
On Reducing Principles to Rules

Marcus Kracht

Abstract

According to the research principles of the tradition established by Noam
Chomsky, one should always try to get rid of construction specific rules. In
Bare Phrase Structure he has carried this out to the extreme for the basic
generative component now known as X-bar-syntax. Based on this example,
we will examine the dialectics between specific rules and conditions on rules
or principles. We will show that there is a two-way reduction, one from rules
to conditions on rules, and the other from conditions on rules to specific
rules. As an effect of this reduction, a particular linguistic theory can be
presented alternatively as a set of rules or as an axiomatic extension of the
logical theory of all phrase structure trees—or in fact a suitable mixture
of the two. Although this reduction is a purely formal one—and therefore
less interesting for a linguist subscribing to the Principles and Parameters
approach—it offers the possibility to draw on a large array of results both
from logic and from ordinary formal language theory.

1 Introduction
In physics, and in science generally, we seek simple and elegant laws; laws that
hold without exception and which each explain a great variety of facts. Chomsky,
and many other linguists with him, have stressed that linguistics should not be
different in this respect. Of course, if linguistics were only a so-called soft science
we might not be able to expect laws to be 100% valid—we might have to allow
for exceptions. However Chomsky has insisted that linguistics deals with a real
object, the language faculty, and that we can expect hard results about this object.
[Chomsky, 1980] successfully defends the place of linguistics in science and its
particular mode of inquiry. Furthermore, in [Chomsky, 1986b] he has reminded us
of the fact that there is a difference between language the way it presents itself to
us (for example, in the form of grammatical judgments) and the way it is realized

1

and manipulated internally. The former has been called E-language, the latter
I-language.

Probably few people dispute that this distinction is reasonable and that we can
have nontrivial results about the I-language. However, quite often the insistence
that it is I-language that we should be interested in has been abused to shake off
critics. One example that concerns us here is the reduction of principles to rules
as undertaken in [Kracht, 1995b]. Remarking on this technique Chomsky writes
(p. c.)

[...] there is no nontrivial concept of weak generation, hence of weak
generative capacity, for any theory of language that has been seriously
proposed. Nor is there any explanatory gap that would be filled if such
a notion were constructed. That is to say, there is no reason to believe
that any such notion has the slightest relevance to natural language.

This passage at least implicitly uses the abovementioned distinction. The argu-
ment is that if the I-language does not make explicit use of a property then this
property is of questionable interest in linguistics. I agree with the first two sen-
tences, but not with the last. Any theory about I-language (or natural language
for that matter) has to meet the facts, and these facts are — in standard practice
— facts about E-language. Any attempt to systematize the latter will help in this
process of evaluation. Even if we do not make any attempts to elucidate the struc-
ture of I-language, the description of E-language may be worth pursuing. What
is more, we should welcome any result that mediates between various theoreti-
cal descriptions of language, be they of I-language or simply of E-language. The
reason is the following. If in the course of inquiry we have to discuss problems
concerning our theories, how do we settle the dispute? In the absence of any other
knowledge we will probably try to evaluate the theories as far as possible, see
where they differ and try to see which one is correct. To do this requires skill.
For how do we know the consequences of a theory, if, as has been pointed out on
numerous occasions, is so highly modular that small changes in one compo-
nent can have bewildering global effects? It might be trivial to evaluate the effects
given a specific construction, but who can foresee the precise overall effect of
such changes? And who knows the exact limits of this enterprise in full? These
are serious questions, and an answer is called for.

Perhaps this is not a problem for linguists. After all, linguists are interested
mainly in empirical questions. Maybe such problems should be relegated to math-
ematics. However, Chomsky claims (p. c.)

2

The problem of formalization is, in my opinion, not a very interesting
one. It’s an easy matter to formalize a theory, but also a pointless exer-
cise, which is why it is not undertaken in the natural sciences (even in
mathematics, until recently). When the need arises within a research
program, the gap can easily be filled (as it was in mathematics, when
it became useful). The reason why it is pointless to formalize is that
in doing so, we must make arbitrary decisions in areas where we do
not know the answers, and that is simply a waste of time — though
easy enough to do.

Although I half agree with these remarks, there is problem. In these remarks
Chomsky essentially identifies mathematics with formalization. By doing so,
Chomsky simply erects a strawman which he then successfully dismantles.

It’s easy enough, though mistaken, to identify mathematics with formaliza-
tion. Nearly all mathematics is formal in some sense — after all, typically lots
of formulae get used. And if mathematics is not formal then what else is? How-
ever, formalization within mathematics, in the sense referred to by Chomsky in
the above quotation, was a special development of the last century, aimed at plac-
ing mathematics on undisputable foundations. This did change mathematics since
it tightened the requirements of what is to be counted a proof. Nonetheless, in
everyday mathematics formalisation, in the strict sense, is absent: only precision
and clarity are required. Much work in linguistics lacks both, and it is a noble
task to look for remedies.

This distinction between formalisation and precision is well worth emphasiz-
ing. Strict formalization is often seen in linguistics. There is still the idea around
in linguistics and other sciences that more symbols mean more precision. This is
both false and dangerous, and Chomsky is right to criticize it.

However, mathematicians do not present their assumptions and theorems as
formal systems. They would be unreadable like this. Mathematics is not the art of
formalization. The latter is only a craft within it. Rather, mathematics is a special
form of inquiry, which explores the absolutely necessary conclusions of certain
assumptions. If presented with a theory a mathematician would ask questions like
What are the models of this theory? or To what theory might this one be equiva-
lent under suitable interpretation? or What are the consequences of this theory?
Usually, as is demonstrated by group theory for example, a system of classifying
the structures of interest is developed as a result of mathematical investigations
— thus one learns more and more about the structure of these objects and the
power of the theory. It is in this sense that mathematics is extremely useful for all

3

sciences — including linguistics.
This paper is not intended to be an abstract debate on the role of mathemat-

ics in linguistics. Rather, I will illustrate the utility of mathematics by discussing
in some detail the special relation between principles and rules. I will show how
rules can be reduced to principles, and how principles can be reduced to rules. The
prime example used throughout is X-bar-syntax. Lately, in [Chomsky, 1995] we
have witnessed the total elimination of specific rules in favour of principles. We
will analyse this particular solution and point at some difficult problems concern-
ing the overall strategy. We will show that the particular form of Principles and
Parameters Theory deriving from has its limits in that it cannot reduce certain
phenomena to principles. 1 In short, mathematics will provide us with a high level
view of the architecture of transformational grammar, and will enable us indicate
some of its problematic features.

This paper describes research that has been carried out in part in the Inno-
vationskolleg INK II/A12 ‘Formale Modelle kognitiver Komplexität’ funded by
the . I wish to thank Noam Chomsky, Carsten Grefe, Werner Simon, Juan
Uriagereka and Christian Wartena for discussions on this matter.

2 X-bar-Syntax
We begin by recalling X-bar-syntax in the particular form it reached in the 1980s
with the work of Stowell (see [Stowell, 1981]). X-bar-syntax provides a rudimen-
tary analysis of sentences. It consists of a list of primitive categories, n, v, infl,
comp, and nowadays a variety of functional categories such as agr–s, neg and
so on. Their number is limited and can be seen as being derived from properties
of the lexical items. Languages may or may not vary in their inventory of basic
categories. Each category can project a phrase. By that we mean, roughly, that
each category symbol not on a leaf of a syntactic tree can be traced to a leaf of
the tree. 2 The totality of nodes thus corresponding to a given leaf form a subset
of the tree which is linearly ordered by the dominance relation. This is called the
projection line of the lexical item or leaf. Each node within that line is a projection

1A note on terminology. There is a multitude of approaches that have been advanced by Chom-
sky. I use the cover term transformational grammar to refer to all of these theories. This includes
in particular , the Principles and Parameters framework and the Minimalist Program.

2This is a nontrivial fact corresponding to the requirement of strict endocentricity of construc-
tions. But this is only an exposition of X-bar syntax, not an explanation of why it is the way it
is.

