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Abstract

In this paper I argue that in contrast to natural languages, logical lan-
guages typically are not compositional. This does not mean that the mean-
ing of expressions cannot be determined at all using some well-defined set of
rules. It only means that the meaning of an expression cannot be determined
without looking at its form. If one is serious about the compositionality of a
logic, the only possibility I see is to define it via abstraction from a variable
free language.

1 Introduction
A language is called compositional if the meaning of a complex expression is a
function of the meanings of the parts from which it is being made and the mode
of composition employed in making it (see below for an exact definition). This is
more restrictive than just having any procedure to build up the meanings, because
the meaning must be the only input. Natural languages are thought to be compo-
sitional, for it is difficult to see how else one can establish the meaning of new

˚I wish to thank the audience of Trends in Logic XI, especially Joop Leo, Sergei Odintsov and
Graham Priest as well as an anonymous reviewer for useful discussion.
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expressions. Similarly for artificial languages. One might think that logical lan-
guages are the best examples of compositional languages. After all, they are the
prime examples of artificial languages, they are unambiguous and semantically
well-defined.

And yet logical languages have so far defied a compositional analysis despite
announcements to the contrary. The problem is not that no scheme of interpre-
tation can be given. The problem is that these schemes typically are not com-
positional. The only semantics that technically works is based on valuations.
However, valuations are not compositional since they encode syntactic identity.
Indeed, the more one looks into the matter the harder it is to understand how a
proper semantics can be set up that is both true to the original understanding and
compositional at the same time.

In this paper I take a fresh look at the issue and try to identify what is going
wrong. The upshot is that what thwarts our hopes of providing a compositional
account are the variables. Thus, languages can only be compositional if they do
not contain variables. The picture that arises is one of logic not as a language with
a semantics but as the result of abstracting truth patterns from a language.

2 Preliminaries
Let E be a set of expressions. For simplicity, E “ A˚ for some finite set A of
letters. Further, let M be another set, the set of meanings. E ˆ M is the set of
signs. A language is an arbitrary set of signs, in other words, a subset of E ˆ M.
A grammar is a finite set of partial functions over signs. To be more precise, let
F be a finite set of function symbols, called modes, and Ω : F Ñ N a signature.
Then an Ω-grammar is a function I such that for every f P F, Ip f q is an Ωp f q-
ary partial function on E ˆ M. The language generated by the grammar is the
smallest set LpIq such that for every f P F and every σi, i ă Ωp f q, if σi P LpIq
for every i ă Ωp f q then also Ip f qpσ0, ¨ ¨ ¨ , σΩp f q´1q P L, if that sign exists. This
means in particular that for every f such that Ωp f q “ 0 (such f is called lexical)
the sign Ip f qpq is in LpIq (again if that sign exists, which we assume to be the
case at least for 0-ary function symbols). This guarantees that the set LpIq is not
empty as long as there are lexical modes. The nonlexical modes generate the set
LpIq in the standard inductive way.

The set LpIq is the smallest subset of E ˆ M such that for every
f P F and signs σi, i ă Ωp f q, if for every i ă n σi P LpIq then also
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Ip f qpσ0, ¨ ¨ ¨ , σΩp f q´1q P LpIq on condition that Ip f q is defined on
this input.

In other words, take the clone of partial term functions generated by the Ip f q.
Then LpIq is the set of all signs which are the value of some constant term function
from that clone.
I is compositional if for every f P F there is a partial function f µ : MΩp f q ãÑ

M such that for every mi (i ă Ωp f q): (i) either there are ei such that Ip f q is
defined on the signs xei,miy and for all such ei there is an e P E with

(1) Ip f qpxe0,m0y, ¨ ¨ ¨ , xeΩp f q´1,mΩp f q´1yq “ xe, f µpm0, ¨ ¨ ¨ ,mΩp f q´1qy

or (ii)Ip f q is undefined no matter what ei get chosen, and then f µpm0, ¨ ¨ ¨ ,mΩp f q´1q

is undefined as well.
A grammar is autonomous if for every f P F there is a partial function f ε :

EΩp f q ãÑ E such that for every choice of ei (i ă Ωp f q): (i) either there are mi such
that Ip f q is defined on the xei,miy and for all such mi there is an m P M with

(2) Ip f qpxe0,m0y, ¨ ¨ ¨ , xeΩp f q´1,mΩp f q´1yq “ x f εpe0, ¨ ¨ ¨ , eΩp f q´1q,my

or (ii) Ip f q is undefined no matter what mi get chosen and then f εpe0, ¨ ¨ ¨ , eΩp f q´1q

is undefined as well.
Grammars for logical languages are generally unambiguous, so the question of

compositionality becomes indistinguishable from the question of independence.
A grammar is independent if it is both autonomous and compositional. This
means that for every f P F there exist partial functions f ε : EΩp f q ãÑ E and
f µ : MΩp f q ãÑ M with

(3) Ip f qpxe0,m0y, ¨ ¨ ¨ , xeΩp f q´1,mΩp f q´1yq

“ x f εpe0, ¨ ¨ ¨ , eΩp f q´1q, f µpm0, ¨ ¨ ¨ ,mΩp f q´1qy

with the proviso that the left hand side is defined if and only if the right hand side
is defined. Actually, the most preferred understanding of this is that rather than
using I we associate with f the two partial functions f ε and f µ. This is a stronger
notion, since the domain of Ip f q is uniquely defined from the domains of f ε and
f µ, while the converse does not hold, see [Kracht, 2011]. This leads to the notion
of an independent bigrammar, which is a pair of interpretations, xIε,Iµy, such
that Iεp f q is an Ωp f q-ary partial function on E and Iµp f q an Ωp f q-ary partial
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function on M. We then let f ε abbreviate Iεp f q and f µ abbreviate Iµp f q. The
bigrammar uniquely defines a grammar I by

(4) Ip f qpxe0,m0y, ¨ ¨ ¨ , xeΩp f q´1,mΩp f q´1yq

:“ xIεp f qpe0, ¨ ¨ ¨ , eΩp f q´1q,I
µ
p f qpm0, ¨ ¨ ¨ ,mΩp f q´1qy

with the right hand side being defined if and only if the left hand side is. This is
the format we shall assume below.

