
A LOWER BOUND FOR THE SCHOLZ-BRAUER 
PROBLEM 

KENNETH B. STOLARSKY 

1. Introduction. In (6) Scholz asked if the inequality 

(1.1) Z ( 2 ' - 1) Sq + Hq) - 1 

held for all positive integers g, where l(n) is the number of multiplications 
required to raise x to the nth power (a precise definition of l(n) in terms of 
addition chains is given in § 2). Soon afterwards, Brauer (2) showed, among 
other things, that l(n) ~ (log n)/(log 2). This suggests the problem of 
calculating 

(1.2) 6 = lim inf (Z(2« - 1) - q) • j ^ . 

I t can be deduced from (2) that 6 ^ 1. If 0 < 1, (1.1) follows immediately 
for infinitely many q. My main result, Theorem 5 of § 4, merely shows that 6 
is slightly larger than \. Actually, I know of no case where (1.1) is not in 
fact an equality; a tedious calculation verifies this for 1 ^ q ^ 8. 

The usual approach to (1.1) is to look first for a formula giving l(q) in 
terms of the binary representation of q. Write q = 2ni + 2n* + . . . + 2n% 
ni > n2 > . . . > ns ^ 0, and B(q) = s. Clearly, if B(q) = 1, l(q) = nu 

while if B{q) = 2, Utz (8) has shown that liq) = m + 1. If B(q) = 3, 
Gioia, Subbarao, and Sugunamma (3) have shown that l(q) = n\ + 2, while 
if .B(g) = 4 they have shown that l{q) = »i + 2 or n± + 3, and that both 
cases occur. In fact, they show that if ni — n2 = n% — n±, or n\ — n2 = 
W3 — «4 + 1, or Wi — #2 = 3 a n d W3 — #4 = 1, then the former case occurs; 
however, there is still another case here, namely n\ — n2 — 5, w2 — n% — 1, 
and «3 — #4 = 1. I conjecture that aside from these cases, Biq) = 4 implies 
Z(g) = »i + 3. 

By means of such formulae, (1.1) was shown to hold for B(q) = 1, 2 in (8), 
and for Biq) = 3 in (3). A very short proof of (1.1) for Biq) ^ 3, based on 
(2), was given by Whyburn (9). If my above conjecture were true, his method 
would also prove (1.1) for Biq) = 4. However, Hansen (4, Satz 1) shows that 
Whyburn^ method fails to decide (1.1) for infinitely many q. 

In § 2 the necessary definitions are developed, particularly the notion of a 
component of an addition chain. In § 3 the structure of such components is 
analyzed, and lower bounds for 6 are given in § 4. 
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2. Definitions. 

Definition 1. A sequence { a ^ = 0 is called an addition chain (AC) for n of 
length r if 1 = a0 < a,\ < . . . < ar = n and at = a7- + ak for 1 ^ i ^ r, 
with 0 S j , k < i. For fixed n, l(n) is the smallest possible value of r. {«/}?L0 

is said to be an (infinite) AC if {di}T
i=0 is an AC for aT of length r, r ^ 1. 

Definition 2. A sequence of positive integers {&i}j=0 is said to be of type I if 
for 1 ^ i g 7 ^ r - 1, 

(2.1) 2>-'&i < bj+1 è 2bj. 

It is said to be of type II if for j ^ 0, bj+1 > bj and forj ^ 1 either bj+i = 2bj 
or bj+i ^ 6 y + 6^-1. 

Definition 3. For x > 0 let L(x) = [(log x)/(log 2)], where [y] denotes the 
greatest integer less than or equal to y. For integers q, let B (q) be the number 
of l 's in the binary representation of q. Let (T(M, N) = <T(M, N; 1, 0) and 
<j(M) = <r(M, 0), where 

M 

a(M,N;cltct) = £ 2C11+C1. 

Clearly, for positive integers a and b, 

(2.2) B(a + b) S B(a) + B(b) and B{ab) S B(a)B(b)f 

(2.3) B{a) S L(a) + 1, 

and 

(2.4) B(er(M, N; cu c2)) = M - N + 1. 