4

of the leaf. In addition, projections have different levels, three for each category.
Going up the tree, levels may not decrease. 3 Notation and terminology is as
follows. With comp being a basic category, comp0 is a zero-level projection, also
called the lexical or minimal level projection, comp1, comp′ or comp the first-
level or intermediate projection and comp, comp′′ or compp the second-level or
phrasal projection. With categories getting more complex, we will follow the
-convention of writing them in the form of attribute-value pairs. The category
comp would be written in this notation as follows.[

 : comp
 : 2

]
We assume the following X-bar rules, in traditional notation:

(u) X′′ → X′ X′ → X0

(pp) X′′ → Y ′′ X′′ X′′ → X′′ Y ′′

(pi) X′′ → Y ′′ X′ X′′ → X′ Y ′′

(ii) X′ → Y ′′ X′ X′ → X′ Y ′′

(iz) X′ → Y ′′ X0 X′ → X0 Y ′′

(zz) X0 → Y0 X0 X0 → X0 Y0

This schema is just one of the possibilities. Specifically, we have chosen a form
of X-bar-syntax that holds throughout the derivation, not just at -structure. We
remain uncommitted with respect to this choice. The variables X and Y each stand
for any particular choice of basic category. 4

On the basis of these rules we can define what I want to call the centricity
role of a node. There are four types of centricity roles, namely head, complement,
specifier and adjunct. In each rule, one of the daughters is called the head. The
head is of the same category as the mother. The other daughter (if there is one)
is called a complement if one of the rules (iz) has been applied, specifier if one of
the rules (pi) has been applied, and adjunct in all other cases.

Immediately, a problem appears. Nothing prevents us from choosing X = Y ,

3Again, this is a nontrivial assumption.
4A notational point. [Chomsky, 1986a] uses in his exposition the variable X to denote both X

and Y , [Sternefeld, 1991] lets Y ′′ appear to both sides in a rule, but hastens to add that this means
it can appear on either side but not on both. Both are very unhelpful ways of stating the facts.
Incidentally, many have followed Chomsky in using X just as a piece of ink to which the level
symbols are tagged rather than as genuine variables.

5

in which case we cannot tell which is the head. 5 However, we can also move to a
fully articulated X-bar syntax by introducing explicit centricity roles. In attribute-
value notation we have a feature with values head, comp, spec, adct. To
keep notation short, we will use booleans. First one needs to introduce the cen-
tricity grammar. It is based on the head grammar, which itself only distributes the
headness role.

(u) > → head
(b) > → ¬head head > → head ¬head

(See [Kracht, 1995b] for more details.) Here, > is a constant for the unit, that is,
the element which is always true. As a consequence of this notation, the value
of the mother is totally unimportant for determining the centricity role of a node.
The roles comp, adct and spec are added by stating that all four centricity roles
are exclusive. This completes the definition of the centricity grammar. In the rules
(b), we are allowed to specialize ¬head to any of the three roles adct, comp and
spec. Thus, effectively the centricity grammar makes no real distinction between
adjuncts, complements and specifiers.

On top of the centricity grammar we can now define the X-bar syntax. Namely,
we say that (i) the category value is passed from the mother to the head daughter,
(ii) the levels are defined as follows: the level goes one down if there is no adjunct,
otherwise it is the same at the mother and the head daughter. The non-head has
level 0 if it is adjunct to a zero-level head, and is phrasal otherwise. We can see that
with the centricity grammar introduced, the levels are redundant. Notice that
and make use of the centricity roles, although it seems that would rather
regard the notion of a head as epiphenomenal. The complete phrase structure rules
(without levels), when put into (order irrelevant) attribute value notation, are like
this: [

 : 1
 : α

]
→

[
 : head
 : α

] [
 : ¬head
 : β

]
In [Chomsky, 1995] a bold attempt is made at eliminating X-bar syntax by

apparently reducing it to its bare minimum. The attack is chiefly directed towards
5[Fanselow, 1991] is the only place where I have found this problem being discussed. In

his view there can be only one head, and to identify it means that one has to resort to a more
complex definition. If we assume that there are no base generated adjuncts of phrases and minimal
projections then the problematic case appears only at -structure and . It has then been produced
by movement. It is clear that the adjoined constituent cannot be called a head. As long as the
derivational history can be recovered it is then in principle possible to say which daughter is the
head and which one is not.

6

the level grammar. We have already seen that it is in principle dispensible, but
it is worthwile to see Chomsky’s solution here. If we put adjunction aside for
the moment, we see that X-bar syntax mainly provides a reason for there being
a single complement and a single specifier. We can achieve the same by saying
that in a projection line the lowest node is lexical and the highest one is phrasal.
Assuming that we can always identify heads (for example by banning the rules
X0 → X0 X0 and X′′ → X′′ X′′) we can identify the level of each node. However,
since the levels are not intrinsic characteristics of single nodes, but are in fact re-
lational, the level of a node can only be recovered given a suitably large context.
If we want to abandon the restrictions posed by the levels on how to rewrite these
level-projections, we encounter the problem that we have to stipulate that with-
out adjunction any projection line has length three. ([Kayne, 1994], by the way,
achieves this by pairing linear order with asymmetric c-command.)

Chomsky is now led to assume that this restriction must be lifted. Given that
eventually there will be no explicit distinction between specifier, (adjunct and)
complement, this is most sensible, because it allows for the standard recursion
within phrases (for example, it allows, contra Kayne, any number of base gener-
ated X′-adjuncts, to use the old terminology). Furthermore, every rule must now
be branching. Chomsky now codes trees as sets in the following way. We define a
function t on binary branching trees with explicit marking of a head, and a func-
tion h which will define the head of the entire tree. If the tree τ consists only of a
single node, carrying the lexical entry α, then t(τ) := α and h(τ) := α. This is the
ground clause; for the inductive clause suppose that we have a tree τ consisting
of two immediate subtrees σ1 and σ2. We now need to know which of σ1 and
σ2 is the head. This is given to us by the assumption that the heads are explicitly
marked. Suppose the node y1, the root of σ1, is the head. Then

t(τ) := {h(τ), {t(σ1), t(σ2)}}
h(τ) := h(σ1)

There is the possibility that both terms are equal, in which case the set reduces to
{α, {t(y1)}}. On the assumption that trees are strictly binary branching, we can nev-
ertheless recover the original tree. However, this does not seem to be an intended
effect. If σ2 is the head, then h(τ) has to be defined as h(σ2). Furthermore, since
in the bare structure we need no levels, it is possible to use the head as a label.
Thus for the structure the book we have the following code

{the, {the, book}}

7

the
�

�
�

�
the

@
@

@
@
book

Notice that nothing is assumed about the relative order of the elements. Thus,
with the set notation, everything is derived from the lexicon.

Now, in order to incorporate adjunction, Chomsky uses a trick. Rather than
using the term {h(σ1), {t(σ1), t(σ2)}} he now defines (for σ1 the head of τ)

t(τ) := {〈h(σ1), h(σ1)〉, {t(σ1), t(σ2)}}

Thus, rather than using the lexical entry of the head of the construction as a marker
of the head of construction, he just uses the pair 〈h(σ1), h(σ1)〉. Given the typical
definition of a pair 〈x, y〉 as the set {x, {x, y}} we get

t(τ) = {{h(σ1), {h(σ1)}}, {t(σ1), t(σ2)}}

This encoding can also be used to give labels to each node in a tree; simply
identify the label of x with t(↓ x), where ↓ x is the constituent rooted at x. Seen
this way, each node label is actually also a code of the structure of the constituent
underneath that node. This explains why movement can never go down in a tree,
only upwards. (This was pointed out to me by Juan Uriagereka, who refers to
this as the Grandmother Problem.) Moving down would mean inserting some
nodes into the tree, whereby all labels further up would fail to correctly encode the
structure of the tree. Thus we have an explanation of why already built structure
resists manipulation. This explanation, however, is conditional on an analysis of
movement as a process that takes place in time, as does real movement. As much
as I agree with this — since it means that the term movement is well chosen as a
metaphor — it is precisely that interpretation that Chomsky rejects. We will not
pursue such issues further here. 6

3 The Human Computational System
In order to understand the motivation of Bare Phrase Structure one has explain the
framework in which it has been put, namely the Minimalist Program of [Chom-

6Another relevant question is why the representation should be in terms of sets, as presented
here. Such labellings should be excluded on economical grounds since they code what is present
in the structure anyway.

