Preliminary Specification, Design and

Proof—of—Concept Implementation of a

Portable Audio Concordance (PAC)
RFC 1.0

Thorsten Trippel, Nils Jahn, Dafydd Gibbon (U Bielefeld)
Soma Ouattara (U Cocody, Abidjan)

DOBES Technical Report n’ (Ega)
(Status: RFC draft, January 2001 — printed January 8, 2001)

Contents
1 Overview

2 Portable Audio Concordance (PAC): Requirements
2.1 Potential users, applications, needs L0000,
2.2 Technical Requirements L o e

2.3 Lingware requirements for lexicography

3 Design specification
3.1 Concordance system design L Lo s
3.2 Summary of modules and data sources L.

3.3 Concordance subproject structureo oo L oo

4 TImplementation
4.1 DTD for Concordance Tagged Text (CTT)
4.2 Normalisation function L oL
4.3 Acquisition function L

4.4 Consultation function L e e e e e e e

5 Evaluation, distribution, maintenance

10
11

13
13
14
15
16

19

On lezical objcts and their properties

References

Appendices

Object specifications

Normalisation function

Normalisation function with basic TK GUI

Word list extraction

CGI interaction for wordlist extraction

Consultation function

CGI interaction for consultation

II

20

21

22

28

30

32

33

38

39

On lezical objcts and their properties

List of Figures

S O e W N

Main concordance dependencies.o e e 7
System modules and interface types. o oL 8
Text handling dataflow. L L oL 9
Tree hierarchy for concordance tree tagging 10
Time management bar chart. 0oL 11
Basic user interface forms. L o Lo Lo 18

List of Tables

= W N

Task assignment table oL o L 12
Pseudocode for normalisation function. o o000, 15
Pseudocode for keyword extraction function. o000 16
Pseudocode for consultation function. o000, 17

II1

Specification, Design and Implementation of an Audio Concordance 1

1 Overview

The Portable Audio Concordance (PAC) is a basic tool required for spoken language lexicogra-
phy. The present tools is tailored to the needs of training local corpus analysists and lexicogra-
phers concerned with the documentation of endangered languages in their own countries using
low—end hardware.

The tool is specified as a deliverable in the DOBES project Ega: a documentation model for an
endangered Ivorian language.

It is anticipated that this tool will be used in a hybrid lingware development environment
together with tools such as Praat or Transcriber and Shoebox. Compatibility with other tools
is ensured by providing ASCII interfaces, in particular transcriptions in X-SAMPA and with
XML markup, and by training local computer science personnel in automatic text processing
techniques in order to interface tools in a hybrid environment.

The educational and local involvement aim has priority: the tool is not intended to be an industry
standard implementation, but may of course be used a specification and proof-of-concept by
other implementers.

We present a requirements specification, a system design specification, a project design speci-
fication, an implementation description, and an outline of the planned evaluation, distribution
and maintenance policies. Object specifications in a standard format, and source code of a
proof-of-concept implementation in Perl are included in the Appendices.

Perl is not an ideal language for software development but was selected because of built—in
efficient regular expression processing capability, seamless integration with CGI and other inter-
active interfaces, and the portability of the code from UNIX/Linux to Windows and Macintosh
environments, enabling rapid prototyping and efficient cyclical development.

This is a Request for Comments document. The specification is incomplete and we are aware
that a number of errors and inconsistencies remain at the time of in—consortium distribution.
Comments in the form of critique, corrections and suggestions for improvement and extension
are welcome.

Specification, Design and Implementation of an Audio Concordance 2

2 Portable Audio Concordance (PAC): Requirements

An important workhorse tool for language documentation, in particular for lexicography, is the
concordance. There are many varieties of concordance, from the traditional ‘keyword in context’
concordance on paper to electronic hyperconcordances which are statically pre—compiled or
dynamically compiled on the fly. To be useful with unwritten languages (and indeed all forms of
spoken language), a concordance needs to include audio indexing. For these reasons, the design
and proof-of-concept implementation of an audio concordance was included in our proposal
Ega: a document model for an endangered Ivorian language.

The overall goal of the present activity is to present in relatively informal outline form

1. a minimal specification of requirements

2. a system design and a project design

3. a proof of concept implementation
for a portable audio concordance for use in lexicography within the framework of the documen-
tation of endangered languages. This does not exclude utility in other contexts, but the present
minimal specification is specifically formulated to ensure efficient initial language documenta-
tion. By ‘Portable Audio Concordance’ (PAC) we mean concordance shell software which can

be used on as many platforms as possible, in particular in an offline laptop environment in the
field or with low-end or older hardware.

The specific goals are
1. to provide a minimal, semi—formal specification and operationalisation as a proof-of-
context implementation

2. with descriptions to enable other implementers to adopt and productise the system if
wished

3. to provide sufficient information to make it easy to local computational personnel to main-
tain and modify the system

4. to be usable in local linguistic and computational linguistic training for the documentation
of endangered languages

We proceed by specifying requirements in terms of first user groups, second application areas,
third user needs.

2.1 Potential users, applications, needs

The potential groups for a audio concordance include:

e Language documentation activities:

Specification, Design and Implementation of an Audio Concordance 3

Linguistic and anthropological fieldwork

— Lexicography

Archiving

Database maintenance

Language documentation training;:

— Students of phonetics and lexicography

— Teachers of phonetics (used in teaching: example data)
Access to documentation:

— Researchers (audio examples and corpus)
— Corpus linguists (looking for corpora)
— Students of linguistics (studying different languages)

— Engineers from language technology (speech recogniser, synthesizer, e.g. for applica-
tions for the blind)

— Other interested persons and institutions

The main intended application of PAC is in the lexicography of endangered languages. Con-
sequently, the main considerations are ergonomic use by the language documenter rather than
other users:

2.2

portability, e.g. by using common hypertext implementation techniques,
simplicity of use,

minimal necessary function (in this case, plain word access rather than access via morpho-
syntactic or semantic classes),

ease of maintenance and extension by any computational linguists, in particular compu-
tational lexicographers,

compatibility with other datasets and tools by the use of ASCII-based interfaces, especially
for import and export, including normalised raw text formats and XML.

Technical Requirements

Our implementation perspective leans strongly towards practice in computational linguistics,
and involves

published design specifications for architecture, modules, interfaces, data structures, algo-
rithms

open source, possibly under GNU Public Licence (GPL)

Specification, Design and Implementation of an Audio Concordance 4

e ISO (SGML) or de facto (XML, SAMPA, EAGLES) standards oriented, respect for best
laboratory practice

e modular, library-oriented code rather than a single system
The present tool is straightforward and does not involve essentially new concepts; it takes up

ideas and experience from the VerbMobil and EAGLES projects and applies them to the specific
area of the documentation of endangered languages.