Definition 4. Given a sequence of positive numbers {&*}> l e t Zi — i — L{bt), 
Clearly, et ^ 0 for sequences of types I and II. Let 

(2.5) V}=Vj{{bi\) = {bi\ei=j\. 

The 9% are said to be the components of the sequence. Conversely, any 
sequence for which L(bi+i) — L(bt) = 1 is said to be a component. 

One easily sees that every AC is of type II, and that the components of a 
sequence of type 11 are sequences of type I. Conversely, it can be shown that a 
sequence of type I is almost a component in the sense that for infinitely many 
relatively prime integers m, L(bj+im) — L(bjm) = 1, j = 1, . . . , r — 1. I t is 
important to note that if n £ ^(«flO, <nf an AC, then l(n) ^ L(n) + j . 
Conversely, if l(n) — L(n) + j , then n Ç ^j(&^) for some AC s/. 
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Definition 5. The word A = I I ^ i Sj is said to correspond to the AC 

sé = {a,}U 
if the letter Sj is given by: 

(1) Sj = Hktl if a, = cij-ic + cLj-h I > k ^ 2; 
(2) 5,- = £>* if a,- = 2a^kfk è 2; 
(3) Sj = F* if a,,- = ay_i + a^-i-*, & ^ 1; 
(4) 5,- = Z> if a, = 2ai«i. 

Write yl <-» J^, S, <-> ay, S ^ + i <-> â -, a^+i, . . . , etc. A and J ^ shall be used 
interchangeably, since either denotes the addition chain unambiguously. 
Furthermore, it will be convenient to let B be a variable letter which never 
equals D. 

For example, every AC A begins with D2 or DF\. If A = DF\F2(FzF2)
n, 

then ^ 0 < - > A ^i^FxF2, and <£t^> FZF2, 2 ^ i S n + I. Words are 
always assumed to be in reduced form; e.g., DD2F\F\ is always written 
DZF\2. Also, since an AC is strictly monotonie, certain combinations of letters 
such as DDk, FiHkih and DHkih k è 2, can never occur. 

Definition 6. Given words PT and Wr, W is said to be an internal segment of 
W\i there are words W\ and W2 (possibly empty) such that W = W\W'W2. If 

N i 

(2.6) IF = I I Sj and F = IT SjDm, iSN,m^0, 
j=l 3=1 

V is said to be a truncation of W; if the number of letters B in W exceeds the 
number in V, the truncation is said to be proper. 

3. T h e s t r uc tu r e of componen t s . The main result of this section, 
Theorem 1, classifies all possible combinations of letters which can occur in a 
component. Roughly, it states that long components consist mainly of D's. 
A different result of this sort is used in (4): if q is the last integer of an AC A, 
then there are at most 4:B (q) — 4 letters in A other than D. 

LEMMA 1. If {fri}*=o is of type II, and a component, then bj+i = 2b j for 
some j , 0 ^ j ^ 3. 

Proof. Otherwise, bx ^ 2b0 - 1, b2 S 3è0 - 1, h û 5b0 - 2, 64 ^ 8b0 - 3, 
and L(b±) - L(b0) ^ 3, a contradiction. 

LEMMA 2. If [bi}£0 is of type II, and a component, and bi = 2b0, then 
bj+i 5* 2b j can occur at most twice for j ^ 1. 

Proof. If bj+i 9e 2bj has three solutions for j ^ 1, then bjb{~1 is bounded by 
one of the following four sequences, where P ^ 1, Q ^ 1, R ^ 2: 

(3.1) 1, 2, . . . , 2Q, 2Q + 2Q~\ 2Q+l + 2Q~\ 2Q+2; 

(3.2) 1 , 2 , . . . , 2P, 2P + 2p-\ 2P+! + 2P~\ . . . , 2Q^ + 2Q~\ 
2<?+i + 2Q + 2Q~1 + 2Q~2 g 2Q+2; 
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(3.3) 1 , 2 , . . . , 2P, 2P + 2p-\ . . . , 2Q + 2Q~\ 2Q+1 + 2Q~\ 

2<?+i -f 2Q + 2Q~1 + 2Q~2 g 2Q + 2 ; 

(3.4) 1 , 2 , . . . , 2P , 2P + 2P~\ . . . , 2E + 2R~\ 2R+1 + 2R~\ . . . , 
2«+i -f- 2 q- 2 , 2Q + 1 + 2Q + 2Q~2 + 2^~3 g 2Q+2. 