8

sky, 1993]. There Chomsky explores the consequences of the assumption that a
linguistic theory should employ only those concepts that follow — as Chomsky
puts it — with virtual necessity from the fact that the language faculty mediates
between sound and meaning. The difference between the Minimalist Program
and the aims of [Chomsky, 1995] is that in the latter he is more concerned with
minimizing the additional components of the representation itself rather than the
global architecture of the theory. The latter contains now two so-called interfaces,
namely (from syntax to) the articulatory-perceptual system (A-P) and (from syn-
tax to) the intentional-conceptual system (C-I). Ideally, what we observe as non-
trivial properties of the grammar should be consequences of conditions imposed
by the two systems. Chomsky assumes that there is one and only one lexicon, that
there is a single computational system (CHL) and that both together derive repre-
sentations that are fed to the two systems A-P and C-I. D-structure and -structure
have been abandoned, mainly because by definition a level of representation must
serve the purpose of checking nontrivial properties and if there is nothing to check
at these levels, they cannot be called levels of representation. It is formally pos-
sible (and sometimes also useful for comparison) to think that - and -structure
are there nevertheless, but the difference is that nothing is checked there. From an
explanatory point of view, however, we would loose something. Namely, it is a
specific conceptual advance that in the Minimalist Program conditions on repre-
sentations must be motivated by external demands. The computational system is
free to derive any structure it can, but those which violate output conditions, that
is, those which give rise to problems at the interface, are filtered out because the
systems to which they are sent are unable to handle them.

The computational system operates as follows. It draws from the lexicon
a multiset (Chomsky uses the term numeration, but this is practically the same
thing) and composes the items into trees via an operation called Merge, perform-
ing on its way some other nontrivial operations (forming chains, moving items,
and so on). There is no point at which the former -structure can be said to be
present. In that sense it has really been abandoned. Thus, CHL may draw the

9

multiset {reads, the, book}m 7 and then form a tree-term

{the, {the, book}}

identifying the as the head of the phrase (due to properties derived from the lexical
entry itself). It may then continue to incorporate the verb into the tree to yield

{reads, {reads, {the, {the, book}}}}.

The notation leaves a lot of things unseen. The entry for book contains extra
features, as do the verb and the determiner. In particular, all items are inserted
with full morphological specification, for example, for case, gender etc. (though
that is not a necessary assumption in the Minimalist Program). Features come in
two classes, interpretable features and uninterpretable features. Uninterpretable
features (e.g. Case) must be seen as genuinely syntactic, that is, they belong to
CHL and must therefore disappear before the (derived) structure is presented at the
interface. Interpretable features are allowed to survive the derivation, because the
C-I component does not reject them (as it would with the uninterpretable ones).
At the cost of misrepresenting the original proposal we can picture the elimination
of features as follows. A feature can have several values, val1, . . . , valn. CHL

operates by moving features; if that feature is connected with a constituent then
that constituent is taken along with that feature.

A note on terminology is actually necessary here. Features in the Minimalist
Program are by intention pairs [: val]. However, there is also talk of the
Case-feature of a . Here, we use the following convention. Only is the
feature, while the pair [: nom], say, is an elementary feature-structure. An
item can get rid of its elementary feature-structure [: vali] either by moving
into the specifier of or by adjoining to the head of a functional projection carrying
[: vali]. The word order variation is derived by assuming that features are
either strong or weak and that at the point at which the structure is prepared for the
articulatory interface, only elementary feature structures corresponding to weak
features are stripped off (this point is called Spell-Out). If strong feature-value

7The subscript m is used to identify this as a multiset. Recall that in a multiset the number of
occurrences of an element matters, not however the order in which they are listed. In the present
example the multiset is not different from the mere set, but in the following example, it is:

{the, pope,wrote, the, book}m.

10

pairs remain, A-P cannot process it and the derivation is said to crash; that is, it
terminates with no output.

The Spell-Out point can be equated with -structure. However, in the new sys-
tem Spell-Out can take place at any point in the derivation, though of course many
of the attempts at Spell-Out will yield a crash. Thus, with the numeration fixed
we can have many Spell-Out points. Notice, however, that in there need not
be a single -structure for a given -structure. The difference with the Minimal-
ist Program is only that in the latter the derivational component does not identify
itself the -structure; rather, the -structure is identified indirectly as those points
of Spell-Out which do not yield a crashing derivation. The identification is thus
made into an interface condition.

Of course, there must be the possibility of having several -structures for a
given -structure; otherwise it is not clear, for example, why Scrambling in Ger-
manic languages or Rightward Movement can be optional. Notice, however, that
in the original system the apparent options for Spell-Out quickly reduce to one and
only one point. Thus, strictly interpreted, free word order in Germanic languages
receives no explanation. The Minimalist Program, although accounting for cross
language variation, has no explanation for such language internal variation.

The distinctive feature of the Minimalist Program is the use of global and
abstract principles that have no equivalent in and the Principles and Parameters
framework. First, there is the principle Procrastinate, which simply forbids any
movement. The reason why there is movement at all is that this principle has
lowest priority and can be overridden. Second, there is the principle Greed which
says that movement must result in a benefit. Originally, Greed required the benefit
to be for the item that is being moved. Thus, an item may only move if it itself
receives a benefit from doing so. In particular, this benefit lies in getting rid of
a feature. If in the course of a derivation we are before (a non crashing) Spell-
Out point then we can only move if we thereby strip off a strong feature, because
there is another chance after Spell-Out and the latter is preferred by Procrastinate.
By moving an element it may serve to check a strong feature of another element,
as has been noted in [Ćavar and Wilder, 1994], who call this phenomenon Early
altruism. This principle is compatible with Greed. For movement need not be
beneficial exclusively for the element that is being moved; side effects for other
elements are allowed to occur.

To save the whole process from overgenerating Chomsky also employs a set of
economy principles, namely the requirement that (i) only shortest moves may be
made, and (ii) the fewest number of steps must be chosen. The first is a condition
for convergence (that is, the derivation will otherwise crash). The second is cov-

11

ered by another principle called Economy. In the Minimalist Program it assumed
a specific form, namely as the transderivational constraint that one must choose
the shortest possible derivation.

The actual wording of these constraints or principles has given rise to a lot
of confusion. There have been debates about the compatibility of these economy
principles, but we will refrain from commenting on them. Suffice it to say that
it is still unclear how economy can be properly formulated to meet the facts of
language.

4 Principles as Axioms as Rules
I have argued at length in [Kracht, 1995a] that it is possible to reduce principles of
grammar to axioms within a special kind of modal logic which has been dubbed
the constituent logic, CL. That much may in this context be granted, since axioms
and principles are of similar nature. [Rogers, 1994] has conducted similar in-
vestigations, using a second order logic over structures with successor functions.
These two approaches are similar in spirit, and there seem to be deeper connec-
tions, which are however not fully understood.

In this section I will briefly outline the syntax and semantics of CL. CL is
in fact a variety of special languages, each a fragment of dynamic logic. Recall
from [Harel, 1984] or [Goldblatt, 1987] that dynamic logic has two types of well-
formed expressions, propositions and variables. There are denumerably many
propositional variables, var = {p1, p2, . . .}, denumerably many propositional con-
stants, con = {c1, c2, . . .}, the usual boolean connectives ∧, ∨, ¬, →, any fixed
number of elementary programs, prg = {π1, π2, . . . , πm}, the program connectives
∪, ◦,∗, and finally the test ? and the brackets [−], 〈−〉. If α and β are programs, so
is α∗, α ∪ β and α ◦ β. If φ is a proposition, φ? is a program. Finally, if α is a
program and φ a proposition, then [α]φ and 〈α〉φ are both propositions. A frame
model is a triple 〈 f , β, η〉 where β : var ∪ con → ℘(f) and η : prg → ℘(f × f).
Both β and η can be extended over all propositions and programs as follows.

β(¬φ) := f − β(φ) β(φ ∧ ψ) := β(φ) ∩ β(ψ)
β(φ ∨ ψ) := β(φ) ∪ β(ψ)
η(φ?) := {〈x, x〉|x ∈ β(φ)} η(α ∪ δ) := η(α) ∪ η(δ)
η(α ◦ δ) := η(α) · η(δ) η(α∗) := η(α)∗

β([α]φ) := {x|(∀y)(〈x, y〉 ∈ η(α)→ y ∈ β(φ))}
β(〈α〉φ) := {x|(∃y)(〈x, y〉 ∈ η(α) ∧ y ∈ β(φ))}

12

Here, we have made use of the relation composition ·, and Kleene Star, ∗, which
are defined as follows.

R · S := {〈x, z〉|(∃y)(〈x, y〉 ∈ R and 〈y, z〉 ∈ S)}
R∗ := id ∪ R ∪ R · R ∪ R · R · R ∪ . . .

