<1y’. Hence y = x* for some x<1y’. From this follows y < y’.
(). y <y and there is x such that y = x* <y’ from which y<1y’. Now
suppose that this number is not zero. (=). y*y’ implies y < y’ from the
previous and the fact that < is transitive. (). There is a chain of egregious
points y = yg < y; <y, < --- <Yy, =) such that there is no egregious point
between y; and y;, 1, i < n — 1. By the previous, y;<y;.1, and so y<y’.

For assume that y,y’>x. Then also y,y’ > x, by the fact that x* < x so
that in general y(>,z implies y > z. It follows that y <y’ or y’ < y. From this
we get y<y’ or y'<y.

The valuation is y(p) := B(p) N E. From Lemma 11 we get for every
X € SF(p) that

(29) Cr.oex & OB x)Fx
It follows that
(30) (€, v, W) E g

Thus the model is based on a tree. Given a formula of length n, there are n
subformulae, whence 2" atoms. The depth of a point is therefore bounded
by 2". This is equal to the depth in €. It follows that since the models are
based on binary branching trees of height at most 2" there are at most 2%
points in E. O

This is the basis of all the proofs that we shall give in the sequel. The
only addition they make is that there shall be additional relations to take
care of.
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6. THE MAIN THEOREM
We now formulate our main theorem.

Theorem 13. NRS has the finite model property, and the size of models is
bounded from above by 2>, where n is the length of the formula.

Proof. Let ¢ be given. We write a(v) for the p-atom of v. For each
a € At(yp) let r, be a new variable and put MVar := {r, : @ € At(¢)}. Next
let

Il := N(r, : @ € At(p))
A NBE[VF]=r, - @ € At(p))
AN NBY (@ = 1) a € At(), j < n)
AN NB(re = 1) T a # B € At(p))

First we verify that if (9,5, w) £ ¢, where 8 : Var — (M) is a valuation
and < a tree order on 9t then there is a unique valuation 8* on Var U M Var
extending 8 such that (9, 8%, w) £ ¢;I1. The formulae say the following.
(1) r, is not true at the root. (2) r, is not true at a node x where there is a y
such that x < y. Hence, r, can only be true if there is a y such that x «; y.
(3) says that in that case r, is true iff « is true at x. Since I is a tree, y is
unique, and so the valuation is uniquely defined. (4) says that not both r,
and r can hold if & # S. (It is actually a consequence of (1), (2) and (3).)
So,

(32) B(r,) = {u : a(u) = a and for no v: u < v}

(D

Suppose that ¢ is DPDL.f-consistent and ¢ contains no variable from M Var.
Then ¢; I1 is DPDL.f-consistent as well.
Define
X) = N\@ra) = BN\ e = 1975 71r)
(33) ta € At(p), j < n)
A /\<<vj>n — (V7€ At(p), j < n)

Notice that X(¢p) is a set of instances of NRS-axioms.

Now suppose that ¢ is NRS-consistent. Hence ¢; X(¢) is NRS-consistent
and a fortiori DPDL.f-consistent. Thus, ¢;IT; X(¢) is DPDL.f-consistent.
Therefore there is a structure T := (T, {>>; : i < m},{»; : j < n}) which is
an m + n-branching tree, a valuation 8 and a world w such that

(34) (T,B,w) F ¢, 1T; X()
and

O all <;, i <m, and all «, j < n, are partial functions;
® all >;, 7 <m, and all »;, j < n, are partial functions, and
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® < is cycle free.

This is because DPDL.f has the finite model property and the fact that we
can apply unravelling. We shall now produce a narrow reentrancy structure
based on the egregious points.

Let H be the closure of w under the relation >. Define the function u +— u®
as in the proof of the previous theorem. Then let E := {x° : x € H} be the
set of egregious points and define >;, i < n as before. Now suppose that
x»;u, j <n. Then (T, B, x) k (¥;)a(u). So, by choice of X(¢), we have
(T,B,x) E (V")a(u). So we choose an egregious u” such that u” < x and
a(u”) = a(u). Then u” € E. We keep the partial function u +— u fixed now.
(In fact, a single such function suffices.)