In each case, L(bQ+z) — L(&0) ^ (? + 2, a contradiction. 

Henceforth, given an AC A, let W = Wt(A) <^^t= <gt(p/). Clearly, 
W = Z>m, ra ^ 1, for i = 0 while IF cannot begin with D if i > 0. 

LEMMA 3. & t contains at most three internal segments of the form Dm, m ^ 1; 
if three occur, 9% is terminated by the last. 

Proof. Say that the word W <-> 9% has an internal segment 

(3.5) W" = £>Wl£n . . . BlriD
m>B21 . . . B2r2D

m*Bz, 

where mi, m2, m3, fi, f2 ^ 1 and Bi:f y^ D. Let £0 be the number corresponding 
to the last letter of the AC before W, and C\ = 2c0, c2, . . . , cf the numbers 
corresponding to the letters of W'. If W is replaced by 

(3.6) W" = DmiF1D
mz+ri~1F1D

m3+r2-1Fll 

let the corresponding numbers be di = c± = 2c0j d2, . . . , df. Here, / = 
mi + m2 + mz + rx + r2 + 1. Clearly, df ^ cr, and the dt form the sequence 

(3.7) 2c0, . . . , 2
m^0 , 2mi-! • 3c0, . . . , 2

wi+m2+ri-2 • 3c0, 2
m^m*+r^ • 9c0, . . . , 

2 /"5 • 9c0, 2'-° • 27^o. 

However, by (2.1), 2/-1Co < cf S df = 2 / _ 6 - 27^0, a contradiction. 
Next, denote the numbers of 9% by 61, J2, 63, . . . . 

LEMMA 4. 4̂ / e^ r 0/ *$ t can be Dk or Hkth k ^ 2, 0?% if i£ corresponds to 
bi or b2. 

Proof. Otherwise, fêi would not be of type I. 

It now follows from the above lemmas that W <-* fâif i > 0, has one of the 
two forms (gt ^ 0) 

(3.8) BQ\ B°i Dd*Y[ FkjD°'Y\ FhjD'*, 

where 1 ^ gi ^ 4, 1 S g2, and g3 + g5 S 2. 

LEMMA 5. If {a*}£0 is an AC, L(aj+i) — L(af) = 1 for j ^ i, 2 P g a* ^ 
2^ + 2P~2 + 2P~4, and a, + a w < 2P + 1 , Jfce» a,+i = 2a3-forj ^ i. 

Pnw/. Clearly, 2 P + 1 ^ a i + i = 2 ^ ^ 2 P + 1 + 2P~1 + 2P~3, and hence at + 
ai+i < 2P + 2 , thus, ai+2 = 2ai+i> and so forth. 



THE SCHOLZ-BRAUER PROBLEM 679 

Theorem 1 can now be stated for W <-> 9%, i > 0, using the notation of 
Definitions 5 and 6. 

THEOREM 1. W is a truncation of an element of one of the following seven 
mutually exclusive classes of words, where k ^ 1 and mt ^ 0: 

(1) BBFjtFiD^; 
(2) BBFkD

m^FlD
m\ mx ^ 1; 

(3) BBDm'FkF1D
m2

1 mx ^ 1; 
(4) BBDm'F1D

m2F1D
m\ m1} m2 ^ 1; 

(5) BDFkD
m^FxD

m\ m i ^ l , ^ 2; 
(6) BDm^FkF1D

m^m1 è 1; 
(7) BD^FxD^FxD™*, mly m2 ^ 1. 

The proof requires four more lemmas. First, set a = L(bi); then (recall 
Definition 3) 

(3.9) 6i g a (a) and &2 < <r(a + 1). 