It would take too much to explain more about dynamic logic in general, instead
I will now turn to the logic(s) CL. The specialty is that we assume two different
types of programs, features and orientation programs. Of the latter there are only
three or four, depending on necessity. They serve to look around inside the syn-
tactic tree. We assume that our models are ordered trees (in the sense that for
each node the set of daughters is linearly ordered) with each node being a feature
structure consisting of possibly stacked attribute-value pairs. The tree relations
are one step down, one step left and one step right and the fourth one is one step
up. They are abbreviated by down, left, right and up. Instead of 〈down〉 we write

,̂ and instead of [down] we write �. The symbols ,̂ �, ^ and �, ,̂ � should
be self-explanatory. We assume any fixed number of features 1, . . . , m and
a finite set of constants. CL has axioms which force the interpretation of down,
left and right to form an ordered tree. Moreover, any formula stacking the orien-
tation programs inside feature-programs will be false; thus we have axioms of the
form [i ◦ down]⊥. Finally, each feature is deterministic, that is, the relations
corresponding to these features are partial functions. This is easy to axiomatize.

Almost any particular grammar using some finite set of features can be rewrit-
ten as an axiomatic extension of CL. This has been demonstrated in [Kracht,
1995a]. Moreover, assume that the trees of the grammars have an upper bound
n on the number of daughters for a single node. Furthermore, let CLn be the ex-
tension of CL by an axiom stating that the bound is n. Then the following is a
theorem ([Kracht, 1995b]).

Theorem 1 (Coding Theorem) Let Λ be an extension of CLn by finitely many
axioms. The finite trees characterized by Λ can be generated by a context-free
grammar iff Λ is axiomatizable by finitely many constant formulae over CLn.

This theorem is called the Coding Theorem because the method by which it is
proved is by enriching the language with constants, which stand for certain prop-
erties of nodes. A grammar that distributes a constant exactly at those nodes that
satisfy a property P is called a syntactic code of P. To enforce a condition P on a
given grammar G one first writes a code H for P; then H is fused with G. This fu-
sion is a straightforwardly definable procedure. This theorem establishes a strong

13

correspondence between two ways of characterizing the structures of a language,
either directly via axioms (alias universal principles) or indirectly by a generating
system (alias grammar).

It is important not to underestimate the fact that such a grammar can generate
these structures directly — for a given logic, after all, it may not be clear how
to build correct models. On the other hand, axiomatic extensions of CL are ex-
pressible also in a fragment of second-order logic with only universal prefixes for
predicate variables. For the latter it is known that the validity of sentences can be
checked on a finite model in polynomial time. So, at least from this perspective,
CL is not too difficult a language.

An informal account of the ideas underlying the proof of the coding theorem
may be of interest to some readers, for the proof itself is technically demanding.
Following [Kracht, 1995b] we start with a grammar that has only n-ary branching
rules and is completely arbitrary, that is, all rules are admitted. 8 Basically, it is
clear that any kind of local dependency (mother-daughter and sister-sister) can be
encoded into the rule system by just throwing away all those rules not conform-
ing to these dependencies. For example, if there is a law stating that a feature
 should be instantiated to a value at a given node iff it is instantiated to that
same value at the mother, then simply throw away all rules in which mother and
daughter do not agree in the value of . In order to handle the non-local depen-
dencies we must introduce additional features. For example, if an axiom requires
a node to agree with its grandmother with respect to then we add a new fea-
ture - together with the axiom that the --value of a node should agree
with the -value of the mother, and another to require that the -value of a
node should be identical to the --value of the mother. This clearly encodes
grandmother-granddaughter-agreement. Similarly, spec-head-agreement would
require the addition of an extra feature. However, it is not always necessary to
introduce new features. In the second case, we also have mother-head-daughter-
agreement for the original feature, and so the dependency from the specifier to
the zero-level head of the phrase proceeds through a series of local dependencies.
The latter can thus be coded into the grammar directly, without additional features.
Thus, what the result above comes down to is the observation that at the cost of
having to add new features we can extend the range of dependencies considerably
to include — for example — what is known in as functional uncertainty, and
many other relations.

As it turns out, there are types of principles which do not correspond to con-

8Here we need the finite branching assumption. Without it the set of rules would be infinite.

14

stant axioms because they force the grammar to be non-context free. A familiar
construction are the cross-serial dependencies. 9 Despite of the fact that they can-
not be reduced to context-free grammars, there are some more powerful grammars
to which they too can be reduced. Particularly suited in this respect are definite
clause grammars, s for short. A rule in a may for our purposes just be
of the form F → G1 . . .Gm, where F and Gi, 1 ≤ i ≤ m, are feature-structures.
A is context-free iff it can be written using a finite number of such feature-
structures. (This is not to say that it must use finitely many symbols, only that up
to syntactic distinguishability it uses finitely many.) Characteristically, s allow
for more than that, yet they too can encode only strictly local dependencies. The
same trick may therefore be used with s to show that non-local dependencies
can be reduced to local dependencies a the cost of introducing new features.

Theorem 2 Let n be a natural number and Λ be an extension of CLn by finitely
many axioms. The finite trees characterized by Λ can be generated by a definite
clause grammar.

This result show that it is one and the same thing to speak of an axiomatic system
and to speak of definite clause grammars modulo the fact that a can be trans-
lated into an extension of CLn for some n. However, the correspondence is not
entirely straightforward. First, only finitely axiomatizable logics may be consid-
ered (which form a sublattice of the entire lattice of extensions). Secondly, there
may be logics which are not determined by their finite models. So the transla-
tion from logic to grammar and back may yield a stronger logic. In the case of
context-free grammars, however, there is no danger of that happening.

5 Transformations and their Stratification
That logics correspond to s shows rather directly that - and -style
grammars can be directly analysed as axiomatic extensions of the constituent
logic. The same holds for , even with functional uncertainty; this was demon-
strated in [Kracht, 1995a]. Thus, with the exception of transformational grammar
and categorial grammar, we are able to translate back and forth between gram-
mars and logics describing their parse trees and thus to analyse these theories and
compare them on — so to speak — neutral territory.

9In [Kracht, 1995a] it is shown how simple grammars for such cross-serial-dependencies can
be reduced to axioms. In the present circumstances it is however not necessary to know how this
particular solution works.

15

However, it is possible to use the same methods for transformational grammar
as well. All that is needed is a way of reducing movement. For, since transforma-
tions operate on structures to produce new structures, we must find a way to let a
single structure represent all there is to the derivational history of a structure once
generated by the base component (if there is any). So, we need to flatten out the
derivations in such a way that we can talk about a single structure rather than a
sequence of them. Let us call the process of reducing transformational grammars
stratification.

There are versions of transformational grammar that are stratified, for exam-
ple [Koster, 1986] and [Brody, 1995]. The latter also raises many points against
derivational analyses, some of which overlap with those given below. It should
be stressed that the point we are making is a formal one, not one pertaining to
the empirical coverage of any theory, and less also to the internal structure of the
theory. We could, as does Brody, simply argue in favour or a stratified account by
pointing at economy principles, which should favour a movement-free account.
We will not do that; the reader is referred to the quoted book instead. Moreover,
although there is talk of evidence against a stratified account, we will show that
from a purely descriptive point of view there is no way to decide which of the two
is more adequate, because they are reducible to each other.

We assume that transformations are simply movement operations. There is
no deletion in the sense of removing structure, only in the sense of marking an
element as phonetically empty. (Thus after deletion, the structure is still there but
will not be pronounced.) Now, using a trick akin to abstract incorporation we can
encode into -structure. 10 All this is fairly standard. If we want to pursue the
reduction to CL we must, however, also get rid of indices. To do that we assume
that the structure of a trace is (almost) isomorphic to that of the antecedent. This
was in fact proposed in [Chomsky, 1993] but is rejected in [Chomsky, 1995].
Commenting on a structure where a noun is incorporated into a verb which itself
has raised he notes

In all such cases it is possible to formulate the desired result in terms
of outputs. For example, in the movement-case, one can appeal to
the (plausible) assumption that the trace is a copy, so the intermediate
V-trace includes within it a record of the local V → N raising. But
surely this is the wrong move. The relevant chains at LF are (N, tN)

10Recall that -structure is nonexistent in the minimalist program. Nevertheless, we may regard
it as identical to the Spell-Out point. What is important is that we need to encode the surface
alignment of the lexical items.

16

and (V, tV), and in these the locality relation by successive raising is
not represented.