The further technical requirements for PAC are summarised informally as follows:

1. platform independence as far as possible
2. browser—neutral web—accessibility (including text browsers)
3. offline operational capability

4. non-proprietary ASCII storage and interchange formats for textual data in order to ensure
ease of re—usability without extensive reverse engineering

5. de facto standard formats for non-textual data, e.g. WAV audio
6. full published documentation for design, evaluation, maintenance, extension and use
7. use of easily accessible high—level programming constructs (e.g. regular expressions)

8. compatibility with older low-level hardware found in many parts of the world.

2.3 Lingware requirements for lexicography

A specific lingware requirement is that PAC should be interfaced with
1. the microstructure of a computational lexicon or encyclopaedia with onomasiological, se-
masiological or other macrostructure
2. a corpus database management system.
Interfaces to standard ASCII based formats for text components of corpora and lexica need to

be specified (e.g. widely used UNIX databases, archives with ASCII markup such as HTML,
XML, Shoebox files).

By ‘corpus’ we mean a set of related primary language data sources, following EAGLES recom-
mendations (cf. [Gibbon, Moore & Winski 1997]), including the following minimum

e audio, video and other signals recording communicative events

e transcriptions of recordings

e time-aligned annotations of recordings (including transcriptions and linguistic and other
markup)

Specification, Design and Implementation of an Audio Concordance 5

e corpus metadata including corpus wordlists (minimal lexica).

The following options may also be included:

e markup tables (interlinear gloss tables)

e corpus lexica and lexicon metadata

e corpus characterisations.
Finally, the audio-concordance should be as language independent as possible. This means in
particular that it should take into acount more than one language and has to be extensible to

other languages as long as the data are available in some standard way. This requirement applies
to the proof of concept implementation.

Specification, Design and Implementation of an Audio Concordance 6

3 Design specification

In this design specification we outline both system design and project design.

3.1 Concordance system design
3.1.1 Declarative considerations

We define a Concordance System from a declarative point of view as a pair of functions

ConcordanceSystem =< facquisition faccess > (1)

The acquisition function maps a corpus into a concordance consisting of a set of pairs of keyword
and keyword-in—context set:

faquisition : Corpus — Concordance (2)
where
Corpus =< Signals, Annotations > (3)
Concordance =< Key, Contextpairs > (4)
Contertpair =< Text, Audio > (5)

The aquisition function creates a list of keys from a given — possibly marked up — text. This
list of keys are to be used as access criteria to the contexts of these keys, i.e. the Key Words In
Contezt (KWIC).

The consultation function maps a pair of keys (often just one) and a corpus into a keyword—in—
context concordance:

feonsultation : Keys x Corpus — KWIC (6)

where

Keys = List | Regexp | Lexical Lemma (7)

The main dependencies involving both functions are illustrated in condensed form in Figure 1.

Specification, Design and Implementation of an Audio Concordance 7

f:_acc: Keys —> Contexts

f_acq: Contexts —> Keys

f_acq: Corpus —> Contex
Contexts

Figure 1: Main concordance dependencies.

3.1.2 Procedural considerations

Two different types of electronic concordance were taken into consideration from a procedural
point of view:

1. The static concordance in which all links are predefined:

e The main advantage of this solution is that it can be stored easily as an archive in a
standard ASCII format and accessed with standard hypertext browser (HTML, XML)
software. A static concordance can also be implemented manually if the amount of
data is relatively small.

e The main disadvantage of static concordances is that the set of keywords, context
and keyword—context pairs is fixed during compilation.

2. The dynamic concordance, in which a keyword (or combination of keywords or phrases)
from a wordlist, or a generalisation (such as a regular expression) is formulated and related
on the fly to possible contexts in the corpus:

e The main advantage of this solution is that the corpus can be extended rather simply,
and that arbitrary queries can be formulated.

e The main disadvantage of this solution is that a non—standardised program environ-
ment is needed in order to search the corpus database for keywords.

We note that there is a logical dependency between static and dynamic concordances: a static
concordance is a subset of the output of a dynamic concordance. Consequently, PAC design
starts with the dyamic concordance. The modules of the dynamic concordance are shown in
Figure 2 and the architecture of a system designed to realise these functions is shown in Figure 3.

The hyperconcordance! which is the output of the software should be a browser accessible
format. A user interface event should result on a list of occurrences of the keyword in context
and an audio rendering of the context, including the keyword.

LCf. the static hyperconcordance for T. S. Eliot’s Old Possum’s Book of Practical Cats:
http://coral.lili.uni-bielefeld.de/Classes/Summer97/SemGS/WebLex/01dPossum/oldpossumlex/
and the dynamic VM-HyprLex concordance:
http://coral.lili.uni-bielefeld.de/VM-HyprLex

Specification, Design and Implementation of an Audio Concordance 8

Text normalisation Text archivin

> Aquisition function
offline

Keyword extraction

Normalised text

Search input

on function
ine

Consultati
onl

Key list Search query

- Search result
[Words mapped to audlo}

List of occurrence line numbers
List of occurrence lines

Output

Figure 2: System modules and interface types.

3.1.3 Relation to lexicon microstructure

It is intended to use the concordance as a source of contextual lexical information within a
lexicon, as lexicon as described by [Adouakou & Schulte 2000]. Further information on a mi-
crostructure for a suitable lexicon can be found in [Gibbon 2001].

The lexicon microstructure required for Ega, a tone language putatively with vowel harmony,
consists of the following items:

e Phonology

— Phonetic transcription

— Consonant-Vowel pattern

— Tone pattern

— Syllable sequence condition

— Consonant mutation

— Elision

— Vowel harmony: [+ ATR] (Advanced Tongue Root)

e Morphology

Part of Speech

Inflexion

Pronoun
— Nouns
— Verbs

— Word formation

Specification, Design and Implementation of an Audio Concordance 9

Text normalisation
Corpus] offline 7

Normalised text

Keyword extractio
offline

Key list -/ Consultation function
online

' i
Key formatting
List of occurrence line numbers‘
Key . List of occurrence lines
representation L

Line Line linking
representatio and formatting

Figure 3: Text handling dataflow.

— Derivation

— Compound
e Other

— Sound

— Picture

— Domain

— Definition

— Concordance (i.e. contextualised examples)

— Entry metadata
For the concordance a simpler microstructure subset is used:

e a head with administrative information on the text such as: title, author, date, date of
changes and language.

e a body with annotated text:

— the top level container element is for the text,

— the next level is the sentence tag, which contains either the words or sentence end
punctuation such as period, question marks, exclamation marks.