LEMMA 6. (a) If g\ = 4, £Ae# W belongs to class (1). (b) If gi = 3 and 
g3 ^ 1, then W belongs to class (2). 

Proof. In each case, bz ^ bx + 62 ^ 2«+2 + <r(a) by (3.9). In (a), 64 ^ 
&3 + b2 S 2a+z + a (a) < 2"+3 + 2T+1; therefore, 17 has the form BBFkFk,D

m, 
m ê 0, by Lemmas 4 and 5. If ife' ^ 2, 64 ^ &3 + bx S *(a + 2) < 2«+3, a 
contradiction; hence, W belongs to class (1). In (b), bz+02 = 2°*bz S 2°2+a+2 + 
o-(« + £2). Now F*, & è 2, cannot follow D*72 since then b4+^ ^ cr(g2 + a + 2), 
a contradiction. Hence, Fi follows D°\ b±+g2 S 2 ? 2 + a + 3 + a(g2 + a - 1), 
and by Lemma 5 only D's can follow. Thus, W belongs to class (2), and the 
proof is completed. 

If gi = 3 and g 3 = 0, the reasoning of the proof of Lemma 6(b) shows 
that either W belongs to (2), or else is a truncation of a word of (2). Thus, 
we need only consider the cases where gi ^ 2. 

LEMMA 7. W = DFkD
mFk>, m ^ 0, kf ^ 2, is not an internal segment of W. 

Proof. This is clear if i = 0. Otherwise, let c0 be the number corresponding 
to the last letter of the AC before W, and C\ = 2c0, c2, . . . , cm+z the numbers 
corresponding to the letters of W. If W is replaced by W" = DFiDmF2 let 
the corresponding numbers be d\ — C\ = 2c0, d2, . . . , dm+z. Clearly, dm+z ^ 
cm+3 and the df form one of the sequences 2c0, 3^o, 4Ê0; 2CO, 3C0, 2 • 3c0, 8coî 
2c0, 3c0, 2 • 3c0, . . . , 2

m • 3c0, 2W~~2 • 15c0 depending upon whether m = 0, 
m = 1, or m je 2, respectively. However, for each of these, by (2.1), 
2m+2Co < cm+z S dm+z, a contradiction. 

LEMMA 8. If gi = 2, g3 = 1, gs = 1, and g4 â 1, then Fkl = F r 

Proof. Say &i ^ 2. If g2 = 1, (3.9) yields 63 ^ cr(a + 2), 64 ^ 63 + h g 
2«+3 + cr(a), and bb S 2«+4 + * ( « + ! ) < 2«+4 + 2«+2. Now b5 + 64 < 2*+5; 



680 KENNETH B. STOLARSKY 

thus, by Lemma 5 only D's can follow ô5, a contradiction since g5 = 1. If 
gi ^ 2, then Wf — D2FklD

9iFhl is an internal segment of W; by Lemma 7, 
W' = D2FklD

0iFi. The argument used in Lemmas 3 and 7 (take W7" = 
D2F2D°*F1) yields the contradiction 2'4+8c0 < cffA+i ^ d„4+4 = 2g*~l • 15c0. 

From Lemmas 7 and 8, and the fact that g3 + g5 ^ 2, it follows that if 
gi = 2, IF either belongs to (3) or (4), or is a truncation of a word of (3). 
Thus, it is now only necessary to consider the case gi = 1. If one of g3, g4 or g5 

is 0, W belongs to (6) or is a truncation of a word of (6) ; this follows from 
Lemma 7. 

LEMMA 9. If gi = 1, g3 = 1, g 4 è 1, gs = 1, a^d &i ^ 2, /Ae» g2 = 1. 

Proof. If g2 = 2, (3.9) yields 6, ^ er(a + 2), Z>4 ^ i 8 + &i ^ 2«+3 + cr(a), 
65 g 2«+4 + a(a + 1) < 2«+4 + 2*+2, and &4 + &5 < 2«+5. Thus, by Lemma 5, 
only -D's can follow &5, a contradiction, since g5 = 1. For g2 ^ 3 the proof is 
essentially the same. 