The signature Ω defines a set of Ω-terms in the following way.

1. ξi, i P N, is an Ω-term.

2. If ti, i ă Ωp f q, are Ω-terms, then so is f pt0, ¨ ¨ ¨ , tΩp f q´1q.

The ξi are variables over analysis terms. A term is called constant if it is not built
with the help of the ξi. Let us define the sign of the term inductively as follows.

(5) p f pt0, ¨ ¨ ¨ , tΩp f q´1qq
I :“ Ip f qptI0 , ¨ ¨ ¨ , t

I

Ωp f q´1q

Since we assume our grammars to be bigrammars, we can rewrite this as follows.
tI “ xtε, tµy, where

(6)
p f pt0, ¨ ¨ ¨ , tΩp f q´1qq

ε:“Iεp f qptε0, ¨ ¨ ¨ , t
ε
Ωp f q´1q

p f pt0, ¨ ¨ ¨ , tΩp f q´1qq
µ:“Iµp f qptµ0 , ¨ ¨ ¨ , t

µ

Ωp f q´1q

Notice that due to the partiality of the functions, the values tε, tµ, and so on, do
not always exist. A constant term is therefore called definite if tI exists. The
language generated by the grammar xIε,Iµy is the set of all xtε, tµy for definite,
constant terms t.

Call L unambiguous if for all xe,my, xe,m1y P L, m “ m1.

Proposition 1. If L is unambiguous and compositional it is also independent.

The idea is this. Suppose e in (1) depends both on ei and mi. By assumption,
L is a partial function from E to M, and so we may eliminate mi by using Lpeiq

instead. Reformulated in this way e depends only on the ei.
To show the scope and limits of the notion of compositionality let me state and

prove the following fact. Define for a language L the projection

(7) p1rLs :“ te : there is m P M: xe,my P Lu
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Proposition 2. Suppose that M is finite and that L Ď A˚ ˆ M is a language such
that p1rLs is at most countable. Then L has an independent bigrammar.

Proof. Clearly, a finite language has an independent grammar (just define a mode
for each sign, and no other modes). So assume that L is infinite. p1rLs is then
infinite (since M is finite). By assumption p1rLs is countably infinite, and so there
is a finite set U of partial functions on A˚ that together generate p1rLs. For each
u P U and m P M create a new mode gu,m, whose arity is the arity of u. Now put

(8) eu,m
pe0, ¨ ¨ ¨ , en´1q :“

$

’

&

’

%

upe0, ¨ ¨ ¨ , en´1q if upe0, ¨ ¨ ¨ , en´1q is defined
and xupe0, ¨ ¨ ¨ , en´1q,my P L,

undefined else.

Also, let cu,mpm0, ¨ ¨ ¨ ,mn´1q :“ m. Finally, let Iεpgu,mq :“ eu,m and Iµpgu,mq :“
cu,m. The bigrammar xIε,Iµy is obviously independent, and it is straightforward
to show that it generates exactly L. �

Notice that the proof reveals that the grammar for the string language can be
used as a backbone to define the semantics on top.

3 Propositional Logic
Let us start by looking in depth at propositional logic with negation and conjunc-
tion. This language will be given almost in the form of an independent grammar,
namely by providing an inductive definition. Let A :“ tJ,K, (, ), ¬, ∧u be the
alphabet, and E “ A˚, the set of finite strings over A. D is the smallest subset of
A˚ ˆ t0, 1u such that

• xJ, 1y P D.

• xK, 0y P D.

• If xe,my P D then x(a¬aea), 1´ my P D.

• If xe,my P D and xe1,m1y P D then x(aea∧ae1a),mintm,m1uy P D.

Let us now define a bigrammar that generates this language. Let F :“ t f0, f1, f2, f3u,
Ωp f0q “ Ωp f1q :“ 0, Ωp f2q :“ 1 and Ωp f3q :“ 2. Ibp f0qpq :“ xK, 0y, Ip f1qpq :“
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xJ, 1y. Now, let npeq :“ (a¬aea). (It is not necessary to restrict the input to a
formula since only formulae will be generated anyhow.) Then

(9) Ibp f2qpxe,myq :“ xnpeq, 1´ my

Likewise, let cpe, e1q :“ (aea∧ae1a).

(10) Ibp f3qpxe,my, xe1,m1yq :“ xcpe, e1q,mintm,m1uy

The language that this system of functions generates is exactly D. Notice that all
partial functions are even functions.

We now extend this idea to other propositional languages. Suppose that we
want to have more basic expressions. Then if they are constants, there is no prob-
lem to add them, provided we also name their truth value. So, we can add the
following basic sign.

(11) xHesperus is Phosphorus, 1y

On the grammar side all we need to do is add one more 0-ary mode of compo-
sition. Or suppose we want to add another connective. If it is truth-functional,
again this is straightforward. What is not straightforward, though, is the addition
of variables. This is where all trouble starts.

Before I start, let me comment on the question of the alphabet. Typically, logic
textbooks treat the expression “pi” as a single letter. Obviously, a language with
infinitely many primitive symbols needs infinitely many modes. On the other
hand, in actual use the index is produced in decimal notation, so that in fact we
do use a finite alphabet. Of course we then have to determine the value of the pi

starting from a finite list. On that problem see [Kracht, 2011].