I fail to see why this is the wrong move. Nobody knows what the structure of
traces is at . It can only be deduced with the help of assumptions on the global
architecture of the grammatical system and the structure of representation(s). Fur-
ther, notice that even if there is every reason to believe that the current program
is on the right track, one should still acknowledge the importance of this reduc-
tion of indices. If the purpose is to compare different theories of grammar with
respect to their empirical predictions, then in absence of any hard evidence for
 and its structure, appeal to its ‘evident’ properties is illegitimate. Transforma-
tionalists may be granted their different levels, whether they are in fact part of the
human symbolic system or not — but they must be prepared to accept compar-
ison to theories without them. To give a crude example, all symbolic processes
can be described by using natural numbers and recursive functions. This means
that anything can be reduced to a game played with numbers. This however is no
ontological claim; all that is claimed is the existence of a faithful encoding of a
symbolic process into a process involving numbers. Mathematically this is advan-
tageous because a recursion theorist can then go on studying recursive functions
on natural numbers only. What numbers are is not the problem of a recursion
theorist.

There are alternative ways to express the same facts which also do not make
use of movement. One very attractive proposal is that we should think in terms
of links or reentrant structures, as for example in . Instead of copying ma-
terial we just make or add a link from the antecedent to the trace or conversely,
analogous to manipulating a pointer structure in a computer. Notice that reentrant
structures are more economical representations than the ones standardly used in
transformational grammar.

Now assume that traces are copies, isomorphic to their antecedents with the
exception that one is marked as a trace the other as antecedent. Since there are no
indices there must be independent ways to identify the trace-antecedent pairs. In
the this was possible due to two facts. One was that there were limits on the
distance between trace and antecedent and the other was that within these limits
many landing sites for the antecedent were ruled out as improper. The latter re-
strictions can be coded by additional features (such as whether the item originated
in an A-position, a case-position, and so on). The former are formulated in terms
of mutual command. In [Kracht, 1993] I have shown what relations are relevant
for the usual cases in . I put aside a proof that all these relations can be encoded

17

as CL-programs (easy) even with the by now standard distinction between nodes
and segments of a category (less easy, but still straightforward). Moreover, I will
also omit the proof that the fact that trace and antecedent are related to each other
via a relation R remains valid throughout all subsequent levels, so that we can
check whether trace and antecedent are R-related at any level, thus at -structure.
(The latter is a nontrivial property of the command relations in syntax and the way
adjunction works, and a proof of that fact is not entirely straightforward.)

If all these assumptions are granted, all versions of can be stratified. But
what about the Minimalist Program? Here we have no straightforward definitions
of domains, but only certain principles on when and where to move. I can see no
direct way to state an axiom to account for the requirement that a derivation must
be optimal among all competing ones, nor an axiom to the effect that the fewest
number of steps is being made. However, the cases for which these principles
have been invented, can (in my opinion) be accounted for. Certainly the other
principles, Greed, Procrastinate and Shortest Steps can be given an axiomatic
encoding. To see this, consider first Shortest Steps. It says that an element must
move to the closest possible landing site. Since landing sites are identified by their
category (and some features), this requirement boils down to a command relation
between trace and antecedent in the sense of [Kracht, 1993]. Namely, for every
trace there must be an antecedent within a certain command domain of the trace.
In order to specify what the antecedent must look like given the trace, we say that
a feature structure α is a minor of τ if (i) all elementary feature-value pairs of α
are in τ, (ii) if τ contains strong features then some pair [: val] such that
is strong is contained in τ but not α, (iii) some pair [: val] is contained in τ but
not in α. (Here, α contains [: val] if α |= 〈feat〉val. (i) encodes the fact that the
antecedent is obtained by nibbling off structure from τ, (ii) is Procrastinate, (iii)
is Greed.) So, finally, Shortest Steps says that given an occurrence of a structure
τ in a tree that contains a feature, there exists within some command domain of τ
a unique α which is a minor of τ.

One should take this formalization with a grain of salt, though. First, the
domain extension has to be taken into account. That is to say, domains change in
the course of derivation. Second, there are versions of Procrastinate that do not
allow an encoding as proposed above. We might for example minimize over the
length of derivations leading to a Spell-Out point. These issues tend to get very
intricate when one looks at the possible ramifications. It is nevertheless a plausible
hypothesis that while local economy principles can be replaced by axioms on
the structure (or output filters), transderivational economy principles generally
cannot.

18

6 An Analysis of Bare Phrase Structure
Let us now return to the reduction of X-bar syntax to bare phrase structure. Con-
sider the case where we start out with an articulated X-bar grammar using cate-
gories, levels and centricity roles. Trees are binary branching, so we work over
CL2. Let us introduce new features and , with values + and −. Technically,
they can be defined as follows.

[: +] ↔ ^adct
[: −] ↔ ¬^adct
[: +] ↔ (̂head ∧ ¬^>)
[: −] ↔ (̂head ∧ ¬^>)

In words, encodes whether or not a node is an upper segment, that is, resulted
from adjoining to its daughter. encodes the position of the head. [: +]
states that the head is to the left, while [: −] states that it is to the right. In
terms of these features it is possible to recover the category of the mother from
that of its daughters, by simply passing up the category of the head daughter. 11

The directionality feature tells us which of the two is the head. Furthermore, the
mother node can tell whether or not it is the result of adjunction. Thus we can
recover also the phrase level in the following way. We know that a completed
phrase is a non-head (if it is not the root), and from the highest non-adjoined
node within it we have level 2; however, we want to express this in terms of the
primitives and rather than the centricity roles. Note that head is definable
as follows:

head.↔ .¬^> ∧ [̂ : +] ∨ ¬^> ∧ [̂ : −] ∨ ¬^>12

11Talk of feature passing is meant to be metaphorical. It is totally irrelevant for the result
whether we talk of passing a feature up, passing it down, or whether we phrase this as principles
of feature agreement.

12Technically, the root is herewith also classified as a head. This is done for purely technical
reasons, and has no further implications.

Notice that here we have used the upgoing modality. Elsewhere in [Kracht, 1995a] I have shown
that practically speaking this modality is unnecessary. This requires explanation. Notice that the
coding results really show that there is a close link between features and expressive power of the
language that we use to express the principles. In other words, all we are doing is to boost up the
non-logical symbolism to compensate for the fact that certain strong constructors are not present,
such as Kleene Star and others. The less expressive power, the more additional basic constants or
feature-constructs we must add to ensure a proper formulation of the principles. At present our
aim is to use as few constants or constructors as possible, and this means that we may be forced to
use a stronger language to define the otherwise explicit constants.

19

In other words, we are a head if we are on the left and the mother has its head on
the left hand side, or we are on the right hand side and the mother has its head
there, too. We introduce the constants u–seg and l–seg, standing for being an
upper segment and being a lower segment. Then we have

u–seg ↔ [: −]
l–seg ↔ ¬^> ∨ (̂head ∧ u–seg)

Now we can recover the levels by saying that level: 2 or phrasal means either
being the root or a non-adjoined non-head or else, on going up until the next non-
head, every node must be adjoined. This can be defined in CL:

phr.↔ .¬^> ∨ 〈((head?); (¬u–seg?); up)∗〉(u–seg ∧ ¬head)

Being lexical — or zero-level — and being first-level can also be defined. A zero-
level category is either non-adjoined and preterminal (or terminal in Chomsky’s
new version, but this is really unimportant) or adjoined and travelling down ad-
joined nodes we will eventually meet a non-adjoined preterminal.

lex.↔ .〈((head?);¬l–seg?); down)∗〉�⊥

Finally, a node is level: 1 iff it is ¬lex ∧ ¬phr. A node may be both lexical and
phrasal.

There still remain the centricity roles. Being adct means being a daughter of a
non-lower segment. spec is the highest non-adjunct that is not a comp and comp
is a non-adjunct sister of a lexical head.

adct .↔ . ¬head ∧ (̂¬l–seg)
comp .↔ . (̂head ∧ u–seg ∧ lex) ∨ (̂head ∧ u–seg ∧ lex)
spec .↔ . ¬comp ∧ ¬head ∧ (̂l–seg ∧ phr)

Suppose now that the following axiom holds

(†) head ∨ spec ∨ comp ∨ adct

Then immediately we would get the same X-bar syntax back again. However,
Chomsky’s aim in this case is to get rid of such axioms since they put global
constraints on the representation within the syntactic component so he dismisses
it, with the consequence that we have a fifth type of centricity role, which might
suitably be translated as base generated intermediate adjunct. This is because

20

there can be any number of intermediate level nodes with feature [: −]. It is
not an axiom that there are exactly five of them, this follows already from the way
things are set up, that is, it is a theorem. Chomsky on the other hand redefines the
notion of a specifier to include this fifth type of a centricity role (and so he gets
back (†) as a theorem).