(35) C:=(EA5;i<m}{»;:j<n})

The valuation is y(p) := 7(p) N E. For y € SF(¢) we get by Lemma 11
that for every egregious x:

(36) Cyrnexy o (ITL0Ex

Thus we have a model (€, y,w®) £ ¢. Finally, we need to see that € is
a narrow reentrancy structure. Recall the function u — u”. By definition,
u’ < xif u < x, and from u¥ < x it follows that u¥<x. Thus, € is a
reentrancy structure. To show that it is narrow we need to show that the
map u — u’ is injective. Let therefore u and v be distinct egregious points
such that u¥ = v". Let u «; x and v «; y. Then, since u” < x and " <y
we have v < x,y and so y < x or x < y. Without loss of generality,
assume the first. Then either x = y, and we are done; or y < x. We shall
derive a contradiction. Notice that a(u) = a(v), whence u and v both satisfy
the same r, in T. Since (T,B,w) E n(r,) and (T,B", x) £ (V;)r,, we find
that (T, 5%, x) £ [V"; ¥,]-r,, in particular (T, 8", y) £ (¥;)-r,. This is the
desired contradiction. O

Theorem 14. Satisfiability in NRS is decidable in 2EXPTIME.

Proof. Let n be the length of the formula. SF(yp) is linear in n, and so
there are 2" many atoms. Observe next that the auxiliary formulae are of
combined length O(2"). This is because there are 2" atoms, and there are o
formulae of the form r3 — —r, and 2" formulae of the remaining kinds.
Notice, though, that the formulae of the first kind are redundant. So, we
really only need ¢2" many formulae. Each formula has length at most dn
for some d. This, combined with the fact that the logic of trees is EXPTIME,
gives the result. O
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7. FurTHER RESULTS: DISTANCE PRINCIPLES

In [11] I have considered variants of the definition of MDSs where lengths
of movement steps are restricted. We shall look at such principle here again.
Since we have changed the format of encoding, the form of the distance
principles also changes slightly. Notice that in the reentrancy format it is
not the links that get encoded directly but rather the movement paths. So,
if x »;; y this means that x and y are members of a chain and that there
has been movement from y to x. This has advantages in the codification of
movement. For we can set down distance principles in a very direct way as
follows. While before we had

(37) (Vpy)p = (V)p
we now consider postulates of the form
(38) (V)P = (a))p

There are now two cases to consider. If we consider Freeze Movement then
the distance covered in a single movement step is measured in terms of
underived links (see [10]), that is, white relations. We can capture this by
requiring that o is a program not using any of the v;. If we are interested
in Shortest Move then matters are different. Here the movement path will
involve also derived links, that is to say, black relations. In this case the
principle is stated as follows:

(39) (Ypyp = {aj)p

with the condition that in the execution chain (to be defined below) 6, does
not contain V ;. This condition ensures that we measure the movement path
of the link against the different alternatives. We shall defer the treatment of
Shortest Steps and concentrate here on Freeze derivations.

On certain conditions on «; the present construction can be repeated al-

most verbatim. What one must ensure is that if y ﬁ) x holds in T, it also
holds in €. This is not the case for all a;. However, under certain conditions
this is the case. One case that interests us here is the case where «; defines
a command relation in terms of the white relations (see [8]).

We shall give a proof below. Command relations have the property that
they continue to hold even if points are removed in a tree. To define that
notion, let us say the following. An execution chain of « is a series y =
mo; 007313017+ s mu—1; 0,17 such that all m;, i < n, are basic programs
and R([y]) € R([a]). ¥’ is called a subchain if it is obtained from y by
removing some occurrences of the ¢; or m; (but keeping their order).
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Definition 15. Let « be a program. « has the subchain property if for
every execution chain y of « every subchain of y is an execution chain of a
as well.

Let us compare the chains of programs in € and 9, in particular those of
the tree relations. If x>,y in € then x >; y’ for some y’ > y with a(y’) = a(y).
Thus, all we can say is the following. Every chain y = v;;6? in € where
0? € SF(p) corresponds to an execution chain y’ of the program

(40) V302U V507 (v; TN v;6?
It is not hard to see that y is a subchain of y’.

Definition 16. Let a be a program that has the subchain property. A reen-
trancy structure is called (a, j)-distance restricted if the logic satisfies

(41) (Vj)p = {a)p

For A = {(a,0),(ay, 1), - ,(@,—1,n — 1)} we say that M is A-distance
restricted if it is (a;, i)-distance restricted for every i < n.

Now recall again the proof of Theorem 13. The proof goes through as
before. What we must ensure however is that € also is a structure for the
logic. To this end it suffices to note the following: every chain of @ in € is
a subchain of a chain of a in M. By construction, if x «; y in M there is a z
such that z R([a]) y and x = z or x «; z. We have seen to it that there is also
an egregious z such that either z = x or x «; z. What remains to be seen is
that z R([a]) y in €. This follows from the fact that there is an a-chain y in
i from y to z, and it has a correlate y €, which is a subchain of y. Hence it
is an a-chain from y to z, as promised.