First Try. A variable denotes anything that a well-formed formula denotes, so
for a variable pi we simply enter xpi, 0y and xpi, 1y into the language. Let DV be
the smallest subset of pAY tpi : i P Nuq˚ ˆ t0, 1u satisfying all of the following.

• xJ, 1y P DV .

• xK, 0y P DV .

• xpi, 0y P DV (i P N).

• xpi, 1y P DV (i P N).
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• If xe,my P DV then x(a¬aea), 1´ my P DV .

• If xe,my P DV and xe1,m1y P DV then x(aea∧ae1a),mintm,m1uy P DV .

If we want to work with a finite alphabet, we can do the following. Put B :“
A Y tp, 0, ¨ ¨ ¨ , 9u. Now throw out the clauses for the variables and generate the
variables step by step. This yields the following grammar.

À xJ, 1y P DV .

Á xK, 0y P DV .

Â xp, 1y P DV .

Ã xp, 0y P DV .

Ä If xe,my P DV and e is a variable then for every digit d, xead,my P DV .

Å If xe,my P DV then x(a¬aea), 1´ my P DV .

Æ If xe,my P DV and xe1,m1y P DV then x(aea∧ae1a),mintm,m1uy P DV .

e is a variable iff it is in pp0| ¨ ¨ ¨ |9q˚. Notice that p0 is a variable and distinct from
p as well as p00. It is not hard to change this to standard decimal notation but we
refrain from going into such detail.

This approach, however, does not work. For it turns out that we can derive both
the sign x(p0∧(¬p0)), 0y and x(p0∧(¬p0)), 1y. Let us see how this goes. The first
is perhaps straightforward:

1. xp, 0y P D. (Ã)

2. xp0, 0y P D. (From 1 with Ä.)

3. x(¬p0), 1y P D. (From 2 with Å.)

4. x(p0∧(¬p0)), 0y P D. (From 2 and 3 with Æ.)

However, here is the second derivation.

1. xp, 0y P D. (Ã)

2. xp0, 0y P D. (From 1 with Ä.)

3. xp, 1y P D. (Â)
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4. xp0, 1y P D. (From 3 with Ä.)

5. x(¬p0), 1y P D. (From 2 with Å.)

6. x(p0∧(¬p0)), 1y P D. (From 4 and 5 with Æ.)

It is illuminating to see why exactly we get this outcome. Let a0 through a9 be
new functions on strings, defined by a0peq :“ ea0, ¨ ¨ ¨ , a9peq :“ ea9. All of
them are partial, being defined if and only if e is a variable, that is, a member of
pp0| ¨ ¨ ¨ |9q

˚. Let FV be F Y tp0, p1, g0, ¨ ¨ ¨ , g9u where p0 and p1 are zeroary and
g0 through g9 are unary. They are interpreted as follows.

• Ivpp0qpq :“ xp, 0y.

• Ivpp1qpq :“ xp, 1y.

• Ivpgiqpxe,myq :“ xaipeq,my.

This defines an independent bigrammar Iv in the obvious way (you just need to
define Iεv and Iµv ). Each of the two derivations can now be rendered as a constant
term. The first is f3pg0pp0pqq, f2pg0pp0pqqqq, or, omitting brackets, f3g0 p0 f2g0 p0.
The second derivation however comes from the term f3pg0pp1pqq, f2pg0pp0pqqqq,
or f3g0 p1 f2g0 p0. This term must be different since on the level of generating signs
there can be no indeterminacy. Different signs must be generated from different
terms.

Thus, allowing variables to denote any truth value is not enough. We must
ensure somehow that the values we enter in the derivation are coordinated (to use
a term by Kit Fine here, see [Fine, 2007]). Once we enter 1 as value for a variable,
we must stick to that value throughout the derivation. But why should that be
necessary? If it means one or the other, why can’t we choose freely which one it
is supposed to mean on each of the occasions? 2

Second Try. We give up on truth values. Instead we now claim that wffs denote
sets of valuations. A valuation is a function V Ñ t0, 1u, where V is the set of
variables. Now we define our language DG as follows.

• xJ, t0, 1uVy P DG.

• xK,∅y P DG.

• xpi, tβ : βppiq “ 1uy P DG.
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• If xe,my P DG then x(a¬aea), t0, 1uV ´ my P DG.

• If xe,my P DG and xe1,m1y P DG then x(aea∧ae1a),mX m1y P DG.

Again, to eliminate the infinite set of variables, here is a way to proceed. Given a
variable e, let e§ :“ tβ : βpeq “ 1u. Given a set U of valuations, let U: be that
variable e such that U “ tβ : βpeq “ 1u. This does not always exist. However, if e
is a variable, and xe,my P DG, then m: exists, is unique and m: “ e. The signature
is as in the previous grammar, except that p1 is removed from the set of modes.
We provide the following interpretation.

• Iyp f0qpq :“ xK,∅y.

• Iyp f1qpq :“ xJ, t0, 1uVy.

• Iypp0qpq :“ xp, p§y.

• Iypgiqpxe,myq :“ xaipeq, paipm:qq§y.

• Iyp f2qpxe,myq :“ xnpeq, t0, 1uV ´ my.

• Iyp f3qpxe0,m0y, xe1,m1yq :“ xcpe0, e1q,mintm0,m1uy.

This works perfectly. The only trouble is that it is hard to see why this is the se-
mantics we had in mind. Why should for example J denote some set of functions
when it actually is thought to denote a truth value?