The tagging hierarchy for use with the concordance is shown in Figure 4.

Specification, Design and Implementation of an Audio Concordance 10

Concordance Tagged Text (CTT)
Concordance metadata information Concordance text
% (conctext)
Title Author Date Changes Concordance sentence -~ Concordance sentence
(concsentend) (concsent)
Concordance word Concordance word End of sentenc
(concword) (concword) (concsentend!

Figure 4: Tree hierarchy for concordance tree tagging

3.2 Summary of modules and data sources
The system should require the following files:

¢ Audio files for all words, either one file per word and/or per sentence. For investigations on
tonality in context the sentence might be preferred, for a standard canonized pronunciation
one file per word might be included. At a later stage this could be replaced by a speech
synthesis system based on phonetic transcriptions.

e Text file, ASCII formated as the standard input file.

e Marked up text file generated from the text file by a script but not on the fly (due to
possible lack of computing power) but static. If this is done automatically in a later stage
this could happen on the fly as well.

e Word list generated from the text file. For the word-list the same applies as for the
marked up text, it should be generated statically with appropriate markup for hypertext
presentation. This file should be the standard user entry to the system.

Required scripts/modules are:

e ASCII-text-to-marked-up-text converter

e Search function (input: word from the wordlist possibly by get or post operations of http),
resulting in an output of sentence numbers and sentences of each occurance of a word
searched for (output with appropriate markup for hypertextual presentation and link to
the original text and audio files)

Generated, static files include:

e Marked up text

e Wordlist
Generated, not static files include:

10

Specification, Design and Implementation of an Audio Concordance 11

e list of all occurances of a searched for word with sentence number and sentence

Three user interfaces are being included:

1. Command line (exists)
2. Online (CGI server, standard browser client)

3. Offline (widget supporting standalone environment)

Further interface design specifications will follow in a later version of this document.

3.2.1 Required resources

In order to test the functionality, the PAC system was subjected to initial informal evaluation
using two different Ivorian languages: Koulango (Gur/Senoufo), Anyi (Kwa/Tano).

Currently the first Ega data is arriving from Abidjan and is being incorporated into the evalu-
ation.

Further corpus data specifications will follow in a later version of this document.

3.3 Concordance subproject structure

Discussion on specificatioD
and design of concordang

Data structures and j

algorithms

Design and specification of []

markup

Collection and conversion J

of sources; evaluation

Design of modules and]

interface specification

Implementation of modules
Normalisation function S
Acquisition function SSS————
Consultation function SSSS===—=—=————
User interfaces SN

CD-ROM production :}

TO T1 T2 T3 T4 T5

Figure 5: Time management bar chart.

Specification, Design and Implementation of an Audio Concordance 12

Table 1: Task assignment table

Task Who

Specification and design for an audio-concordance | Trippel, Ouattara, Jahn
Specification and design for an audio-concordance | Trippel, Ouattara, Jahn
Design and definition of markup Trippel, Ouattara, Schulte
Coordination, collation Trippel, Schulte, Adouakou
Evaluation Trippel, Adouaou

Module definition Trippel, Ouattara, Jahn
ASCII to Markup converter Trippel, Ouattara, Jahn
Search function Ouattara, Jahn

User interface design Trippel, Jahn

CD-Rom production Trippel, Adouakou

3.3.1 Task definition

The following main tasks have been defined:

1. General issues in specification and design for an audio concordance
2. Specification and design documentation
3. User interface design
4. Coordination with related projects on lexicon microstructure
5. Coordination with related projects on resources: text files, audio files
6. Module definition
7. Basic concordance markup XML DTD
8. Specification of data structures
9. Specification of algorithms
10. Implementation of modules
11. Evaluation with Anyi, Koulango, Ega

12. CD-Rom production

3.3.2 Time and personnel management

The tasks are coordinated closely (and some shared) with the DAAD project Encyclopaedia
Design for Ivory Coast Languages until the end of that project (December 2000).

12

Specification, Design and Implementation of an Audio Concordance 13

4 Implementation
The basic conditions for implementation are as follows:

1. to accomplish platform independence and reusability the main (but not exclusive) inter-
change format for the texts and lexicon is XML; an XML DTD has been defined for the
concordance

2. for convenience the audio formats is initially the wide-spread WAV which is usable on most
platforms and which can easily be converted into other formats

3. graphics are in standard formats such as JPEG, GIF, TIFF, EPS
4. documentation is in IXTEX, with automatic conversion into HTML and PDF

5. implementation is in Perl because of the availability of efficiently implemented regular
expression based search

6. pending the availability of an appropriate XML processor, markup is pre—processed into
single—character—based ASCII conventions for efficient treatment

4.1 DTD for Concordance Tagged Text (CTT)

The design of the ‘container tree’ of elements and tag types was specified above (cf. Figure 4): a
text element is the container element for sentences, which are in turn container elements for words
and sentence-end punctuation such as periods, question marks, exclamation marks. These are
included because they have a semantic function for orthographic texts. Tone-language—specific
prosodic markup will be included at a later stage.

The DTD is deliberately minimal and subject to revision with respect to the distinction between
elements and attribute—value pairs in consultation with other teams.

<!-- DTD for the concordance markup Concordance Tagged Text (CTT) -->
<!-- Developed 2000 by Thorsten Trippel, Soma Outtara, Nils Jahn
at the University of Bielefeld, Germany -->

<!-- root element is ctt -->

<!ELEMENT ctt - - (concinf, conctext)>

<!-- head element with general information -->
<!ELEMENT concinf - - (title, author, date, changes*)>
<!ELEMENT title - - (#PCDATA)>

<!ELEMENT author - - (#PCDATA)>

<!ELEMENT date - - (#PCDATA)>

<!ELEMENT language - - (#PCDATA)>

<!ELEMENT changes - - (#PCDATA)>

<!-- body element with marked up text -->
<!ELEMENT conctext - - (concsentence)* >

<!-- Element to tag single sentences with id attributes -->

13

Specification, Design and Implementation of an Audio Concordance

<!ELEMENT concsentence - - ((concword+),concsentend) >
<!ATTLIST concsentence sentencenumber ID #REQUIRED>

<!-- Element to tag single words with id attributes -->
<!ELEMENT concword - - (#PCDATA)>
<!'ATTLIST concword wordnumber ID #REQUIRED>

<!-- Element to tag sentence end punctuation such as . ! 7 -->
<!ELEMENT concsentend - - (#PCDATA)>

The following sample text illustrates the CTT format:

<?xml version="1.0" standalone="no"7>
<!DOCTYPE ctt public "-//UBI//DTD CONCORDANCE 0.1a//EN" >
<ctt>

<concinf>
<title>Testtext</title>
<author>Trippel</author>
<date>08 Oct 2000</date>
<language>English</language>
<changes>08 Oct 2000</changes>
</concinf>

<conctext>

<concsentence sentencenumber="sentencel">
<concword wordnumber="word1'">This</concword>
<concword wordnumber="word2'">is </concword>

="word3">sentence</concword>

<concword wordnumber
<concword wordnumber="word4'">1</concword>
<concsentend>.</concsentend>
</concsentence>

</conctext>

</ctt>

4.2 Normalisation function

The normalisation function converts a SAMPA text into a marked-up text.
receives a unique identification number. Within the sentences each word receives an identification

14

Every sentence

which is composed of the number of the current sentence and the number of its position in the
sentence. The SAMPA text does not contain any punctuation and the end of a sentence is
marked up with the line-feed symbol. The normalisation function will be invoked once per text.

