A NOTE ON THE SCHOLZ-BRAUER PROBLEM IN ADDITION CHAINS

W. R. UTZ

1. Introduction. An addition chain for the positive integer n is a sequence of integers $a_{0}=1<a_{1}<a_{2}<\cdots<a_{r}=n$ where, for each $i>0, a_{i}=a_{j}+a_{k}$, for some $j, k>i(j=k$ is permitted). For example, $1,2,4,8,10 ; 1,2,3,6,9,10 ; 1,2,4,6,10$ are three addition chains for $n=10$. By $l(n)$ one means the smallest r for which there is an addition chain for n. One can easily verify that $l(1)=0, l(2)=1$, $l(3)=l(4)=2, l(5)=l(6)=l(8)=3, l(7)=l(9)=l(10)=l(12)=l(16)=4$ and that $l\left(2^{n}\right)=n$.
A. Scholz [2] published the following as problems:

$$
\begin{align*}
m+1 & \leqq l(n)
\end{aligned} \begin{aligned}
& \text { for } 2^{m}+1 \leqq n \leqq 2^{m+1}, \quad m \geqq 1, \tag{1}\\
l(a b) & \leqq l(a)+l(b), \tag{2}\\
l\left(2^{q}-1\right) & \leqq q+l(q)-1 . \tag{3}
\end{align*}
$$

A. T. Brauer [1] established (1) and (2) and also improved another inequality suggested by Scholz. When considering (3) Brauer showed that (3) holds if the chains admitted in determining $l(q)$ are restricted. So far as the author can discover, the original problem (3) of Scholz has not been solved. In this note we establish (3) for some values of q by a method that may extend to an arbitrary q.
2. The case $q=2^{\circ}\left(2^{n}+1\right)$.

Lemma 1. $l\left(2^{e}+1\right)=s+1, s \geqq 0$.
Proof. Clearly, $l\left(2^{s}+1\right) \leqq s+1$ since

$$
1,2,2^{2}, 2^{8}, \cdots, 2^{s}, 2^{\bullet}+1
$$

is an addition chain for $2^{8}+1$. Also,

$$
2^{s}-1<2^{s}+1<2^{s+1}
$$

hence, by (1), $l\left(2^{*}+1\right) \geqq s+1$ and the lemma is proved.
Lemma 2. $l\left(2^{q}-1\right) \leqq q+l(q)-1=2^{s}+s-1$ if $q=2^{s}, s \geqq 0$.
Proof. This is shown by induction. The inequality holds for $s=0$; suppose it holds for $s=r-1$. Then setting $m=2^{r-1}$,

[^0]\[

$$
\begin{aligned}
l\left(2^{2 m}-1\right) & =l\left[\left(2^{m}-1\right)\left(2^{m}+1\right)\right] \leqq l\left(2^{m}-1\right)+l\left(2^{m}+1\right) \\
& \leqq 2^{r}+r-1
\end{aligned}
$$
\]

by Lemma 1 and the induction hypothesis. This completes the proof.
Lemma 3. $l\left(2^{q+1}-1\right) \leqq q+l(q+1)=2^{s}+s+1$ if $q=2^{s}, s \geqq 0$.
Proof. $l\left(2^{q+1}-1\right) \leqq l\left(2^{q+1}-2\right)+1 \leqq l(2)+l\left(2^{q}-1\right)+1 \leqq 2^{f}+s+1$ by Lemma 2.

Lemma 4. $l\left(2^{s}\left(2^{n}+1\right)\right)=n+s+1, s, n \geqq 0$.
Proof. (a) $2^{n+s}-1<2^{s}\left(2^{n}+1\right)<2^{n+s+1}$ hence $l\left(2^{s}\left(2^{n}+1\right)\right) \geqq n+s+1$ by (1).
(b) $l\left(2^{a}\left(2^{n}+1\right)\right) \leqq l\left(2^{a}\right)+l\left(2^{n}+1\right)=n+s+1$ by Lemma 1 and property (2).

Theorem 1. $l\left(2^{q}-1\right) \leqq q+l(q)-1=2^{a}\left(2^{n}+1\right)+n+s$ if $q=2^{a}\left(2^{n}+1\right)$, $s, n \geqq 0$.

Proof. This proof will be by induction on s. We have seen in Lemma 3 that the theorem is true if $s=0$. Assume, for the induction proof, that it holds for $s=r-1$ and all $n \geqq 0$. If $m=2^{r-1}\left(2^{n}+1\right)$,

$$
\begin{aligned}
l\left(2^{2 m}-1\right) & \leqq l\left[\left(2^{m}-1\right)\left(2^{m}+1\right)\right] \\
& \leqq 2^{r-1}\left(2^{n}+1\right)+l\left(2^{r-1}\left(2^{n}+1\right)\right)+2^{r-1}\left(2^{n}+1\right)
\end{aligned}
$$

by the inductive hypothesis and Lemma 1 . The proof is completed by the use of Lemma 4.
3. Comments and questions. Since any positive integer can be written

$$
2^{c_{1}}+2^{c_{7}}+2^{c_{3}}+\cdots+2^{c_{n}}, \quad \text { where } \quad c_{1}>c_{2}>\cdots>c_{n} \geqq 0,
$$

one might expect to establish (3) by the ideas of this note (numbers for which $n=2$ having now been disposed of). However, the author has been unable to carry this through.

Other inequalities involving $l(p)$ would be of interest. One can easily show that $l(a+b) \leqq l(a)+l(b)$ if $a, b>1$. Does the inequality $l(p)<l(2 p)$ hold for all $p>0$? Let $S(n)$ denote the number of solutions of the equation $l(x)=n$. Is it true that $S(n)<S(n+1)$ for all $n>0$?

Bibliography

1. A. T. Brauer, On addition chains, Bull. Amer. Math. Soc. vol. 45 (1939) pp. 736-739.
2. A. Scholz, Jber. Deutschen Math. Verein. vol. 47 (1937) p. 41.

University of Missouri

[^0]: Presented to the Society, April 24, 1953; received by the editors October 16, 1952.