Such complaints can be countered by saying that our original intuition was
unsound. It needed to be revised minimally to make the enterprise work. But
more problems arise. The set t0, 1uV of all functions from V to t0, 1u can hardly
be said to be a semantic object in the first place, because it presupposes some part
of the language to exist independently of the language itself. To see this, recall
that a function β : V Ñ t0, 1u is a set of pairs of the form xv, ty, where v P V and
t P t0, 1u. If however this is part of semantics, what is the name of the variable
doing here? If t0, 1uV could truly be claimed to be the meaning of J, there would
be a universal set of variables that we had to claim to exist, and which would
be the one that we always had to use when it comes to using variables. This is
because the semantic value must be an object which exists independently of the
language to be defined. Hence, we must dispense with these functions. 2
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Third Try. We refine the previous version by introducing possible worlds. We
replace the set of functions from V to t0, 1u by a suitable set W of worlds. Proposi-
tions are interpreted as specific subsets of W. This removes reference to variables
in the semantics. However, a new problem arises. If we have κ variables but less
than 2κ many worlds we have less worlds than we need to maximally distinguish
the values of the variables. That might simply mean that the semantics is cho-
sen incorrectly. But one wonders why the number of possible worlds should have
anything to do with the number of variables we have in the language. The answer
is that this semantics makes the value of a variable a constant. Variables and con-
stants are completely indistinguishable. Something is amiss. We shall return to
the distinction between variables and constants below in Section 5. 2

Fourth Try. I shall outline another account, one that works with finitary valua-
tions (see [Kracht, 2007]). The idea is this. We enter into the language the pairs
xpi, t0, 1uy, for any i. The rule of negation is as follows. If xe,my has been de-
rived, and m Ď t0, 1un then x(a¬aea), t0, 1un ´ my. This works fine except when
m “ ∅, in which case n cannot be chosen uniquely. In this case we simply choose
n :“ 0. Conjunction, however, is a hard nut. Let us assume first that e and e1

share no variables. Then the new sign is x(aea∧ae1a),m ˆ m1y. In this way, a
formula where each variable occurs only once, can be derived. However, notice
that the meaning of (p0∧(¬p1)) is the same as the meaning of (p1∧(¬p0)), or
even of any (pi∧(¬p j)) namely tx1, 0yu. The association between variables and
columns of the vectors is done in the basis of the linear order. Now, when the two
formulae do share variables we must look at each of the columns of m and check
which ones of m1 it must match. To that end we must also know what variable that
column represents, and likewise for m1. If they represent the same variable, these
columns must be merged. The merger of column i and j in a set of vector results
in the subset of all vectors where the ith and the jth column are identical. The
net result is that we need many different composition functions for these different
cases, and this number is growing with n. Hence this method only works in case
n is bounded! 2

Fifth Try. There is a somewhat extreme proposal that is inspired by Fine’s “co-
ordination”, [Fine, 2007]. The idea is that when we have two formulae, conjoin-
ing them requires making clear which of the occurrences of a variable of the first
formula is to be thought of as an occurrence of the same variable in the second
formula, regardless of the name it has been given. This view of coordination
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removes the independence of the occurrences in a formula, since rather than by
name they have been locked together by construction. Suppose that we deny that
in (p0∧(¬p0)) there are two occurrences of p0 and instead claim there to be only
one. This would then have the favourable consequence that replacement in the
sense of the grammar of p0 by p1 would yield (p1∧(¬p1)) since there is only one
occurrence that is being replaced. There are many ways in which this proposal can
be made to work. One is to differentiate various operations of conjunction. The
default operation of conjunction makes all occurrences of variables distinct, say,
by suitably renaming the variables of the second formula before concatenation.
There are however others that result in making certain variables of the second
conjunct identical to the first. For example, if the two conjuncts contain only one
variable, then the second operation would make them identical to the first. Syn-
tactically, this requires the following operation c1. If e contains only one variable
p, and e1 contains only one variable, p1, then c1pe, e1q shall be (aea∧ae2a), where
e2 is obtained by string replacement of all string occurrences of p1 by p in e1. The
formulation of occurrence requires some care in general, but in propositional logic
it boils down to mere substring occurrences (see below). The operation is then de-
fined in this particular case. The problem with this attempt is that it cannot work.
We need infinitely many operations since the more variables e and e1 contain the
more possibilities of coordination we need to take care of. The impossibility of
such an approach for predicate logic has been demonstrated in [Kracht, 2011], but
I guess the proof can be modified for propositional logic as well. 2

In order to understand the true predicament, we need to look at the semantics
of a variable. As has been noticed over and over, all that matters about variables is
whether they are same or different. In and of itself, no variable should essentially
have a different semantics from any other variable. Furthermore, according to
[Fine, 2007], the meaning of a variable is the entire range of values. Following
my own [Kracht, 2011], it might be more appropriate to say that a variable is
ambiguous between all possible values that it can assume. Thus in the present
context we are led to conclude that the semantics of the First Try is completely
right and the repair using valuations or possible worlds is misguided.

Thus, the language for which we ought to give a compositional account is the
following language, defined above.

(12) DV :“ txe,my : e P W, for some β: m “ βpequ

It is embarassing to see the language specified in terms of valuations. It may suf-
fice in order to clearly state what we are aiming for, but it would be discomforting
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if reference to valuations were at all necessary in defining the language in the first
place. One feels something is fundamentally amiss here.

Hence let me give a somewhat different definition, which will be useful for
the discussion in the next section. Say that a ground substitution is a function
σ : V Ñ tJ,Ku. The effect of the ground substitution on a formula is as follows.
Recall that a variable p is a string consisting of the letter “p” followed by a decimal
string. p is said to occur in e if e has a decomposition e “ uapav, where v does
not begin with a digit. So, p2 occurs in (p2∧(¬p17)) but not in (p23∧(¬p17))

since in the latter formula the occurrence ends before a digit (here 3). If we have
a decomposition e “ uapav where v does not begin with a digit, the pair xu, vy
is called an occurrence of p in e. Hence, p occurs in e if there is an occurrence
of p in e. If q is a formula, replacing the occurrence xu, vy of p in e by q gives
the string uaqav. q has a new occurrence in the new formula, namely xu, vy; that
occurrence now is no longer an occurrence of p (provided q , p). Now, σpeq is
the result of replacing simultaneously every occurrence of p by σppq, for every
p P V .