The normalisation function (cf. Table 2) expects two arguments which are the name of the input
file and the name of the output file. The read line of the input file is stored in a string variable.

The line of the file will be splitted into an array, and two integer variables are used as index

variables. The first index will be the number of the current sentence and the second the number

of the current word of the sentence.

14

Specification, Design and Implementation of an Audio Concordance 15

Table 2: Pseudocode for normalisation function.

normalisation(input, output)
openfile(input)
openfile(output)
print output, header-markup
word-index +1
sentence-number +1
while input-line not end-of-file do
line-array <« split input-line at blank
if length(line-array) > 0
then print output sentence-markup + sentence-number
foreach word in line-array do
print output word-markup + word-index + sentence-number
increase word-index
end foreach
print output sentence-markup
end if
word-index + 1
if length(line-array) > 0
then increase sentence-number
end if
end while
print output bottom-markup
closefile(input)
closefile(output)

The following algorithm first opens the input and the output file. The first thing which will be
written into the output file is the markup header, i.e. root element and information about title,
author, and date of the text. The two index variables are initialised and the input file is read
line by line. Each line is split into an array and the the sentence and the words of the sentence
are marked up with tags and also receive identification numbers which are provided by the index
variables sentence-number and word-index. When the end of the input file is reached the end
tags are written into the output file and the files are closed.

For the provisional proof-of-concept code see Appendix B.

4.3 Acquisition function

keywords which occur in the input texts. The list is in alphabetical order and does not contain
any double occurences. The list is in ASCII and each word is seperated by a line feed symbol.

The acquisition module searches the data directory and processes each file in this directory. The
module first stores the files of the mentioned directory in an array. Then a file is opened, its
contents are read line by line and the extracted words are stored in an array. After that the file
is closed. This procedure is repeated until all files in the directory have been processed.

The array which contains the words of all files is sorted alphabetically. After that the first
element of the array is copied into another array. The module checks if the next element is
equal to the one just copied. If it is equal it checks the next one, if it is not equal it is copied

15

Specification, Design and Implementation of an Audio Concordance 16

Table 3: Pseudocode for keyword extraction function.

normalisation(input, output)
array < empty
sorted-array < empty
unique-array < empty
directory < read-current-directory()
index «0
current <0
for file in directory do
openfile(file)
while(file not eof) do
line <readline(file)
word «extractword(line)
append(word, array)
end while
closefile(file)
end for
sorted-array «sort(array)
while(index <= length(sorted-array) do
append (sorted-array[index],unique-array)
increase(index)
while(unique-array[current] not equal sorted-array[index]
increase(index)
end while
increase(current)
end while
openfile(output)
list «—convert sorted-array into string
write(output,list)
closefile(output)

to the next array. This is repeated until each element of the first array has been checked. The
second array consists of unique words. The array is split into a string variable and each word is
separated by a newline and stored into the target file.

For the provisional proof-of-concept code see Appendix D.

4.4 Consultation function

The consultation module searches a given text for a specific keyword. If the keyword is found
all sentences are shown in which the desired keyword occures. In case there are no matches it
returns the message that no matches were found. It is also possible to search more than one
text at the same time, but the results are sorted according the source texts.

The consultation module expects as arguments the keyword to be searched, the output file where
the results will be stored and a list of input files which could be as long as necessary.

The module first checks whether the number of arguments is less than 3. In that case it termi-
nates and returns an error message to the user and prints out how which arguments are expected.
The first input and the output file is opened. The whole input file is stored into one variable.

16

Specification, Design and Implementation of an Audio Concordance 17

The whole variable is searched for a specific pattern and the line number and the sentence are
stored in variables.

Then the variable which contains the sentence is searched whether it contains the keyword and
if it contains it the whole sentence with the line number is written to the output file. This is
repeated until the whole input file is checked, then the input file is closed. Then the next file
from the input list is processed. This is repeated until the whole list is processed. At the end
the module checks whether there were any matches, if not a message is returned to the screen.
The output file is closed.

Table 4: Pseudocode for consultation function.

consultation(keyword,outputfile,list-of-inputfiles)
openfile(outputfile)
found <« false
for inputfile in list-of-inputfiles do
openfile(inputfile)
text «readfile(inputfile)
for sentence in text do
if keyword is in sentence do
print output sentence
found <«true
end ifend for closefile(inputfile) end for if found not equals true do
print ”"no matches found!”
end if
closefile(outputfile)

The consultation function is frontended with CGl-interaction for user access. After selecting a
language from a pick-list on the introductory page (see figure 6), two pick lists enable users to
select a word and a corpus where a context could come from that is language specific. It is also
possible to select all corpora at the same time.

After the consultation request a list of occurences with accompanying line numbers and contexts
are given. All of this is generated on the fly.

Three user interfaces are being incorporated; design and implementation (except for command
line access) is still in process. The current implementation of the graphical user-interface forms
is shown in figure 6.

For provisional proof-of-concept code see Appendix F.

17

Specification, Design and Implementation of an Audio Concordance 18

[<:455l Hetscape: Language Documentation/Documentation of languages of Cote d’Ivoire - O]

File Edit View Go Communicatar Hel|

.~ Bookmarks A Location I[ht tp://coral.lili.uni-bielefeld.de/langdoc/index.html /|)

Contents Select a language Links

Y @2 EE) N2

e [

=888l Netscape: AUDIO- Concordance Wordlist and Userinterface -0 X
File Edit View Go Communicator Ha\p|

v| .~ Bookmarks A Location: Iﬂﬂttp://coral .1ili.uni-bislefeld.de/langdoc/cgi-binf/acquisitic /| |

oz

Search for words in ohe ore more text(s) Links

Contents in the language EGA.