Theorem 17. For every A where all programs have the subchain property
the logic of A-distance restricted reentrancy structures has the finite model
property and is decidable in 2EXPTIME.

8. MOVEMENT

We shall point a particular application. A command relation is a re-
lation R that is characterised by the following property: there is a finite
set S of sequences 77 = (10;11;- - ;n._1) of constant formulae such that
x R y iff for the least z that strictly dominates x and nonstrictly dominates
y: the sequence of points that are strictly between x and z does not contain
a subsequence that is contained in S. Somewhat more exactly: S contains
sequences of properties of points, and a sequence {x; : i < n) of points sat-
isfies such a sequence 77 iff x; £ n; for all i < n. Let us denote the relation by
C(S).
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For example, idc-command is defined be the set {(T)}. Thus, x c-com-
mands y iff for the least z > xand z > y: theset U = {u : x < u < z}
does not contain a subsequence satisfying (T). This is the case iff there is
no nonempty subsequence iff U = @ iff z is immediately above x. Next,
0-subjacency is defined by {{cp, ip)}. Thus, x 0-subjacency commands y iff
for the least z such that z > x, z > y: the set V := {u : x < u < z} does not
contain a subsequence (xy, x;) of points such that x, F ip and x; k cp (see
[7D).

We are interested in such relations D(S) of the form
42) xDS)y:©yCS)xandy < x

These are the nearness relations defined in the Koster-matrix (see [2] and
[4]). They can be described by programs, which we denote by 6(S). These
prorgrams have the subchain property. Suppose that y is an execution chain
of 6(S) and that y’ is a subchain. By definition, no subchain of 7y is an
execution chain of D(S), and this holds a fortiori of y’.

Corollary 18. Let A = {(6(S ), j) : j < n} and let X be the class of A-
distance restricted reentrancy structures. Then L(X) has the finite model
property and satisfiability is in 2EXPTIME.

It follows that the a defined through D(S )—and these are the ones that
are of linguistic interest—are preserved by passing from 9t to the model
€ of egregious points. Yet, I should point out that the restriction to white
relations in the definitions practically means that the distance principle de-
fine distance with respect to D-structure. Or, equivalently, if we are look-
ing for a derivational account, they encode true movement paths only for
Freeze-movement. This means that we still have to find analogous results
for Shortest Steps (which is the most common type of movement).

Now what if @ is not a command relation or of the form D(S)? Then so
far anything is possible. However let us mention a particular case, namely
when in place of (5) we have conditions of the form

43) (Vp)p = <(a)p
where «; contains only white relations (even in tests).

Corollary 19. Suppose that X is the class of A-distance restricted reen-
trancy structures defined by distance programs of the form (43). Then L(X)
has the finite model property and is decidable in 2EXPTIME.

9. SHORTEST STEPS

Now let us consider the distance principles related to Shortest Steps Move-
ment. They are of the form

(44) (V)P = (a;)p



16 MARCUS KRACHT

where the first program of the computation trace of «; does not contain Vv ;.

Definition 20. Call « initially white if there are B;, i < n, such that
45) a C U Vis Bi

We start with fact that NRS has the finite model property. Let X(¢) be
the following set
(46) X(p) = {vj)y = Laj)v:v e Au(yp), j <n}
Furthermore, let At*(¢) the set of atoms based on ¢; X(¢). By the previous
results there is a finite NRS-model

(47) (M, B, x) F @ EX(p)

We may assume the frame is generated from x via the white relations. By
induction we define a sequence ‘;’ of relations and a sequence

(48) M, = (M, {>; :i<m},{»;:j<n})
Moreover, the inductive claim is that for every 6 € FL(p; X(¢)):
(49) <9‘Rp+l’ﬁ’ x> F 6 S <9:Rp’ﬁ9 x> F 6

Denote by a,(x) the ¢-atom of x in (M, B). Then (49) is true if for all x: @:
a,+1(x) = ay(x) and @: for all 6 = (B)v a subformula of (a;)v or 6 = (V)
(49) holds. This is the way the results is going to be proved.