(13) DV :“ txe,my : e P W, there is a ground substitution σ : xσpeq,my P Du

According to Proposition 2 there is a compositional bigrammar for this language.
I present such a bigrammar. The set of basic symbols is t0, ¨ ¨ ¨ , 9, p, (, ), ¬, ∧u.
Define the following functions on strings.

(14)

a0peq :“ea0

a1peq :“ea1

¨ ¨ ¨

a9peq :“ea9

npeq :“(a¬aea)

c0pe, e1q:“

#

(aea∧ae1a) if x(aea∧ae1a), 0y P DV

undefined else.

c1pe, e1q:“

#

(aea∧ae1a) if x(aea∧ae1a), 1y P DV

undefined else.

Then we have the following modes: π0, π1 (0-ary), α0, ¨ ¨ ¨ , α9, ν (unary) and γ0,
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γ1 (binary). Their action is as follows.

(15)

π0pq :“xp, 0y
π1pq :“xp, 1y
α0pxe,myq :“xa0peq,my

¨ ¨ ¨

α9pxe,myq :“xa9peq,my
νpxe,myq :“xnpeq, 1´ my
γ0pxe,my, xe1,m1yq:“xc0pe, e1q, 0y
γ1pxe,my, xe1,m1yq:“xc1pe, e1q, 1y

It is clear that this bigrammar is independent.
So why isn’t this a grammar we can accept? Apart from reservations con-

cerning the generation of variables, which can be dealt with, two problems must
be considered. One is the definition of the language, which involves quantifying
over substitutions. This is hardly a significant progress over the valuations. It
involves quantifying over alternative signs, though ones that do not involve vari-
ables. Herein lies the key to our proposal in the next section. The other problem
is the definition of the conjunction. One feels betrayed that the reason why the
formation of the conjunction of two formulae should fail in one mode when it
succeeds in another. And we also do not get an explanation why there is no se-
mantic function of conjunction even used in this definition.

What are aiming for is a formulation of a bigrammar that does not artificially
restrict the formation of the conjunction of two formulae. Hence, we want to use
only the function cpe, e1q. That is to say, we have definite intuitions about the
syntactic functions that may be used. If that is so, however, it becomes hard to see
how a compositional grammar can be given. Indeed, with the functions as above,
it cannot exist. For there are formulae e and e1 such that cpe, e1q can be true while
both e and e1 can be true (say p0 and p1), while there are formulae 9e and 9e1 such
that cp 9e, 9e1q cannot be true while 9e and 9e1 can be true (for example p0 and (¬p0)).
Hence we need a semantic function w1 such that w1p1, 1q “ 1 and another function
w0 such that w0p1, 1q “ 0. This means that we need a mode that combines c on the
expressions with w0 on the meanings (“conjunction to truth”) and one combining
c on the expressions with w1 on the meanings (“conjunction to falsity”). However,
then we are also able to derive xcp 9e, 9e1q, 1y, which is a contradiction.

Notice that the semantic functions work on impoverished data (only truth val-
ues), while the syntactic functions have all information available to them (the
language is unambiguous). This asymmetry makes compositionality seem guar-
anteed.
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Let us finally consider a variant of the semantics of DV . Suppose we put

(16) e˝ :“ tβpeq : β : V Ñ t0, 1uu

Then let

(17) DW :“ txe, e˝y : e P Wu

This means that there are now three values: t0u (“contradiction”), t1u (“tautol-
ogy”) and t0, 1u (“contingency”). This language is only slightly different from
DV . A tautology now denotes t1u in place of only 1, and a contradiction denotes
t0u in place of only 0. Instead of allowing a contingent formula to have two mean-
ings, 0 and 1, it now has only one meaning, the set t0, 1u. It should be clear that
nothing of substance changes had we chosen to use that language instead of DV .
However, I find DV appropriate.

4 Metavariables
It seems that adding variables makes maintaining compositionality impossible.
We are led to conclude that logical languages—in fact any language—with vari-
ables cannot be compositional. Yet, there appear to be several alternatives on the
horizon that are worth exploring. One of them is to actually deny that variables
are part of the language.

Recall that in expositions of logic typically two kinds of variables are used: the
first are the variables that are part of the language and the second are the variables
that are not and are therefore called metavariables. Metavariables are placehold-
ers for formulae, while variables of the language are formulae themselves. It is
the latter kind of variable that gives us so much headache. The reason is, I guess,
pretty simple, and has been pointed out on numerous occasions by Kit Fine: the
only thing that distinguishes one variable from the next is its name. The semantic
difference between variables is therefore nil. Hence, in manipulating variables we
must pay attention to their names. This in turn means that we should not even
expect a compositional account of them to be viable.

Therefore there seems to be no way of reconciling the idea that variables are
part of the language with compositional semantics. However, if they are not part
of the language, then we must further ask what logic is all about. The answer that
I shall explore here is that logic is about abstraction from language. The fact that
(p0∧(¬p0) is a contradiction does not lie in the fact that we cannot composition-
ally generate the value 1 for it. Rather, it lies in the fact that it does not allow to
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be instantiated to a true proposition. Therefore, rather than passing immediately
to a semantic evaluation we first need to ask what the letter p0 stands for. Once
that is given, a value can be computed. So, only by inserting, say, /Socrates is

wise/ we find that the sentence can be false. Likewise, to see if it can be true, we
need to find a ground instance that denotes 1. Thus, the tautologies of a language
are defined with respect to the ground substitutions for that language. It is perhaps
instructive to compare Euclid’s method of proof with that of Diophantus. Euclid’s
proofs are modern. They proceed on arbitrary objects. He would start a proof
by taking a triangle ABC without specifying the nature of the points A, B and C.
Diophantus, on the other hand, always picks concrete numbers and performs the
calculations on them. He leaves it to the reader to abstract the recipe from that
calculation. His method is only seemingly inferior to that of Euclid, however. Be-
cause in both cases we make reference to actual objects to substantiate the claims
that we are making. The difference is when we want to actually use them in our
argument.