Let us summarize what we have got so far. We can code a traditional phrase
structure tree as follows. (i) The category is labelled only at the leaves, (ii) all
other nodes are of four types only, indicating whether they are adjoined or not
and whether the head daughter is found on the left or on the right. Lifting the
ban on base generated intermediate adjunction we can observe that there are ab-
solutely no restrictions left on the representation, so any tree satisfying (i) and (ii)
is legitimate.

Notice, by the way, that the way in which these trees are represented according
to [Chomsky, 1995] is highly inefficient, because it introduces great deal of redun-
dancy. To copy the head into the mother given that a lexicon contains hundreds
of thousands of words, is a waste of memory. Instead, the two distinctive features
are enough. It’s true that they do not derive from the lexicon, but then neither do
the sets in the set notation. I should also point out that in using sets Chomsky also
gets rid of representations of order in the structure. Presumably, ordering should
be derivable from other properties. I have no stance on that here, but I’d like to
point out that rather than sets, it seems that lists are the primitives out of which
everything is formed (at least in a computer). I do not know of any compelling ar-
gument that information is stored in the form of a set rather than a list. In the case
at hand we have two options. (i) List all rules twice, (ii) disconnect linear order in
the string from the physical alignment and let the latter be explicitly encoded by
another feature , where [: +] means that the daughters are aligned in the
same way as coded, and [: −] that they are aligned in opposite order.

But now let us return to the bare phrase structure. What is still worrying is the
fact that we need the additional features for adjunction and head positioning. Ul-
timately, we may want to get rid of them, thus turning to a representation which is
just a set encoding the constituent structure. The idea presented by Chomsky is to
derive it from independent principles of grammar. This, however, requires a rather
deep analysis of the total system. Let us illustrate how it can be performed. Sup-
pose that we start with the multiset {book, the, read}m. It is a fact that determiners
select nouns. 13 So we project a structure {the, {the, book}}, assuming the differ-

13It is unclear where to place this requirement. It is probably not part of the lexicon because
it is a regular fact of language, at least if we assume it correct that NPs should be seen as DPs.

21

ence between sets and multisets to be irrelevant at the structural level. We know
where the head is, and that there is a complement. Next we project a structure

{read, {read, {the, {the, book}}}}

The head is read, from subcategorization. Suppose now that the complement
moves for checking. Then we the following structure

{〈read, read〉, {{the, {the, book}}, {read, {read, t}}}}

Next we must assume the verb to have been raised, and so on. If we follow this
process close enough and ensure that trace-antecedent relations are recoverable
after stratification, then a suitably complex definition will capture the notion of
head position and adjoinedness.

We shall not pursue this further but simply note that in addition to there being
a genuine concern in spotting the redundancies of the system there is much of
shadow boxing as well. We can make the representation compact in the way sug-
gested, but the price we pay is that the control structure will be complex. Thus, this
is the opposite of the Coding Method, where we seek to reduce control structure
and explode the feature system instead. There is an antagonism between explicit
symbolism and the power of the language in which principles are being formu-
lated. Powerful languages require very complicated control structures so that they
can be executed correctly, whence a reduction of the explicit symbolism increases
the complexity of the control structure. This would require spelling out the control
strategy rather carefully; this has not been undertaken in the Minimalist Program.
On the other hand, control can be identified with structure in a rather precise way.
Recall from [Kracht, 1995b] the idea of a memory. We may forget as suggested
the category labels in the representation, but while parsing a sentence these labels
must be recorded somewhere. A rule based grammar of X-bar syntax has them
present in each node (whence the redundancy), while for bare phrase structure
we need to compute them. However, rather than recomputing them all the time
we will simply store them in a memory. The amount of extra storage needed to
correctly parse sentences is called the size of memory. This just measures in the
finite case the distance from this grammar to a context-free grammar performing
the same analysis. A final note. Chomsky’s particular reduction of the level gram-
mar to properties of CHL, in particular the visibility properties of projections, is
not without major problems, as has been pointed out by [Gaertner, 1995].

The selection facts, be they universal (that is, part of) or language particular, as many pro-
pose (for example, [Laka, 1991]) do not belong to the computational system qua transformational
component but qua structure building process (although the two are now non-distinct).

22

7 Why Rules are Sometimes Better
Most of the data discussed in the transformational tradition consists of alignment
facts. Very little is being said about agreement, although at present — in the
Minimalist Program — agreement seems to be given a major role in the theory.
Another aspect of language receiving marginal attention in transformational gram-
mar is coordination. Many rival theories owe their success to substantial progress
in analyzing coordination (for example , , combinatorial categorial gram-
mar). Here we will be concerned with agreement in the context of coordination
and show that none of the theories has a good answer to the phenomena at hand.
Worse still, it seems that this particular phenomenon cannot be incorporated into
any current framework other than by making a list of possible combinations. Cer-
tainly, at a low level these facts can be accommodated in any framework — but
they do not conform with any higher level principle.

Before we begin outlining the facts let us make clear that there is a fundamen-
tal difference between individual noun phrases and the coordinated structure as
regards agreement. In a construction [np1 and np2]3 the conjuncts wear their own
marking directly on their sleeves; the coordinated noun phrase itself is nowhere
marked directly for its agreement features, since the coordinator does not show
any overt agreement. Hence, we can test the intrinsic character of the noun phrase
only by the fact that it agrees with verbs or other elements in the construction.
Lack of a one-to-one-correspondence between the agreement forms of the subject
and the agreement forms of the verb may therefore obscure the facts somewhat.

Let us present the data, starting from the most simple facts. In English, a
noun phrase such as Mary and John is plural, while both Mary and John itself
are singular. On the other hand, Mary or John is (or may at least be) singular. In
German, in similar constructions, I would accept both singular and plural, though
the acceptance varies with the contextualization. But with entweder ... oder (ex-
clusive or) judgments are clear. The coordinated noun phrase must be singular. In
languages where there is in addition to singular and plural also a dual, matters are
naturally a bit more complex. There may be straightforward semantic explana-
tions for this behaviour so that one may be inclined to simply not regard this as a
syntactic phenomenon. In the Minimalist Program one may see this as a problem
of .

But let’s proceed further. [Baker, 1992] discusses a peculiar agreement phe-
nomenon of Mohawk, exemplified in the next two sentences, which appear as
(20a,b) in the reference.

23

(1) John wa’-t-hy-atskahu-’ ne Uwari.
John ate.masc.dual with Mary.

(2) John tanu Uwari wa’-t-hy-atskahu-’.
John and Mary ate.masc.dual.

Observe that the verb shows dual agreement in both cases. In their German trans-
lations (1) differs from (2) in that the verb is plural in (2) and singular in (1).

(1′) Karl und Maria aßen.
Karl and Mary ate.plur.

(2′) Karl aß mit Maria.
Karl ate.sing with Mary.

The facts of German are readily explained. The subject in (1′) is plural while
singular in (2′). However, the Mohawk agreement system disconnects the notion
of subject and agreement target of the verb. The consequences of this may be far
reaching, but we have not considered what they will be.

There is another simple construction, in Latin, in which we can see a mor-
phological agreement in gender between subject and verb, namely in predicative
constructions.
(3) Carolus est magnus.

Karl is big.
(4) Maria non est magna.

Mary is not big.

If we insert a coordinated noun phrase we can detect from the attributive adjec-
tive which gender the noun phrase must have. It turns out that (i) if both noun
phrases agree in gender, the coordinated noun phrase will agree with both, (ii) if
they disagree, then masculine wins over feminine in case of humans, while in case
of things the one nearer to the verb wins. 14 For example we have

14See [Bayer and Lindauer, 1974]. Facts are a bit obscured by the fact that they speak of
persons and things rather than syntactic gender. To be fair, intuitions in coordination, especially
with respect to number agreement, seem to be driven by semantic consideration. It may very
well be the case that due to the lack of the specifically problematic constructions there are no
clear syntactic judgments, and that they get replaced by semantic considerations. This applies for
example to the cases of constructions such as Johan oder Maria (english John or Mary). Since
there is the possibility that we mean both rather than one, we expect to find either of (i) and (ii).

24

(5) Murus et porta fulmine icta est.
Wall-m.sg and door-f.sg by lightning struck-f.sg been-sg.
Wall and door have been struck by a lightning.

(6) In oratorem omnium ora atque oculi conversi erant.
Towards speaker of-all faces-n.pl and eyes-m.pl directed-m.pl were.
Everybody’s faces and eyes were directed towards the speaker.