From this we get that a,.,(x) = a,(x), and so by induction a,(x) = ay(x).
From (49) we get that for all x € M:

(50) Ny, B, x) £ X(o)
For all points x of height # p we set x‘?”y iff x»"y. For x of height p

A . . a;
we do the following. Suppose that x»‘]”. y. Two cases arise. Either x —J>gﬁp y

or not. In the first case we put x‘?”y. In the second case we choose

a y" such that x ggﬁp Yy and a,(y’) = a,(y) and then put x‘fy’ (and
eliminate the old arc). That y’ exists is seen as follows. First, we have
(M, B,x) B (¥;)a,(y), where a,(y) is the atom of y in (I,,5). By (50)

we have (M, 5, x) £ {(@;)a,(y). And so there is a y’ with x 3% y" and
a,(y’) = a,(y), as desired. Now using Lemma 11 we get @, which is (49)
forall § € FL(¢). Finally, we need to establish @, which is (49) for formulae
of the form (A) (¥ ;)v or (B) (8)v. Case (@A) is immediate from the defini-
tion. Case (@B) is done by induction on the complexity of 8. 8 = 8 U B”
is immediate. S = x? is immediate. 8 = 8. Then 8 = T? U S’; 5" and so
is reduced to the cases T? and ’; 5”*. There remains the case § = §';5".
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Now, either 8’ is simple or we can reduce it analogously. Using the asso-
ciativity of ; and distributivity over U we can reduce everything to the case
that 8’ is basic and the formula has the form (8’; 8”)v, which is equivalent

Bj .
to (B'XB")v. Now, (6”)v € FL(X(¢)). Assume that 8 # ¥;. x —qgy , yiff

p+l1
ﬁ.
X —J»mp y and this gives the claim together with (49) for y. If 8 = v; then

let y and y’ be such that x E)Q)sz y and x 2)9an y'. We apply the inductive
hypothesis (49) for y. (Hier ist eine Luecke: wir haben a(y) = a(y’), aber
wir brauchen a*(y) = a*(y’).)

v.
The inductive construction is such that if x is of height n then x —I>5mp y

implies x 35)3[) y for all p > n. So if g is the height of the entire tree, the
model we need is (M, ).

Theorem 21. Suppose that X is the class of A-distance restricted reen-
trancy structures defined by initially white distance programs. Then L(X)
has the finite model property and is decidable in 2EXPTIME.

Proof. The finite model property and decidability follow from the previ-
ous. Now, the complexity is more subtle. Given ¢ we are building a model
for ¢; X(¢), which contains 2" formulae of length linear in n := |p|. Given
the 2EXPTIME bound for NRS this gives a bound of 3EXPTIME. How-
ever, rather than cascading the proof one can work out a direct proof of an
analogue of Theorem 13. O

It follows that the theory of any class of structures of generative grammar
constrained by Shortest Steps movement and distance regulated by com-
mand relations is decidable.

10. NaminG THE EGrREGIOUS POINTS

Given that we can bound the size of a model we can now also introduce
nominals that will cover the entire frame. This is done as follows. An ad-
dress is a sequence v = ag; bo; @y by; -+ 3 b,_1; @,, where the a; are atoms
and pairwise distinct, and b; < i. Call o(¢) the set of addresses. For each
address v we introduce a new variable p,. These variables are contained in
the set EVar.

(51) £:=\/(p. v e (o)
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Consider now the following formula A.
0:= /\(pn;b;(y = [VI(@ = pupa) 1 03D € 0(¢))
AN Puva AV~ =\ [9,1(@ > =) :

i<j<m

v;b;a € o(p),i < m)

(52)
N\ {Posa = [VAB > ~£) : B € 0,8 # )
N\pe = (V@ > puja) @ g0, j < i< m)
/\(pn = TP 10 F W)

Further,

(53) 2= A @ & py AV']O

acA(p)

Lemma 22. For every valuation 8 on the set Var such that (O, 3,x) £ ¢
there is a unique extension vy defined on Var U EVar such that (I, vy, x) k

G
‘,0,;—1.

Lemma 23. Let (M, B, x) £ E. Then w E p, A [Veol—py iff w is egregious of
address v.