=) =4
| e ii tw 9P B 2

|8l Hetscape: AUDIO- Concordance output -8 X

File Edit View Go Communicator Ha\p|

'| .~ Bookmarks A Location Ihttp:/fcoral .1ili.uni-bielefeld.de/langdoc/cgi-bin/consultat? /| |

Hits: search for .
Contents in EGA Links

ET JE SO Chee

Figure 6: Basic user interface forms.

18

Specification, Design and Implementation of an Audio Concordance 19

5 Evaluation, distribution, maintenance

The testing programme follows EAGLES recommendations for language and speech technology
([Gibbon, Mertins & Moore 2000]) and involves

1. structural testing (glass box Testing, ‘diagnostic testing’)
2. functional testing (black box testing, ‘evaluation’)

3. field testing (black box testing, ‘assessment’) with different languages (Anyi, Koulango,
Ega); tests are being performed in Bielefeld and Abidjan on

e client platforms: Linux, Solaris, various Win32 versions

e client browsers: Opera (preferred), NN, MS-IE (but under WinNT MS-IE failed to
render multiply embedded tables)

e server: Linux, Solaris; not yet with Win32

The software and documentation is distributed continuously within the Ega project between
Bielefeld and Abidjan, and the present document makes it available in preliminary form to the
partners in the DOBES project.

The documentation will simultaneously be made available on the Ega project website.

19

Specification, Design and Implementation of an Audio Concordance 20

References

[Adouakou & Schulte 2000] Adouakou, Sandrine & Michaela Schulte (2000). Sprachen der
Elfenbeinkiiste. Universitit Bielefeld.

[Gibbon, Moore & Winski 1997] Gibbon, Dafydd, Inge Mertins & Roger Moore, eds. (1997).
Handbook of Standards and Resources for Spoken Language Systems. Berlin: Mouton de
Gruyter.

[Gibbon, Mertins & Moore 2000] Gibbon, Dafydd, Inge Mertins & Roger Moore, eds. (2000).
Handbook of Multimodal and Spoken Dialogue Systems: Terminology, and Product Evalu-
ation. Dordrecht/New York: Kluwer Academic Publishers (Chapter 4).

[Gibbon 2001] Gibbon, Dafydd (2001). On lexical objects and their properties. A contribution
to the ‘Metalex’ requirements specification for spoken language lexicon documentation.
Universitat Bielefeld: DOBES Technical Report n (Ega)

20

Appendices:

Object specification tables

Proof—of—concept PERL code

Specification, Design and Implementation of an Audio Concordance 22

A Object specifications
Initial object specifications follow for

1. PAC - Portable Audio Concordance

2. Text normalisation module

3. Keyword extraction and formatting module
4. Consultation query and response module

5. User interface module

22

Specification, Design and Implementation of an Audio Concordance

Object name

PAC - Portable Audio Concordance

Services description

PAC is designed to aid corpus lexicographers with low—technology equipment in the
documentation of endangered languages.

The present documentation covers an initial specification and proof-of-concept imple-
mentation.

PAC has the following functionality:

1. Mapping of SAMPA annotated audio corpus to keywords + text/audio contexts
(acquisition)

Mapping of keywords into text/audio contexts (access)

Corpus transcription normalisation in XML and ASCII DB import formats
Audio indexing from words and sentences into signal files

Keyword extraction from corpus and pick list formatting

KWIC output formatting in XML/HTML

Online and offline operation with standard browsers

NS ok N

Service calls

Text normalisation module
Keyword extraction and formatting module
Consultation query module and response module

- W e

User interface module

Parameter data formats

Input: phrase-chunked speech files, (multi-tier) SAMPA annotations
Intermediate: keywords, normalised ASCII SAMPA text with XML markup
Output: Hypertext (XML/HTML) formatted text/audio query results

23

23

Specification, Design and Implementation of an Audio Concordance

Object name

Text normalisation module

Services description

The module maps

1. an X-SAMPA transcription
2. into a normalised archivable text
3. with XML markup

The marked—up text serves as the input to the KWIC (KeyWord in Context) search
function.

Service calls

1. XML DTD for Concordance Tagged Text (CTT)
2. SAMPA specification

3. corpus access file handling

Parameter data formats

Input: time—stamped phrase-chunked X-SAMPA transcription
Intermediate: —
Output: XML marked up normalised X-SAMPA transcription

24

24

Specification, Design and Implementation of an Audio Concordance

Object name

Keyword extraction and formatting module

Services description

The keyword extraction module maps a normalised text into a set of keywords for
mapping to a lexicon and for consultation queries to the KWIC consultation function.

1. keyword set
2. markup for GUI picklist widget
3. marked—up GUI picklist widget

The keywords are also intended to be generalised to regular expressions for generalised
search.

Service calls

1. Tree—traversal function for XML Concordance Tagged Text
2. XML DTD for picklist

Parameter data formats

Input: XML Concordance Tagged Text
Intermediate: Line separated ASCIT SAMPA formatted keyword set
Output: XML marked up picklist widget

25

25

Specification, Design and Implementation of an Audio Concordance

Object name

Consultation query and response module

Services description

The consultation query module maps a keyword (set) and a normalised text with
Computer Tagged Text XML markup into a set of transcription and audio context
pairs in which the keyword occurs.

1. set of transcription/audio pairs

2. with GUI oriented XML/HTML formatting of transcription
3. audio file link

4. concordance statistics about keyword

Service calls

AR e

keyword set access

normalised XML formatted text archive access
search optimisation of XML format

context search

audio file linking

Parameter data formats

Input:
Intermediate:
Output:

XML formatted keyword list and XML formatted text
search optimised text format
GUI formatted KWIC keyword—textcontext—audiocontext triples

26

26

Specification, Design and Implementation of an Audio Concordance

Object name

User interface module

Services description

Four user interfaces are provided:

1. Dynamic concordancance with access via command line (for development and
for basic DOS and VT100 type terminal interaction)

2. Dynamic concordance for standard HTML (or XML) browser client interacting
online via HTTP with CGI and server—side application

3. Static (pre—compiled) concordance for standalone HTML (or XML) browser
client

4. Dynamic concordance for standalone application with standard GUI interface (in
the proof-of-concept version: Perl/Tk)

Service calls

All (G)UI functions have service calls to all other modules.

Parameter data formats

Input: Outputs of all other modules
Intermediate: —
Output: Events to trigger all other modules; (G)UI forms

27

27

Specification, Design and Implementation of an Audio Concordance

B Normalisation function

#!/vol/bin/perl -w

normalisation.pl

version: 0.9b

N. Jahn, S. Ouattara, T. Trippel

November 2000, University of Bielefeld, Germany

H O O H H

[jahn,soma,ttrippel] @spectrum.uni-bielefeld.de

+*

Functionality: for a given line it ennumerates the line,
breaks it into words, gives every word a unique identifier.