Let us pursue this for boolean logic. We start with a language L Ď E ˆ M.
First we need to define the notion of substitution instance. Although clear in the
present case, I have argued at length elsewhere that substitution actually presup-
poses a grammar. This is awkward, but it shows that abstraction is not uniquely
determined by the language alone. Consider a grammar over a signature Ω of
modes. We define in the usual way terms and functions over the signature. The
terms may involve the variables ξi, i P ω, for signs.

It is assumed that terms can be evaluated into a sign xtε, tµy, using the standard
inductive definitions.

Definition 3. A schematic expression is an Ω-term tpξ0, ¨ ¨ ¨ , ξn´1q. A schematic
expression is ground if n “ 0.

So far, ‘expression’ is synonymous with ‘term’, while ‘expression’ is other-
wise reserved for members of E. The idea is that we can find representatives of
the terms that function in the same way as expressions. If t is ground it may be
identified with its value under Iε (which is unique, as the language is unambigu-
ous). A schematic expression becomes an expression (via Iε) once the variables
ξi occurring in it are replaced by ground terms. However, in general the result
can be rather different depending on what ground expression is being inserted. To
see the level of detail needed, consider the expression “7 ` 5” of ordinary arith-
metic. Replacing it for “x” in “3x” requires the addition of brackets, so we must
write “3p7` 5q” rather than “37` 5”. Unless we think of the strings as proxy for
the ‘correct’ notation (see [Machover, 1996], which is representative for such an
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approach), the syntax of generating such expressions is somewhat more abstract
and means that substitution is more than simple string replacement (see [Kracht,
2004]). I repeat here that substitution is defined only for a given grammar. If we
decide to use string replacement for arithmetic terms we end up with a completely
different view of abstract truths. There is as yet no reason to suppose that we can
exclude this grammar from the range of possibilities.

That said, let us ignore these complications of syntax. I shall write in the
usual way “p1 ^ p0” to quote the somewhat imperspicuous schematic expression
“cpξ0, ξ1q” so that in the end we treat the metavariables as if they were genuine ex-
pressions (= variables). More concretely, the schematic expression corresponding
to a term is obtained in the following way.

(18)

pξiq
♠ :“pi

p f0pqq
♠ :“K

p f1pqq
♠ :“J

p f2ptqq♠ :“(a¬at♠a)
p f3pt, uqq♠:“(at♠a∧au♠a)

(This is based on an infinite alphabet; it is a simple matter to correct that.) Or,
more generally, for all f :

(19) p f pt0, ¨ ¨ ¨ , tΩp f q´1qq
♠
“ f εpt♠0 , ¨ ¨ ¨ , t

♠

Ωp f q´1q

But this obscures the fact that the string functions are actually string polynomials
and so the actual form of the translation makes them look like actual formulae
with the variable put exactly where the substitution is to be effected.

I shall pass freely between terms and their corresponding schematic expres-
sions.

Definition 4. Let I be a grammar for L and t a schematic expression. A ground
instance of t is the value Iεpσptqq, where σ is a substitution replacing each ξi by
some ground expression.

Metatheoretically, we can ask the same questions about substitution for the
schematic expressions. Suffice it to say that the replacement must in that case be
uniform. Logic arises from a language in the following way.

Definition 5. Let L be a language with independent grammar I. Then the logical
theory of L, Th L, is that set of schematic expressions t such that for all ground
instances u of t, uµ “ 1.
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If the language is ambiguous, the definition is actually more general than might
be justified. Namely, given a ground substitutionσ,σptqI is the sign xpσptqqε, pσptqqµy.
It may happen that pσptqqµ , 1, but that nevertheless xpσptqqε, 1y P D. This will
not happen here, as ground instances have unique values. I have not looked at the
complications arising from this exceptional case. Notice also how the definition
trades on unique readability.

In general it is necessary to use an equational theory (pairs t “ u such that all
ground instances receive the same value under all substitutions). But we use the
easier case here (benefitting from the fact that we have an algebraizable logic).

It is clear that the logical theory depends on I. Let us take boolean logic, with
the grammar given at the beginning of Section 3.

Theorem 6. Th D under Ib is exactly classical propositional logic.

Proof. This is actually a trivial consequence of the definitions. Let t P Th D. We
have to show that t (under the identification shown above) is a boolean tautology.
To this end, choose a valuation β. Now let σ be a ground substitution defined
by σpξiq :“ J if βppiq “ 1 and σpξiq :“ K otherwise. Then σptq is a ground
instance of t and by definition of Th D, Iptq “ xIεpσptqq, 1y P D. The value is
unique, hence Iµpσptqq “ 1. It is directly verified that Iµpσptqq “ βptεq. Hence,
tε is a boolean tautology. Now let t < Th D. Then there is a ground instance σptq
such that xσptqε, 0y P D. From this we construct a valuation as above such that
βptq “ 0. It follows by similar reasoning that tε is not a boolean tautology. �

