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Model Uncertainty and Statistics

I The stochastic setting we are analyzing may be described as
one of structured model uncertainty.

I a theory is represented by a probabilistic forecast P ∈ P based
on a model

I each model is based on certain parameter values being true
along with some particular causal mechanisms being the
relevant ones for the decision at hand.

I Important assumption: the parameters can be identified (ex
post) by events in Ω.
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The Farmer

grist.org: “With climate change, it’s hard to put your finger on single
events,” says Ben Whalen, who has farmed for three years at Bumbleroot
Organic Farm near Portland, Maine. “But we’re accepting the reality that
the weather is just going to get more extreme and unpredictable. That’s
the mindset that we’re adopting as we start planning for the future of the
farm.”



The Farmer

I Consider a young farmer deciding on plans for her orchards
over a 20-30 year planning horizon: e.g., what type of fruit
trees to plant, what complementary investments to make.

I The decision depends on the climate forecast for the planning
horizon, in particular the annual distribution of variables like
rainfall, temperature, sunshine.

I Given the planning horizon, the desiderata for the investment
decision is the forecast of the distribution rather than the
actual realization of these variables in a particular season.

I However, due to climate change in the offing, the climate
forecast, that is the forecast as to which distribution will
realize, is far from confident: a set of possibilities can be
identified along with a rough guess about the chance of any
one of them being realized.



A Virus



A Virus

I Think of decision making in the face of a contagion
engendered by a novel virus.

I The probabilistic forecast of an epidemiological model is
contingent on a host of assumptions ranging from values of
parameters describing characteristics of the virus, relevant
ecological factors, routes of transmission, assumptions about
government policy and guidance, behavioral responses to
policy and information, etc.

I Fits of the model with various historical episodes give reason
to have confidence in the probabilistic forecast conditional on
such parameters, public policy and mechanisms.

I rate of reproduction, mode of transmission, infectious period
etc. initially unknown



Volatility Uncertainty
I Shige Peng develops a stochastic calculus for Brownian motion

Wwith unknown quadratic variation process (〈W 〉t)

I Family of probability measures Pσ where σ is an adapted
process taking values in some convex, compact subset of Rd ,
unknown

I Construction: P0 Wiener measure on the canonical Wiener
space with Brownian motion W

Pσ = law

(∫ ·
0
σudWu

)
I Beissner, R., Finance Stoch. 2018 show fundamental

incompleteness of the market
I the model is identifiable because

〈W 〉t =

∫ t

0
σ2
s ds Pσ − a.s.
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Identifiability

I Denti, Pomatto, Econometrica 2022 axiomatize the smooth
model of decisions under uncertainty from a statistical point of
view

I (Ω,F) measurable space, states of the world
I P set of probability measures on (Ω,F), models
I P is identifiable, i.e. there exists a measurable mapping

k : Ω→ P with
k = P P − a.s.

for all P ∈ P
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Examples
Ellsberg’s Thought Experiment 1

= 50; = 50
+

{ 100

Ellsberg Urn
I An urn contains 100 blue and red balls in unknown proportions
I composition of the urn is verifiable ex post
I ω = (c(olor), n(umberofredballs))

I Pn: the urn contains n red balls
I k(ω) = Pn



Examples

I.I.D. Experiments
I Sequence of independent and identical experiments with

outcome (Xn)

I EPmXn = m, mean m unknown
I Let

m̃ = lim
n→∞

1
n

n∑
i=1

Xi .

Then k = Pm̃ identifies the unknown law
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The Smooth Model
How shall an agent evaluate uncertain consumption plans under
uncertainty?
I Subjective Expected Utility: choose a belief Q ∈ P and take

U(X ) = EQu(X )

for some Bernoulli utility function u that captures risk aversion

I Pessimistic (maxmin) approach:

U(X ) = inf
P∈P

EPu(X )

I The smooth (second-order Bayesian approach): take a prior µ
over P, an ambiguity index φ and set

U(X ) =

∫
P
φ
(
EPu(X )

)
µ(dP).
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Q =

∫
P µ(dP)

I for ambiguity aversion −φ′′(x)
φ′(x) →∞, we get the maxmin model

I Denti,Pomatto show that in identifiable models, the preference
parameters can be uniquely identified from observed choices
Cerreia, Maccheroni, Marinacci, Montrucchio, JET, 2013
establish the link to robust statistics
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The Smooth Model

I Alternative representation:

U(X ) =

∫
P
v
(
cP(X )

)
µ(dP)

for v = φ ◦ u and

cP(X ) = u−1
(
EPu(X )

)
being the certainty equivalent of X under model P

I second-order expected utility
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Model

I a pure exchange economy with uncertainty.

I finitely many agents i = 1, . . . , I with smooth ambiguity
preferences

I ui : R+ → R is the Bernoulli utility function, assumed
continuously differentiable with limx→0 u

′(x) =∞, strictly
increasing and strictly concave for all i .