Indeed, in the case of things, agreement is with the nearest conjunct, not with the
conjoined noun phrase. Notice in passing that these facts might be solved by the
analysis provided by [Munn, 1993]. Munn assumes that in coordinated structures
the coordinator (for example and) projects a so-called boolean phrase which in
turn is adjoined to the first conjunct. This solution has a number of advantages. It
can explain why in Arabic the verb agrees with the first conjunct in a VSO struc-
ture. How we reconcile this with the standard facts — that coordinated structures
are nonsingular even when the individual coordinated elements are singular — is
left unexplained.

All constructions show a dependency between three items. For example, in
the coordinated construction np1 and np2 the two noun phrases np1 and np2 and
the conjunction are interrelated. We find that the value of the feature can be
calculated for English with the following list.

– +

– + +

+ + +

It may be tempting to dismiss this problem by saying that in coordinated structures
of this kind we can safely assume that the result is plural, so no real dependency is
observed. However, in languages with a dual, the table is as follows if we assume
that it faithfully reflects the cardinality (i. e. 1, 2, and more than two). 15

(i) Johan oder Maria hat dies getan.
John or Mary has done this.

(ii) Johan oder Maria haben dies getan.
John or Mary have done this.

I find (ii) less acceptable, but with the right context it might also be ok.
15Note that zero has no proper home in any of the number systems. The analysis in terms of

cardinality is therefore not accurate. It seems that in many languages two contrasts are melted into
one, namely one between one individual and several, and the other between a specified amount and
an unspecified amount. Consider, for example, the quantifier all, which shows plural agreement.

25

s d p
s d p p
d p p p
p p p p

Here the marking of the conjunct depends on the marking of the individual noun
phrases. Moreover, this relation is a ternary relation (since it is a function on two
arguments) but it cannot be reduced to a binary relation. The same holds with
respect to gender marking.

Nothing lets us conclude that transformational grammar can handle ternary
relations — unless they arise from phrase structure rules. Let us see why this is
so. We have in the pre-Minimalist tradition the basic phrase-structure component
called X-bar syntax. There is no indication as to how coordination can fit into it,
since coordination is basically a polymorphous construction. (See [Keenan and
Faltz, 1985] for extensive arguments.) Moreover, apart from distributing levels
and categories, X-bar syntax did not provide special mechanisms to account for
agreement. Surely, most people will agree that in principle a rule based grammar
could be written to encode these facts about coordination in languages, although
none of the accounts I am familiar with (including that of [Gazdar et al., 1985])
are fully correct. The problem is that the grammars take it for granted that agree-
ment can be regulated by identity criteria. For example, in it is part of the
head-feature percolation mechanism which distributes the -value from mother
to head. Since in coordinated s both noun phrases are heads it can never hap-
pen that they are singular while the mother is plural. This gap is due to the focus
on subject-verb agreement, plainly visible also in the Minimalist Program. Be it
with the help of transformations which move items into checking position or with-
out, the Minimalist Program, just as any of its predecessors, relies on an identity
check with respect to agreement. This gets subject-verb agreement (almost) right
but leaves the difficult cases of coordinated s out of discussion. To add to the
complication, the cases of disagreement that Baker gives in the quoted paper show
that identity checks are insufficient for those languages which treat a comitative
phrase as if it was a coordinated conjunct of the subject.

Some of the problems can be solved by allowing the feature to take a
set of gender values. The gender conflict can then be handled by realization rules
on these sets. In Latin, we will let the set {masc, fem}, {masc, neut} come out as
masculine agreement, while {fem, neut} will be feminine. (We disregard here for
simplicity the distinction between people and things.) However, such additional
symbolism would be no less less stipulative than simple phrase structure rules if

26

not backed by additional evidence. In fact, such evidence may come from the
semantics of such coordinated structures, and in particular from a theory of plu-
rals. 16 For on the one hand syntax requires (at least in some languages) that noun
phrases have a gender, but what gender a group of different people, or a combi-
nation of people and things should have, is a highly conventional affair. Groups,
however, may as a first approximation be analysed as sets, so sets of gender val-
ues qualify as syntactic reflexes from that perspective. It is at least intuitively clear
that under such an interpretation a unification account of gender is incorrect. A
proof of that needs careful investigation, however. 17

There are other cases of apparent disagreement. For example, plural neuter
subjects in Greek cause singular agreement on the verb (see [Kaegi, 1972]). There
are many more such examples, but on the whole they do not pose problems of a
similar sort for . If φ-features are transmitted to the verb, we will simply posit
a special realization rule for the verb to assure it comes out singular. Or we may
deny that neuter are plural, at least as concerns the agreement feature transmitted
to the verb. In the case at hand, the latter approach is at least historically correct.
Namely, the ending in the nominative neuter plural was originally a feminine in a
collective singular ending in -α.

8 Gains of the Coding Method
Proving intertranslatability between logical systems, grammars and syntactic the-
ories does not amount to saying that syntactic theories have to be translated into
rules. Nor does it mean that there is an ontological reduction of one to the other.
But it does tell us how to recast theories if we need to. There is a lot to say in
favour of establishing such techniques — even though Chomsky and many others
see no significance in them. For a start, even if two theories are notational vari-
ants, depending on the problem at hand it may be easier to work with one rather
than the other. Also, transformational grammar has persistently been a model of
sentence production; the design of parsing or recognition procedures is typically

16The latter subject has attracted much more research and various proposals have been made
(see [Baker, 1992] and references therein). There have been debates particularly about the role
of indices in connection with agreement. The additional twist in the problems raised here comes
from an interaction with basic syntactic constructions.

17I have recently become aware of literature in which this problem is being discussed. I have
not had the time to evaluate it properly, so I have to leave a discussion of it to another occasion.

27

thought of as a secondary problem. 18 However, in formal language theory there
is a lot of serious work on parsing; connecting with that work directly may be
a much better strategy than starting afresh. In principle-based parsing, however,
the strategy has been that even in the context-free case, principles allow much
better parsing algorithms to be derived (see for example [Berwick, 1991]). That
can only be so if languages form a proper subset of the context-free languages.
But from the angle of complexity all that matters is the inherent combinatorial
complexity of the problem itself, abstracting away as much as possible from its
particular presentation. Thus additional research into the complexity of the hu-
man language presented within -theory is made redundant by the possibility of
giving a formal translation into rule systems. Although this translation results in
an explosion of the underlying feature system, this does not affect the complexity
class. Moreover, the exact factor by which the feature system gets expanded can
also be determined given any theory CLn⊕Φ, Φ constant. Thus, if we end up with
a context-free grammar (which is the case surprisingly often) then we can make
use of the standard techniques for s.

Matters tend to be less favorable if the reduction does not end up in a context-
free grammar. However, not all is lost. In any case we can use a result of [Fagin,
1974] (which can also be found in [Ebbinghaus and Flum, 1995]), which states
that universal second-order sentences of the form (∀P)φ(P) where φ(P) is first-
order can be checked on finite structures in polynomial time. If in addition there
is a constant c such that for a given input string there is a parse tree with at most c·n
terminal nodes, then there is a parsing strategy which requires at most exponential
time. It proceeds as follows; first guess a tree or a directed acyclic graph with at
most c ·n leaves such that the yield with null elements erased is the original string.
(This is the exponential part.) Then check all principles on that structure. This
result is less spectacular, but one might hope to have substantially better results if
one makes use of the specific characteristics of syntactic theories (as opposed to
just arbitrary axiomatic extensions). Notice that the Minimalist Program allows
to deduce that there is a constant c of the required kind. This is so because each
overt element has a bounded number of features, and so there is a bound on the
number of movements for each element. 19

18Notice also the word generative in transformational generative grammar. To be fair, many
syntactic theories begin with the production side, and it is not our aim to criticise this qua research
strategy. Rather, we want to emphasize that a full theory of language must also be able to explain
our abilities as listeners in addition to those as speakers.

19For that we must work with the reentrant structures à la and not with copy movement.
Otherwise the bound on the number of nodes is far too large.

28

Another problem area where the method is useful is in deciding the adequacy
or the equivalence of syntactic theories. Here we say that a theory is adequate in
a given sense if it is equivalent to the real grammar in that sense, where the real
grammar — so to speak — is the one in our heads. Several degrees of adequacy
for a grammar have been distinguished, weak adequacy if it admits the correct
strings, strong adequacy if it admits the same structures, and finally explanatory
adequacy. The latter is difficult to define, let alone make rigorous in a mathe-
matical sense. Although it has been emphasized over and over that explanatory
adequacy is the most important thing we should look for, the other criteria should
not at all be regarded useless. It is a legitimate to ask whether two given theories
differ weakly or strongly or in any other sense. If, for example, natural languages
are not context-free then any syntactic theory predicting that they are is simply
wrong.