Syntax: normalisation.pl <INFILE> <OUTFILE>

Additional information: the user will be prompted for
title, author, date of and changes to the document

($input, $output) = QARGV ; #store the arguments in $input and $output

if ($#ARGV < 1) { #if there are less than 2 arguments, tell the user and exit program
print "usage: normalisation.pl <input> <output>\n" ;
exit ;

open (IN, "< $input") #open $input for reading access
or
die "\n Input file couldn’t be opened!!\n"

open (OUT, "> $output") #open $output for writing access
or
die "\n Output file couldn’t be created!!\n"

print "Please give the title: \n";

chomp ($title = <STDIN>);

print "Please give the authors name: \n" ;

chomp ($author =<STDIN>);

print "Please give the date when the text was created:\n";
chomp ($date = <STDIN>);

print "Please give the language of the text:\n";

chomp ($1language = <STDIN>);

print "Please give the changes to the text:\n";

chomp ($changes = <STDIN>);

print OUT qq#<?xml version="1.0" standalone="no"?>\nj, ; #print document markups into $output

print OUT "<!DOCTYPE ctt public \"-//UBI//DTD CONCORDANCE 0.1a//EN\" >\n\n";
print OUT "<ctt>\n\n"

print OUT "<concinf>\n";

print OUT "<title>$title</title>\n";

print OUT "<author>$author</author>\n";

print OUT "<date>$date</date>\n";

print OUT "<language>$language</language>\n";
print OUT "<changes>$changes</changes>\n";
print OUT "</concinf>\n\n";

print OUT "<conctext>\n";
$count =1 ;

28

28

Specification, Design and Implementation of an Audio Concordance 29

$line
$word

1;
0;

while (KIN>) {
chop ; # deletes the last character of the line
Qarray = split(" ", $_) ; # splits the words into an array
if ($#array > 0) { # checks for non-empty lines
print OUT "<concsentence sentencenumber=\"$line\">\n"
foreach $word (Qarray) { # for each word of the current line do
print OUT "<concword wordnumber=\"word$count.$line\">$word<\/concword>\n";

$count++ ;
}
print OUT "<\/concsentence>\n"

}

$count= 1;

$linet++ if ($#array > 0) ; # increments the line number by one if the line is non-empty
}

print OUT "<\/ctt>\n"

close(IN) ;
close (0UT) ;

29

C Normalisation function with basic TK GUI

Specification, Design and Implementation of an Audio Concordance

#!/vol/bin/perl

use

sub

}
sub norm {
$mw = shift ;
$input = $eb->get() ;
$output = $e6->get () ;
$title = $el->get() ;
$author = $e2->get() ;
$date = $e3->get() ;
$changes = $ed->get() ;
if ($input eq undef) {
openError ;
}
open (IN, "< $input")
or
die "Input file couldn’t be opened!\n"
open (OUT, "> $output™)
or

chop ; # deletes the last character of the line

Qarray = split(" ", $_) ; # splits the words into an array

if ($#array > 0) { # checks for non-empty lines

print OUT "<concsentence sentencenumber=\"$line\">\n"

foreach $word (Qarray) { # for each word of the current line do

Tk ;

openError {
$nf = MainWindow->new() ;

$nf->Frame (-label => "\nNo input or output file specified!\n")->pack() ;
$nf->Button(-text => "ok", -command =>sub {$nf->withdraw()})->pack()

die "Output file couldn’t be opened!\n"

print OUT qq%<?xml version="1.0" standalone="no"7?>\nJ ;
print OUT "<!DOCTYPE ctt public \"-//UBI//DTD CONCORDANCE 0.1a//EN\" >\n\n";

print OUT "<ctt>\n\n" ;

print OUT "<concinf>\n";
print OUT "<title>$title</title>\n";

print OUT "<author>$author</author>\n";

print OUT "<date>$date</date>\n";

print OUT "<changes>$changes</changes>\n";

print QUT "</concinf>\n\n";

print OUT "<conctext>\n";
$count = 1 ;
$line 1;
$word = 0 ;

while(<IN>) {

3

print OUT "<concword wordnumber=\"word$count.$line\">$word<\/concword>\n";
$count++ ;

}

30

30

Specification, Design and Implementation of an Audio Concordance 31

print OUT "<\/concsentence>\n"
}
$count= 1;
$line++ if ($#array > 0) ;
increments the line number by one if the line is non-empty
}
print OUT "<\/ctt>\n" ;
close(IN) ;
close(0UT);
exit ;

}

$mw = MainWindow->new() ;

$mw->Label (-text => "Title")->pack() ;

$el = $mw->Entry()->pack() ;

$mw->Label (-text => "Author")->pack() ;

$e2 = $mw->Entry()->pack() ;

$mw->Label (-text => '"Date")->pack() ;

$e3 = $mw->Entry()->pack() ;

$mw->Label (-text => "Last changes")->pack() ;

$e4 = $mw—->Entry()->pack() ;

$mw->Label (-text => "")->pack() ;

$mw->Label (-text => "Input File")->pack() ;

$e5 = $mw—->Entry()->pack() ;

$mw->Label (-text => "Qutput File")->pack() ;

$e6 = $mw->Entry()->pack() ;

$mw->Label (~text => "")->pack() ;

$mw->Button(-text => "Normalise Text", -command => \&norm)->pack() ;
$mw->Button(-text => "Quit", -command => sub {exit})->pack() ;
MainLoop;

31

Specification, Design and Implementation of an Audio Concordance 32

D Word list extraction

#!/vol/bin/perl

#authors Jahn & Ouattara
#Program : acquire
#gets as input a <ctt> text, then creates a key wordlist and sorts it automatically

sub getDir {

opendir (ETC, "/project/langdoc/SOFTWARE/CONCORDANCE/DATA/")
or

die "Cannot open it!"

while ($toc = readdir(ETC)) {
if ($toc =~ m/\S+?\.ctt/g) {
push(@inh, $toc) ;

}
}
closedir (ETC) ;
return Qinh ;
}
Qarray = () ;

@narray = () ;

@dir = getDir() ;

print @dir ;

foreach $datei (@dir) {

open(DATEI, "< /project/langdoc/SOFTWARE/CONCORDANCE/DATA/$datei")

while (<KDATEI>) {
if (m/<concword wordnumber=\"word\d+\.\d+\">(\S+?)<\/concword>/g) {
push(@array, $1) ;
} #extracts a word and pushes it onto an array

}

close(DATEI) ;