I φi : R→ R is assumed continuously differentiable, strictly
increasing and concave for all i .
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Consumption Plans

I In identifiable models, agents can write contracts on models

I a consumption plan (or contingent payoff) is thus a mapping

X : Ω× P → R

I or alternatively
X = X (ω, k(ω))

I we write Xi =
(
XP
i

)
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Definitions

Definition
We say that (XP

i )P is model-independent if we have

XP
i (ω) = XQ

i (ω)

for all states ω and all models P,Q ∈ P.
We say that (XP

i )P is ambiguity-free if
(
XP
i

)
P
is

model-independent and we have

P[XP
i ∈ ·] = Q[XQ

i ∈ ·]

for all models P,Q ∈ P and z ∈ R.



Aggregate Endowment and Allocations

Let X̄ (ω) be the aggregate endowment in state ω . We assume X̄
is model-independent and drop the model index.
An allocation

(
XP
i

)
i
is feasible if

∑
i X

P
i = X̄ for all P P − a.s.



Efficiency

Definition
Let

(
XP
i

)
P,i

be a feasible allocation. We say that
(
XP
i

)
P,i

is

I efficient if there is no feasible allocation
(
Y P
i

)
P,i

such that
Ui

((
XP
i

)
P

)
≤ Ui

((
Y P
i

)
P

)
for every i , with at least one strict

inequality.
I P-conditionally efficient if for P ∈ P, the allocation

(
XP
i

)
i
is

Pareto efficient under model P , that is, there is no feasible
allocation

(
Y P
i

)
i
such that EP

(
ui
(
XP
i

))
≤ EP

(
ui
(
Y P
i

))
for

every i , with at least one strict inequality.(
XP
i

)
P,i

is conditionally efficient if it is P-conditionally
efficient for all P ∈ P.
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The Optimization Problem

The following utilitarian welfare maximization problem characterizes
efficient allocations for suitable individual weights λi ≥ 0.

V
(
X̄
)

= max
(XP

i )
P,i

∑
i

λiUi

((
XP
i

)
P

)
subject to

∑
i

XP
i ≤ X̄ for all P ∈ P

(1)

We call V the utility of the representative agent.



Conditionally Efficient Allocations

Recall the following results for expected utility economies
I The set of P-conditionally efficient allocations is independent

of P ∈ P (having full support), we denote it by PO(X̄ )

I characterized by equality of marginal rates of substitution

λiu
′
i (Xi ) = λju

′
j(Xj)

I the allocation is comonotone
I if aggregate endowment is constant, efficient allocations are

constant (full insurance)
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Efficient Allocations

Theorem

I if (XP
i )P is an efficient allocation, then for fixed P , the

allocation (XP
i ) is comonotone,

I if (XP
i )i is efficient under model P , then (XP

i )i is efficient
under model Q as well

I if the aggregate endowment X̄ is unambiguous, then efficient
allocations are also unambiguous.
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First-Order Conditions

I

ψ(P, ω) = λiφ
′
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u′i

(
XP
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)
(2)

I The first-order necessary and sufficient condition for a feasible
allocation
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to be conditionally efficient

ψP(ω) = ηPi u
′
i
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)
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to be conditionally efficient

ψP(ω) = ηPi u
′
i

(
XP
i (ω)

)
(3)



Representative Agent

Theorem
Define the utility possibility set

U(P, X̄ ) := {v ∈ RI : there exists a feasible allocation (Xi )

such that vi ≤ EP(ui (Xi ))}. (4)

For weights λi > 0, define the function

Φ(P, X̄ ) := max
(vi )∈U(P,X̄ )

∑
i

λiφi (vi ). (5)

The representative agent’s utility function (1) has the form

V (X̄ ) =

∫
P

Φ(P, X̄ )µ(dP) .
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Linear Risk Tolerance Economies

I For expected utility, Wilson, 1968 characterizes the class of
utility functions that lead to linear risk sharing

−
u′′i (ξ)

u′i (ξ)
=

1
ai + bξ

, i = 1, ..., I

I risk tolerance, the inverse of risk aversion, is linear and the
parameter b is common

ui (ξ) =


(ai+bξ)1−1/b

1/b(1−1/b) if b 6= 0, b 6= 1
−aie−ξ/ai if b = 0

log (ai + ξ) if b = 1
(6)
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Constant Risk Tolerance

I let us start with b = 0, i.e. exponential utility

I ui exhibits constant absolute risk aversion with index αi for
every i and write α ≡

(∑
i α
−1
i

)−1, the harmonic mean of the
individual indices. Let u be a CARA function with index α.