In this way questions of generative complexity, perhaps in terms of a given
language hierarchy, are of some importance for the actual inquiry into language.
These questions, even though not of the same fundamental nature, are neverthe-
less surprisingly tricky to answer and will hopefully add substance to the claim
that theories of language are not so easy to analyse. First of all, it is known that
weak equivalence of context-free grammars is undecidable, while strong equiv-
alence evidently is decidable. (You just have to define a bijection between the
nonterminals that preserves the rules in both directions.) The first question is
certainly the most interesting one because acceptability of surface strings is the
most readily accessible empirical data. Strong equivalence, on the other hand, is
uninteresting because it takes into account structure about which we have only
indirect evidence (empty elements, unary rules). In between the two, however,
we can recognize a third kind of equivalence, namely the question of whether two
grammars generate the same bracketed strings. Although to analyse strings into
bracketed structures requires syntactic skill, it may be considered a fairly theory-
neutral affair. It has the great advantage of being decidable, as has been shown in
[McNaughton, 1967]. To generalize this in absence of context-freeness is a real
challenge.

However, be it transformational grammar, or other formalisms, one of
their main characteristics is the internal architecture of the system. is not
just about context-free grammars, it also tries to detect global mechanisms and
properties such as head- versus foot-features, metarules, defaults etc. Our system
for translating between axioms and rules immediately shows a way to encode the
facts once we have been able to spell them out in sufficient detail. This gives a
lot of insight into the way in which the feature system of language (or) should

29

be designed without going through many painful details as in [Pollard and Sag,
1987], to give just one example.

Take again the example of agreement in coordination. It is a simple matter
to write down the axiom concerning the distribution of number features (or φ-
features in general) once we know the facts themselves. It is equally simple to
refine any grammar without φ-feature assignment into a grammar that distributes
them correctly. But it is rather difficult to incorporate these insights into a syntactic
formalism that has an articulate inner structure. The Coding Method is a method
that mechanically incorporates any facts about language into a rule system. The
problematic aspect of it is that it disrespects totally the architecture of the theories;
in other words, it is in itself rather simple minded. On the other hand, if that is
so, it is not clear how the given architecture is justifiable. For example, it is a
complete mystery as to why certain features are classified as head-features and
others as foot-features, and why the particular percolation mechanisms are the
way they are. We have demonstrated above that cannot be a head-feature
although it is classified as such in the standard reference [Gazdar et al., 1985]. So,
we need independent criteria for what is to count as a head-feature, or else give up
the head-feature convention in its present form. Thus, the Coding Method may be
used to determine the particular mode of percolation for a given feature and thus
ultimately connect up with the empirical data in a systematic and less ad hoc
fashion.

References
[Baker, 1992] Mark Baker. Unmatched chains and the representation of plural

pronouns. Journal of Semantics, 1:33–74, 1992.

[Bayer and Lindauer, 1974] Karl Bayer and Joseph Lindauer. Lateinische Gram-
matik. Oldenbourg, München, 1974.

[Berwick, 1991] Robert C. Berwick. Principle–based parsing. In Peter Sells,
M. Shieber, Stuart, and Thomas Wasow, editors, Foundational Issues in Natu-
ral Language Processing, pages 31 – 81. MIT–Press, 1991.

[Brody, 1995] Michael Brody. Lexico–Logical Form – a Radically Minimalist
Theory. Number 27 in Linguistic Inquiry Monographs. MIT Press, 1995.

[Ćavar and Wilder, 1994] Damir Ćavar and Chris Wilder. Word order variation,
verb movement, and economy principles. Studia Linguistica, 48:46 – 86, 1994.

30

[Chomsky, 1980] Noam Chomsky. Rules and Representations. Columbia Uni-
versity Press, 1980.

[Chomsky, 1986a] Noam Chomsky. Barriers. MIT Press, Cambrigde (Mass.),
1986.

[Chomsky, 1986b] Noam Chomsky. Knowledge of Language. Its Nature, origin
and Use. Praeger, New York, 1986.

[Chomsky, 1993] Noam Chomsky. A minimalist program for linguistic theory.
In K. Hale and Keyser S. J., editors, The View from Building 20: Essays in
Honour of Sylvain Bromberger, pages 1 – 52. MIT Press, 1993.

[Chomsky, 1995] Noam Chomsky. Bare Phrase Structure. In Gert Webelhuth,
editor, Government and Binding Theory and the Minimalist Program, pages
385 – 439. Blackwell, 1995.

[Ebbinghaus and Flum, 1995] Hans-Dieter Ebbinghaus and Jörg Flum. Finite
Model Theory. Perspectives in Mathematical Logic. Springer, 1995.

[Fagin, 1974] Ronald Fagin. Generalized first–order spectra and polynomial–
time recognizable sets. In R. M. Karp, editor, Complexity of Computation,
SIAM–AMS Proceedings, volume 7, pages 43 – 73, 1974.

[Fanselow, 1991] Gisbert Fanselow. Minimale Syntax. Number 32 in Groninger
Arbeiten zur germanistischen Linguistik. Rijksuniversiteit Groningen, 1991.

[Gaertner, 1995] Hans-Martin Gaertner. Has Bare Phrase Structure Theory su-
perseded X–Bar Theory? In Artemis Alexiadou et. al., editor, FAS Papers in
Linguistics, volume 4, pages 22 – 35. 1995.

[Gazdar et al., 1985] Gerald Gazdar, Ewan Klein, Geoffrey Pullum, and Ivan
Sag. Generalized Phrase Structure Grammar. Blackwell, Oxford, 1985.

[Goldblatt, 1987] Robert I. Goldblatt. Logics of Time and Computation. Num-
ber 7 in CSLI Lecture Notes. CSLI, 1987.

[Harel, 1984] D. Harel. Dynamic logic. In Dov M. Gabbay and Franz Guenthner,
editors, Handbook of Philosophical Logic, volume 2. Reidel, 1984.

[Kaegi, 1972] Adolf Kaegi. Griechische Schulgrammatik. Weidmann Verlag,
1972.

31

[Kayne, 1994] Richard S. Kayne. The Antisymmetry of Syntax. Number 25 in
Linguistic Inquiry Monographs. MIT Press, 1994.

[Keenan and Faltz, 1985] Edward L. Keenan and Leonard M. Faltz. Boolean Se-
mantics for Natural Language. Number 23 in Synthese Language Library.
Reidel, Dordrecht, 1985.

[Koster, 1986] Jan Koster. Domains and Dynasties: the Radical Autonomy of
Syntax. Foris, Dordrecht, 1986.

[Kracht, 1993] Marcus Kracht. Mathematical aspects of command relations. In
Proceedings of the EACL 93, 1993.

[Kracht, 1995a] Marcus Kracht. Is there a genuine modal perspective on feature
structures? Linguistics and Philosophy, 1995.

[Kracht, 1995b] Marcus Kracht. Syntactic Codes and Grammar Refinement.
Journal of Logic, Language and Information, 4:41 – 60, 1995.

[Laka, 1991] Itziar Laka. Negation in syntax: on the nature of functional cate-
gories and projections. International Journal of Basque Linguistics and Philol-
ogy, 25:65 – 138, 1991.

[McNaughton, 1967] Robert McNaughton. Parenthesis grammars. Journal of the
Association for Computing Machinery, 14:490 – 500, 1967.

[Munn, 1993] Alan B. Munn. Topics in the Syntax and Semantics of Coordinate
Structures. PhD thesis, University of Maryland, 1993.

[Pollard and Sag, 1987] Carl Pollard and Ivan A. Sag. Information-Based Syntax
and Semantics, Part I. Number 13 in CSLI Lecture Notes. CSLI, 1987.

[Rogers, 1994] James Rogers. Studies in the Logic of Trees with Applications to
Grammar Formalisms. PhD thesis, Department of Computer and Information
Sciences, University of Delaware, 1994.

[Sternefeld, 1991] Wolfgang Sternefeld. Syntaktische Grenzen. Chomskys Bar-
rierentheorie und ihre Weiterentwicklungen. Westdeutscher Verlag, Opladen,
1991.

[Stowell, 1981] Tim Stowell. Elements of Phrase Structure. PhD thesis, MIT,
1981.

32