@narray = sort(Qarray) ; #sorts the array

$index = 0 ;
$current = 0 ;
Qrarray = () ;

while($index <= $#narray){ #compares index to the length of the array
push(@rarray, $narrayl[$index]) ; #pushes word onto the array
$index++ ;
while ($rarray[$current] eq $narray[$index]){
$index++ ; #skips equal words
}

$current++;

}
open(0UT, "> /project/langdoc/SOFTWARE/CONCORDANCE/DATA/wortliste.wl")

print OUT join("\n", @rarray) ; # converts the array into string
close (0UT) ;

32

Specification, Design and Implementation of an Audio Concordance

E CGI interaction for wordlist extraction

#!/vol/bin/perl -w
use CGI qw(:standard);

my $language = param("language"); #the language to be investigated
#my $language = "AGNI";

$defaultpath= "../html-data/DATA/"."$language"."/";

$_=$DATEI;
#s/\/project\/langdoc\/SOFTWARE\/CONCORDANCE\/DATA\///;
#s/\.ctt//;

#$filename=$_;

%titlefile =();

Qarray = () ;

@narray = () ;

@dir = getDir() ;

print Q@dir ;

foreach $datei (@dir) {

open(DATEI, "< /project/langdoc/SOFTWARE/CONCORDANCE/DATA/$language/$datei")

while (<KDATEI>) {
if (m/<concword wordnumber=\"word\d+\.\d+\">(\S+?)<\/concword>/g) {
push(Qarray, $1) ;
} #extracts a word and pushes it onto an array
elsif (/<titled>\w(.*)<\/title>/){

s/<title>//;

s/<\/title>//;

$title=$_;
$titlefile{"$datei"}=$title;
}

}

close(DATEI) ;

}

@narray = sort(Qarray) ; #sorts the array
$index = "O" ;

$current = "0O" ;

Q@rarray = () ;

while($index <= $#narray){ #compares index to the length of the array
push(@rarray, $narray[$index]) ; #pushes word onto the array
$index++ ;
while ($rarray[$current] eq $narray[$index]){
$index++ ; #skips equal words

}
$current++;
}

print header();

print <<END_of_HEAD;

33

33

Specification, Design and Implementation of an Audio Concordance 34

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://wuw.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html>

<head>

<title>AUDIO-Concordance Wordlist and Userinterface</title>

<link rev="MADE" href="mailto:ttrippel\@spectrum.uni-bielefeld.de" />

<base href="http://coral.lili.uni-bielefeld.de/langdoc/cgi-bin/acquisition.pl" />

<meta name="copyright" content="University of Bielefeld, Computational Linguistics and Spoken Language" />
<meta name="author" content="Thorsten Trippel" />

<meta name="description" content="Wordlist for the audio concordance and Userinterface" />
<meta name="date" content="23 Nov 2000" />

<link rel="stylesheet" href="../langdoc.css" />

<script language="JavaScript">

<1--

function doList() {
counter=0;

for(var i=0;i<document.forms["consultationstart"].infile.options.length;i++) {
if (document.forms["consultationstart"].infile.options[i].selected) {

counter++;
}
}
if (counter==0){
alert("Don’t want to proceed?\\n There are no files selected!");
return;

}

else {document.forms["consultationstart"].submit() ;}

function select_all (formList) {
for (var i = 0; i < formList.options.length; i++) {
formList.options[i].selected =true;
}
}
function deselect_all(formList) {
for (var i = 0; i < formList.options.length; i++) {
formList.options[i].selected =false;
}
}

/1 ==>
</script>

</head>
<body link="#ffffff" vlink="#fafafa" alink="f£f0000">
END_of _HEAD

Qalltitles= values()titlefile);

print <<HEAD_of_TABLE;

<form name="consultationstart"
action="http://coral.lili.uni-bielefeld.de/langdoc/cgi-bin/consultation.pl”
method="post">

<input type="hidden" name="language" value="$language" />

<table class="intern" >

34

Specification, Design and Implementation of an Audio Concordance 35

<tr><!-- 1.Reihe leer nur leere Bilder -->
<td class="background" width="137">
</td>
<td class="background" width="300%" colspan="3"><img src="../IMAGES/1pix.gif"
width="1" height="1" alt="" hspace="137" vspace="1" /></td>
<td class="background" width="137"><img src=“../IMAGES/1pix.gif"
width="1" height="1" alt="" hspace="68" vspace="1" /></td>
</tr>

<tr><!-- 2. Reihe Tabellenueberschriften -->
<td class="tablehead">Contents</td>
<td class="tablehead" colspan="3">Search for words in one ore more text(s)

in the language $language.</td>
<td class="tablehead">Links</td>
</tr>
<tr> <!-- 3. Reihe, das ist die erste Reihe des Tabelleninhalts -->
<td class="content" rowspan="3">
<p>Language Documentation Notes</p>
<p>Introductory page</p>
<!-- <p>Search the concordance</p> -->
<p>Specification of the audio concordance</p>
<p>E-mail: langdoc\@spectrum.uni-bielefeld.de</p>
<p>About the project</p>
<p>Designed: November 2000</p>
<!-- <img src="../IMAGES/1pix.gif"
width="1" height="1" alt="" hspace="1" vspace="100" /> -->

</ta>
<td class="body" rowspan="2">

<!-- <table class="intern" border="0" cellspacing="0" cellpadding="0"> -->
HEAD_of _TABLE

print <<SELECT_END;

<l-- <tr>

<td class="body" rowspan="2" > -->

Select word:

<select name="word" size="20" multiple="multiple">

SELECT_END

$word="0";

for ($word=0;$word<=$#rarray;$word++){
print "<option value=\"$rarray[$word]\">$rarray[$word]</option>\n"

}

print <<CONTENT_START;
</select>

</td>

<td align="center" class="body" colspan="2" rowspan="1">
Select corpus:

<select name="infile" size="3" multiple="multiple">

CONTENT_START

35

Specification, Design and Implementation of an Audio Concordance 36

while (($file,$title) = each(ftitlefile)){

print "<option value=\"$defaultpath$file\">$title</option>\n";

}

print <<CONTENT_END;
</select>

</td>

<td class="linklist" rowspan="3">

</td>
</tr>

<tr> <!-- 4. Reihe, Uebersicht und linkliste sind verbraucht,
2. Spalte auch bleibt noch Spalte 3 und 4 -->

<td align="center" class="body" colspan="2">

<input type="button" value="Select All Files" onclick="select_all(form.infile)" />

<1-- </td>

<td align="center" class="body" > -—>

<input type="button" value="Deselect All Files" onclick="deselect_all(form.infile)" />

<input type="button" value="Select All Words" onclick="select_all(form.word)" />

<1-- </td>

<td align="center" class="body" > -->
<input type="button" value="Deselect All Words" onclick="deselect_all(form.word)" /></td>
</tr>