I We also assume that vi exhibits constant absolute risk aversion
with index γi ≥ αi for every i and write γ =

(∑
i γ
−1
i

)−1.
I i.e. Let φi = vi ◦ u−1

i , that is, φi (t) ∝ −(−tγi/αi ). Ambiguity
aversion is Ai = γ

αi
.
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Constant Risk Tolerance
Theorem
Let (XP

i )P be an efficient allocation, then

1. For each P , there is a (τPi )i such that
∑

i τ
P
i = 0 and

XP
i = (α/αi )X̄ + τPi

2. For every i there is a (κi )i ∈ RI such that
∑

i κi = 0 and for
all P

τPi =

(
γ

γi
− α

αi

)
u−1

(
EPu(X̄ )

)
+ κi . (7)

3. The representative consumer’s utility belongs to the smooth
model class

V (X̄ ) =

∫
P
φ(EPu(X̄ ))µ(dP)

where φ = v ◦ u−1, v is CARA with parameter γ and
φ(t) ∝ −(−tγ/α).
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Model Insurance Payments in the CARA Case

τ

τi

τj

0Rep. consumer

zP=u-1 (EP(u(X̅))

i has a larger coefficient of amb. aversion than the rep. consumer. Receives a higher transfer in less optimistic models
j has a smaller coefficient of amb. aversion than the rep. consumer. Receives a higher transfer in more optimistic models

Less ambiguity-averse consumers should be protected from the model uncertainty (the variability of the certainty 
equivalents of the aggregate consumption) by making their model-contingent constant term τi

P move 
in opposite directions to the certainty equivalents



General CRRA-like Case

Theorem
Let ((XP

i )P)i be an interim efficient allocation. Let ζ =
∑

i ζ.
Then, there is a linear uncertainty sharing rule of the form

XP
i = θPi (X̄ − ζ) + ζi .



A Nested Negishi–Approach For LRT Economies

I Recall that

Ui (Xi ) =

∫
P
vi

(
u−1
i (EPui (X

P
i ))
)
µ(dP)

I Lemma: For linear risk tolerance, at the second-order level,
one has to solve model by model

Φ(P, X̄ ) := max
(vi ):

∑
c i=c

∑
i

λivi (ci ) (8)

where c is the certainty equivalent of aggregate endowment
under model P
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Shares θPi in the Heterogeneous CRRA-Case

Figure: On the x-axis: welfare of nation, i.e.certainty equivalent of
representative consumer for aggregate endowment. On the y-axis: share
of surplus, i.e. excess endowment over subsistence levels



Shares θPi in the Heterogeneous LRT case

Figure: Four consumer economy with heterogeneous ambiguity aversion
and common relative risk aversion 2
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Pricing Kernel Puzzle

I in (too?) simple macroeconomic finance . . .

I the pricing kernel (the state price density) ψ is proportional to
the marginal utility of the representative agent

I with expected utility, thus ψ = u′(X̄ )

I thus, a decreasing function of X̄

I in Samuelson model, ψt = exp
(
−θWt − θ2

2 t
)
, decreasing

function of Wt (and of asset price St)
I empirical studies (Jackwerth (2000), Ait-Sahalia and Lo

(2000)) suggest that this monotone relation does not hold true
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Pricing Kernel Puzzle

I representative agent with smooth utility
I state price ∫

P
φ′
(
EPu

(
X̄ (s)

))
u′(X̄ (s))P(s)µ(dP)



Monotone Ordered Priors P

I Assume that X̄ (s) = s for every s. Write x for s.
I Assume that P is completely ranked according to the

monotone likelihood ratio property.
I The conditional probability over models, one for each x , has

MLRP:
As x increases, the conditional probabilities are shifted from
more pessimistic models to less pessimistic models, i.e., from
model with smaller EPu

(
X̄
)
’s to those with larger EPu

(
X̄
)
’s.



Graph of the pricing kernel

Figure: The pricing kernel is steeper than that derived solely from u′.
The market price of risk, or the Hansen-Jagannathan bound, is higher.

φ'(EPu(X))u'(x)

φ'(EQu(X))u'(x)

EPu(X) < EQu(X)

ΣP μ(P)P(x)φ'(EPu(X))u'(x)  

x

ΣQ μ(Q)Q(x)



A Regime-Switching Model

I Let us assume that we have two regimes. A good regime in
which the mean is high and the volatility is low, and a bad
regime in which the mean is low and the volatility is high.

I Aggregate endowment is lognormal. We consider a two person
economy in which one agent is ambiguity neutral and the
other one is very ambiguity averse.
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Graph of the pricing kernel, two regimes

Figure: Pricing kernel in three economies: ambiguity-neutral, single agent
ambiguity-averse, and mixed. Regime 1: mean 15 %, vola 10 %, Regime
2: mean -0.15 %, vola 40 %.



Pricing kernel, uncertain variance

I aggregate endowment is lognormal

I and the variance parameter is uncertain
I In Bayesian Statistics, it is common to work with the precision,

the inverse of the variance. For the precision, one commonly
assumes a Gamma-distribution because the normal and the
Gamma distributions form “conjugate priors”; the posterior of
the precision is then also Gamma-distributed.
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Graph of the pricing kernel, uncertain variance

Figure: The pricing kernel is non–monotone.



Conclusion

I We discuss efficient risk and uncertainty sharing under
identifiable Knightian Uncertainty

I model-contingent trade is allowed
I efficient allocations are conditionally efficient, thus

comonotone
I discussion of sharing rules under linear risk and ambiguity

tolerance
I asset pricing implications
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