In what is to follow I shall ask how this result can be generalized. Let me
highlight a few general facts about this definition. First of all, the set Th D is
obviously closed under substitution. For let tpξ0, ¨ ¨ ¨ , ξn´1q P Th D and let σ
be a substitution of terms uipξ0, ¨ ¨ ¨ , ξm´1q for ξi (i ă n). Then every ground
instance of tpu0p~ξq, ¨ ¨ ¨ , un´1p~ξqq is a ground instance of t, and hence has value 1.
Furthermore, Th D is closed under MP (where Ñ is either primitive or defined as
usual). For suppose that t has the form u Ñ v and that both t and u are in Th D.
We show that v P Th D. Pick a ground substitution σ. Denote σptqε by t1. Then
t1 “ u1 Ñ v1, where u1 “ σpuqε and v1 “ σpvqε. By assumption, xu1, 1y P D as
well as xu1 Ñ v1, 1y P D. Therefore xv1, 1y P D. The ground substitution was
arbitrary. Hence v P Th D.
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5 Modal Logic
One of the attempts to salvage compositionality was the introduction of possi-
ble worlds. I have criticised that proposal for blurring the distinction between
variables and constants. I shall show in some detail here how that same confusion
affects modal logic itself. We shall see that many standard systems trivialise under
the approach sketched here if they have no constants.

That said, let us now turn to modal logic. The definitions remain in place.
However, the semantics is somewhat more involved. To see the difference with
boolean logic notice that in boolean logic there are two possibilities: a proposition
is true, or it is false. In modal logic, however, there are many more truth values.
In fact, definitions of logics usually start with an intuition about what the proper
axioms are and then ask how the semantics fits in. In the scheme of things exposed
here this cannot be done. We must first determine what the values are, because
the language pairs expressions with meanings so that we must first say what the
meanings are.

Let F :“ xF,R,Uy be a general frame. This means that F is a set (the set of
possible worlds), R Ď F2 the so-called accessibility relation on F, and U Ď ℘pFq
a set of subsets of F closed under intersection, relative complement and

(20) τ a :“ tw : for all v: w R v ñ v P au

We put M :“ U and define the language DF as follows. (Actually, we define an in-
dependent bigrammar that generates this language.) The grammar Ib is extended
by another unary mode, m, to yield the grammar Im. We put

(21) Impmqpxe,m1yq :“ x(a2aea), τm1y

This is clearly independent. Finally, we also define the function p´q♠ from schematic
expressions to terms, by adding one clause to (18):

(22) pmpuqq♠ “ (a2au♠a)

Recall that given a modal logic Λ, we define the canonical frame CanΛpVq over a
set V of variables as follows. Let LV denote the set of formulae built from V with
the functions f ε. WV is the set of all maximal consistent sets of formulae from
LV . For any two such sets G and H, we put G RV H iff for all (a2aea) P G we
have e P H. Finally, for a formula e P LV , let êV :“ tG P WV : e P Gu, and
UV :“ têV : e P LVu. Then

(23) CanΛpVq :“ xWV ,RV ,UVy
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The structure of CanΛpVq depends only on the cardinality of V (apart from Λ of
course). So one usually writes CanΛpκq, κ a cardinal number.

Now let Λ be given. As before, if the semantics is to be compositional we
are not allowed to have any variables. So, the correct semantics is defined by the
frame CanΛp∅q and nothing more. This means that the logic Λ gives rise to the
following language.

Definition 7. Let Λ be a modal logic. The canonical language associated with Λ

is txe, ê∅y : e P L∅u. It is denoted by LgcpΛq.

To see where this leads us we give a concrete example. Given Λ, write ϕ ”Λ χ
if both ϕÑ χ P Λ and χÑ ϕ P Λ, using ϕÑ χ as an abbreviation for pϕ^ χq.
Consider the modal logic D, which is K plus the axiom 3J. In D, there are only
two constant formulae, since 3J ”D J, 3K ”D K. (In K there are infinitely
many nonequivalent constant formulae.) Thus, if a formula is a theorem if every
variable free instance is we conclude that every formula is either a theorem or its
negation is. There are up to equivalence only two constant formulae. This means
that the canonical language is the following:

(24) LgcpDq “ txe,∅y : e ”D Ku Y txe,W∅y : e ”D Ju

Let us now see what happens if we abstract the logic from this semantics. We
have just seen that there are no contingent formulae. Furthermore, 33p Ñ 3p
turns out to be a theorem: suppose we substitute J for p. Then since 3J ”D J

we have 33p Ñ 3p ”D J. Suppose we substitute K. Then since 33K ”D K,
33p Ñ 3p ”D J. This shows that 33p Ñ 3p is a theorem of LgcpDq.
Likewise one can show that 3p Ø p P LgcpDq. Recall that K ‘ p Ø 3p is the
logic of the one point reflexive frame, and that it has only two extensions: itself
and the inconsistent logic. This means that all consistent logics above D collapse
into one. To put this into perspective, define the following.

Definition 8. Let Λ be a modal logic. Then ThCanΛp∅q is called the substitu-
tional companion of Λ and denoted by CppΛq.

To see the origin of the nomenclature, let us give an alternative characterization.

Proposition 9. CppΛq is the set of all ϕ such that for all ground substitutions σ
σpϕq P Λ.

Proposition 10. The substitutional companion of Λ is the logical theory of its
canonical language.
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Clearly, Λ is contained in its substitutional companion. For Λ “ ThpCanΛpωqq,
and ThpCanΛpκqq Ď ThpCanΛpλqq whenever λ ď κ.

The difference between these logics can be rather large, however. From what
we observed above, the 0-generated canonical frame consists of a single world.
Hence we obtain

Proposition 11. Let Λ Ě D be consistent. Then the substitutional companion of
Λ is K‘3p Ø p.

Is that at all a reasonable outcome? I think yes. For all the talk of arbitrary
propositions hides the fact that they do not necessarily do us any service. If all we
can really express is J and K, talk of an arbitrary constant is meaningless. How
we are going to justify a weaker logic if we cannot supply any counterexample to
the stronger postulates? In a way, then, being able to express less means that your
logic grows in strength since there are less possibilities to disprove some formula.