Thus put

(54) E(g) = \/(pu A [V"1py 1 v € A(9))

Then E(¢p) is true exactly at the egregious points. For an egregious point w
we have a formula ¢,, which is true exactly at w. Let us recall how the new
model was defined on the egregious points. We have w <; viff w < u <; v
and a(w) = a(u). Thus the fact that w <I; v can be expressed as

(55) [V'1(py = (Vi; V)pw)

11. BROADENING THE ScopPE

Now we shall generalise the theorems even further. This will allow to
derive decidability even in presence of adjunction. We start again with a
structure (M, {>>; : i < m},{»; : j < n}) such that (M,{>; : i < m}) is
a finite tree. The additional relations must satisfy a few conditions. First,
we assume that »; as well as its converse is a partial function. This is
axiomatised as follows. Put

(56) n(p) :==E=p AR(p = [V~ AT N\ ~(¥::9)p A (V5 9")p)

i<j<m
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The desired axiom is

(57) d(p,q) :=n(p) A= =(g A {V))p) = E(Vlp = q)

It says that if p is true at a single point, then the set of points seeing p
through R([v;]) is a singleton as well. Second, we shall require that if
x R([v,]) y then y is within a certain distance of x. This notion of dis-
tance is what we now turn to. For the purpose of the next definition notice
that if a has the subchain property, so does a™.

Definition 24. An oval is a program of the form a~; 3, where both o and
have the subchain property and neither contains any of the »;, j < n.

So the desired axiom is

(58) o(p) :=(Vpp > a";B)p
Definition 25. Let X be a class of structures (M, {>;: i < m},{»; : j < n})
such that

® (M, {>;: i < m}) is an m-branching tree, all relations being partial
functions.
@ All »j are partial functions.

® There are ovals a;; B such that if x »; y then x =5 .

Then X is a class of oval-expanded trees.

As usual, our logic will be a i + j + 1-modal logic. The added modalities
are all definable and used for the eye only. It is crucial to understand that
since we did not require of the »; that they are cycle-free we cannot use the
Kleene star on programs containing any black relations. It is used only on
white relations.

We now proceed to a proof that the logic of a class of oval-expanded trees
is decidable. As usual it will turn out that we can construct a model from
the egregious points, from which a complexity bound can be derived. We
start with the logic Tree,,, which comprises axioms for v; and >. This logic
has the finite model property and is EXPTIME complete. For ¥; we choose
the logic Alt,. Thus we start with

(59) L := Treey & (X) Alt;

j<n
This logic has the finite model property and is complete with respect to
finite trees. Put

(60) Y(p) :={d(ps, pw) 1 0,0 € g(@)}; {o(@) : a € At(p)}

Assume that ¢ is satisfiable in the logic of K. Hence Y(y) is K-satisfiable,
since it adds instances of the axioms. A fortiori, it is L-satisfiable in a tree.
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Therefore, Y(p); E is satisfiable as well. So, assume Mt is a tree and that
(61) M, B, w) E E; Y(p)

We let E(p) be the set of egregious points, and define >; as before: u >; v
iff v is the unique egregious point such that v < v' <; u and a(v) = a(V’).
Further, for j < n, define the following function (—)*. It is defined on the
egregious points u with a » ;-successor. Assume u has a successor via »

in M. Then by assumption there is a v such that u Sl v. Now let v* be
an egregious point below v with the same atom. Put u >; v* in the new
structure. By the subchain property, it will also hold that v* is in the oval of
u in the new structure. >; is a partial function since v + v* is. It follows
that egregious points have the same atom in the new structure as they do in
the old structure (by induction on the formulae). The new structure is now

(62) C:=(E(p),{>;:i<m},{>;:j<n})

The valuation is y(p) := B(p) N E(p). As before, it is shown by induction
on y € SF(yp) that for every egregious x:

(63) Cr.xnexy o MBXEY

This is by now routine. All that needs to be shown is that the converse of
>, is a partial function as well. Pick v*. We have (It,3,v*) £ p, for a
certain v € o(¢). It follows that also (9, 3, v) E p,. By construction, u >; v*
means that u is egregious, and so u k p,, for some w. Since the root satisfies
d(py, Pw), we have that every point u” such that u” sees a point satisfying p,
must satisfy p,. Thus, u’ > u, and either ¥’ = u or «’ is not egregious. This
shows the claim.

Theorem 26. The modal logic of a class of oval-expanded trees has the
finite model property and is decidable. A model for ¢ has at most 2*" points,
where n is the number of subformulae of ¢.

12. CONCLUSION

As I have outlined in a series of papers (see [3], [4], [6], [7], [9], [10] and
[11]), the theories of generative grammar, starting with GB can be modelled
entirely using modal logic over five basic relations. This does not mean that
there is a single logic that describes them all (see [5] for an extensive dis-
cussion). It means however that the theories describe a set of grammars, and
thus a set of possible logics for grammars. In this paper I have shown that—
excluding economy principles—the entire class of these logic is decidable.
Thus, one can effectively decide for any pair of GB/MP theories whether
they generate the same structures (not strings, as this is even undecidable in
the context free case).
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