<tr><!-- 5. Reihe, Uebersicht und linkliste sind verbraucht, Rest noch nicht -->

<td align="center" class="body" colspan="3">

<input type="button" value="Search for word" onclick="doList(form)" />

<!-- <input type="submit" value="Search for word" / >

</td>

<td align="center" class="body" >--> <input type="reset" value="Reset" /></td>
</tr>

CONTENT_END

print <<END_of_TABLE;
<!-- </table>

</td>

</tr> ——>

<tr>

<td c1ass="tablehead"> </td>

<td class="tablehead" colspan="3"> </td>
<td class="tablehead"> </td>

</tr>

</table>
</form>
</body>
</html>

36

Specification, Design and Implementation of an Audio Concordance 37

END_of _TABLE

sub getDir {

opendir (ETC, "/project/langdoc/SOFTWARE/CONCORDANCE/DATA/$language/")
or

die "Cannot open the DATA directory!"

while ($toc = readdir(ETC)) {
if ($toc =" m/\S+?\.ctt/g) {
push(@inh, $toc) ;

}
}
closedir (ETC) ;
return Qinh ;
}

37

Specification, Design and Implementation of an Audio Concordance 38

F Consultation function

#!/vol/bin/perl -w

#authors Jahn & Ouattara

#Program : search.pl

#looks for a given word in a given text and prints out the results in multiple matching
#a result is composed of the line number and the the contents of that line

undef $/ ;

if ($#ARGV < 2) {

print "Usage: consultation.pl search outputfile inputfile(1l) ... inputfile(n)\n" ;
exit[0] ;

}

print "QARGV\n"

$word = $ARGV[O] ; #the word to be searched

Q@input = QARGV[2..$#ARGV] ; #the input file to look through

$output = $ARGV[1] ; #the output file

$found = 0 ; #boolean variable which is 0 if there aren’t any matches

open (OUT, "> $output")
or
die "\n Output file couldn’t be created!!\n"

foreach $dat (@input) {

open(IN, "< $dat")

or

die "$dat couldn’t be opened!!\n"
$text = <IN> ;

while ($text =~ m/<concsentence sentencenumber=\"(\d+)\">(.+?)<\/concsentence>/gs) { #matches the
#sentence number and its contents in standard variables
$zeile = $1 ;

$inhalt = $2 ;
print $inhalt ;

if ($inhalt =" m/>$word</g) { #matches the word with the contents
$found = 1 ;
$inhalt =~ s/concword wordnumber/a name/g ;
$inhalt =~ s/concword>/a>/g ;
print OUT "line $zeile\n" ; #prints the sentence number into a file
print OUT "$inhalt\n" ; #prints the contents of the sentence into a file
}
}
close(IN) ;
}

if ($found == 0) {
print "No matches found !!\n"

}

close (0UT) ;

38

Specification, Design and Implementation of an Audio Concordance

G CGI interaction for consultation

#!/vol/bin/perl -w
use CGI qw(:standard);

my Q@word = param("word"); #the word to be searched

my Qinput= param("infile"); #the input file to look through

my $output= param("outfile"); #the output file

my $language = param("language"); #the language to be investigated

undef $/ ;
print header();
print <<END_of_HEAD;

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://wuw.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html>
<head>
<title>AUDIO-Concordance output</tit1e>
<link rev="MADE" href="mailto:ttrippel\@spectrum.uni-bielefeld.de" />
<base href="http://coral.lili.uni-bielefeld.de/langdoc/cgi-bin/test.pl" />
<meta name="copyright"
content="University of Bielefeld, Computational Linguistics and Spoken Language" />
<meta name="author" content="Thorsten Trippel" />
<meta name="description" content="Results from the audio concordance query" />
<meta name="date" content="23 Nov 2000" />
<link rel="stylesheet" href="../langdoc.css" />

</head>
<body link="#ffffff" vlink="#fafafa" alink="#fal340">
END_of _HEAD

print <<HEAD_of_TABLE;

<table class="intern" >
<tr>
<td class="background" width="137">
</td>
<td class="background" width="300%"><img src="../IMAGES/1pix.gif"
width="1" height="1" alt="" hspace="137" vspace="1" /></td>
<td class="background" width="137"><img src="../IMAGES/1pix.gif"
width="1" height="1" alt="" hspace="68" vspace="1" /></td>
</tr>

<tr>
<td class="tablehead" bgcolor="#CCCCCC" >Contents</td>
<td class="tablehead">Hits: search for $word
in $language

<!-- text $filename as a corpus. -->
</td>

<td class="tablehead">Links</td>
</tr>

<tr>

<td class="content">
<p>Language Documentation Notes</p>

39

39

Specification, Design and Implementation of an Audio Concordance 40

<p>Introductory page</p>
<!-- <p>Search the concordance</p> -->
<p>Specification of the audio concordance</p>

<p>E-mail: langdoc\@spectrum.uni-bielefeld.de</p>
<p>About the project</p>
<p>Designed: November 2000</p>

</td>
<td>

<table class="intern" border="0" cellspacing="0" cellpadding="0">
HEAD_of _TABLE
foreach $file (Q@input) {

open (IN, "< $file")
or
die "\n Input file couldn’t be opened!!\n"

$text = <IN> ;

$_=$file;
s/\.\.\/html-data\/DATA\/$language\///;
s/\.ctt//;

$filename=$_;

while ($text =" m/<concsentence sentencenumber=\"(\d+)\">(.+?)<\/concsentence>/gs) { #matches the
#sentence number and its contents in standard variables

$zeile = $1 ;

$inhalt = $2 ;

foreach $word (@word){

if ($inhalt =" m/>$word</g) { #matches the word with the contents
#

$found = 1 ;

$inhalt =" s/concword wordnumber/a name/g ;

$inhalt =" s/concword>/a>/g ;
$inhalt =~ s/>$word</>$word<\/b></g ;

print #<<CONTENT_END;

("<tr><td class=\"body\">text: $filename, line $zeile:

$inhalt\n</td><td class=\"body\">

</td>

</tr> ")
CONTENT_END

print p("text: $file
 line $zeile:
 $inhalt\n")
#prints the sentence number into a file
#prints the contents of the sentence into a file
}
}
}

40

Specification, Design and Implementation of an Audio Concordance

}

print <<END_of_TABLE;
</table>

<l=—= —=>

</td>

<td class="linklist">

</ta>

</tr>

<tr>

<td class="tablehead"> </td>
<td class="tablehead"> </td>
<td class="tablehead"> </td>
</tr>

</table>

</body>
</html>

END_of _TABLE

close(IN) ;
#print end_html();

41

41