Thus, in order to get more discriminatory power we must introduce more con-
stant propositions. Essentially, as the logic is defined by its countably generated
canonical frame, we get our logic back provided we have enough constant propo-
sitions. Depending on the logic itself, “enough” may mean some finite number or
ℵ0. Let us take a closer look.

We first assume that we already have an expansion LC of our language by
some set C of constants. Generally, these constants need not be independent.
By that we mean that the logic in the language expanded with these constants is
the substitutional closure of Λ in the new language. Or alternatively, that the logic
in the language with the constants is axiomatized by Λ (though it is not identical
with Λ). This is stronger than mere conservativity which only requires that adding
the constant does not add tautologies in the old language. For example, expanding
D by some constant c may lead to a logic in which c Ø J is valid. This may well
occur. Since this is not the result of substituting for a formula, the constant is
not independent. So, to determine the fate of our constants we look at the logical
theory of two languages: the one defined from the expanded language LC and the
other defined from the unexpanded language L. Call the first TC and the second
T . Now let T 1 :“ TC X L. This is the subset of TC containing all formulae from L.
Clearly, T 1 Ď T , for LC allows more ground instances than L. It may also happen
that T 1 “ T . If we add countably many independent constants we get back our
original logic. This is summarised in the next theorem.

Theorem 12. Let L be a string language. Let C be a countably infinite set of
independent propositional constants and denote by LC the expansion of L by C.
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Let Λ be a modal logic over L, and ΛC the minimal extension of Λ in the lan-
guage LC. Then Λ “ CppΛCq X L. Moreover, CppΛCq is the result of closing Λ

substitutionally in LC.

6 Predicate Logic
Having shown how we can find a semantics for modal logic let us now briefly look
at predicate logic. Predicate logic, it turns out, is markedly different from modal
logic. In modal logic the countably freely generated frame is a generic semantics,
and we can restrict ourselves even to a specific valuation. Similarly in proposi-
tional logic, where a single matrix is typically enough. Everything can be decided
by looking at a specific model. In predicate logic this is the exception rather than
the rule. Unless the theory is categorical in some infinite cardinality there is no
hope of using a single model. Unlike modal logic, moreover, the quantifiers are
part of the language, and thus the elimination of variables is not likely to proceed.
Kit Fine has made an attempt to overcome the situation using arbitrary objects
([Fine, 1985; Fine, 1983]). Arbitrary objects are like Platonic ideas. When in a
proof you consider an arbitrary triangle and subsequently perform operations on
it, you are not doing it on a specific triangle, rather on an “ideal” version of it.
The problem with this is that we shall need to give up classical logic. For given
an arbitrary triangle, neither can we say that it is isosceles nor can we say that
it isn’t. This is the same when we consider abstract objects in general. What it
comes down to—in the end—is that we can only say that an arbitrary triangle has
some property if all its instances have that property. Which means that again we
must work our way up from the basic instances.

Let us see how that goes. Consider adding a countable set C of constants. As-
sume that there are no function symbols, only relation symbols. Furthermore, let
equality not be numerical identity but simply be an equivalence relation. Finally,
assume that the structure contains only those elements that are denoted by some
constant. (This is something of a covering rule. This can be assumed due to the
Löwenheim-Skolem Theorem without affecting the logic.) Now the quantifiers
can be seen as proxy for large disjunctions and conjunctions as follows.

(25) pp@xqϕq♥ :“
ľ

cPC

ϕ♥rc{xs, ppDxqϕq♥ :“
ł

cPC

ϕ♥rc{xs.

(Otherwise, p´q♥ commutes with conjunction and negation. For a prime formula
ϕ♥ “ ϕ.) This translation totally eliminates quantifiers and variables. Models
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can be built over the set C in the obvious way. However, we still need to face
up to the fact that there are several nonisomorphic models. So, our semantics is
rather a S5-frame with constant domain C. Again, for each individual structure
we know whether or not a given constant formula is true. Finally, we accept a
predicate logical formula ϕ as true if ϕ♥ is true in every structure, or if 2ϕ♥ is true
simpliciter at one (in fact, any) world.

7 Conclusion
The idea that logical languages must be compositional has been closely examined.
The conclusion is that we should as a rule rather expect that logical languages are
not compositional. And that has a reason worth exploring. Logical formulae do
not come primarily with a direct semantics. Logic comes after we have settled on
a language, which is defined to be a relation between expressions and meanings.
Logic then analyses the relationship between expressions in terms of their truth.
When it uses variables, however, it does not make them figure as genuine objects
of the language (= formulae) but rather always thinks of them as schematic. The
difference is easily missed. To give an example, think of defining some modal
logic. A particular formula is a tautology as long as it is true for every concrete
proposition we can put in place of the propositional variables. In terms of possible
worlds, the constant propositions take values that are absolutely definable sets of
worlds. (They can be defined without knowing the valuation.) In a nonschematic
understanding, however, we may have to consider also those sets that are not de-
finable by constant propositions. However, it is hard to see how such propositions
can figure in the definition of the logic itself. How do you effectively show that a
particular argument is invalid by pointing at some counterexample that you can-
not properly construct? The construction cannot be effected within the language
itself, it must rely on a higher order language within which the reasoning can be
couched.

This is not to say that there can be no general truth expressed within the lan-
guage itself. Generality is not what prevents a language from being compositional.
However, schematicity is. It transcends language in order to discover general pat-
terns of inference within it. We have shown that mostly variables can only be
understood as schematic. This is in sharp contrast to natural languages, which
have no variables and therefore can rely on algorithms of meaning composition
that are not schematic.
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