Now by Lemma 7, if W satisfies the hypothesis of Lemma 9, it belongs to 
(5). The only remaining case is gi = 1, g3 = 1, g4 ^ 1, g5 = 1, ki = 1; such 
a W clearly belongs to (7). 

This completes the proof of Theorem 1. 

The structure of ^ o and ^\ is particularly simple; as mentioned before, 
^ o <-> Dm, m ^ 1, while 9% corresponds to a truncation of a word of class (1) 
or (6). In fact, the possibilities in the former case are (wi, m2 ^ 0, k ^ l)7^Z)mi, 
FkF1D

m\ FkD2D
m\ ^iF2Z)mi, FilDmi , while in the latter they are F1DF2D

m\ 
mi ^ 0, and FxD

m^FxDm\ mx è 1. (3, Lemma 3) follows from this and the 
discussion after Definition 4. 

THEOREM 2. There exist words W belonging to each of the seven classes of 
Theorem 1. 

Proof. Let i w H . The <£2 of the AC D2FlF*Fl
zDm belongs to (1). The 

proof is completed by listing the remaining classes together with an AC whose 
9% belongs to that class. 

(2) D2F1FdDFbF1
2DF1D

m; 
(3) D2F1F*DFbF1DF2F1D

m; 
(4) D2F1FsDF5F1D

2F1DF1D
m; 

(5) D2F1FsDF5DF2DF1D
m; 

(6) D'FtFzDFsDF.FiD™; 
(7) D2F1F^DF5DF1DF1D

m. 

4. Lower bounds. From the remarks after Definition 4, one easily 
deduces the following result. 

LEMMA 10. / / B(ct) ^ C • R\ C> 0, R>1, for all ct e &t ^ A, where A 
varies over all addition chains, then 
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This suggests the following problem: if Ci G 9% ^ A, where A is an infinite 
addition chain, how rapidly can B(ct) grow with il The example 

(4.2) A = nfl F2"D2n+l 

shows that B(ct) = 2* is possible; I know of no case where B(ct) grows more 
rapidly. If the hypothesis of Lemma 10 held with C = 1, R = 2, it would 
follow that 0 = 1 . 

THEOREM 3. 0 = \ . 

Proof. In any AC {a,-}, B(a,j) = B(aj-i) if a,- <->£>. By Theorem 1, ^ 
contains at most four non-P's; thus, the hypothesis of Lemma 10 holds with 
C = 1, R = 24. 

THEOREM 4 J è i 

A preliminary result of independent interest will be obtained first. As in § 3, 
let &i, 62, &3, . . . denote the elements of &t, bw being the last of these. Let 
M = max B (af), where cij varies over the elements of the AC which precede 
6i. Let (1), . . . , (7) denote the word classes of Theorem 1, and let a be as in 
(3.9). If B(bu) ^ RM, we say that R is attained if for every e > 0 there 
exist ACs such that B(bu)/M > R - e. 

LEMMA 11. Abbreviate the statement "If (ifi<r^W^ (s), then b3- ^ uv 

bj+\ S ti2, B(bw) S RM, and R is attained1' by (s) ;j; U\, u2', R. Then 
(1); 3; 2«+2 + <r(a), 2«+3 + a (a); 5; 
(2); mi + 3; 2a+m*+2 + <j{a + m,), 2a+m^ + a(a + mx - 1); 8; 
(3); mi + 3; 2«+m*+2 + a (a + mi), 2a+m^ + <r{a + mi); 6; 
(4) ; mi + m2 + 3; 2a+mi+m>+2 + a (a + mx + m2), 2«+mi+w2+3 

+ <r(a + mi + m2 — 1); 6; 
(5); mi + 3; 2a+m*+2 + <r(a + mi), 2«+™i+3 + *(« + mi - 1); 6; 
(6); mi + 2; 2«+wi+1 + cr(a + mx - 1), 2«+m*+2 + a-(a + Wi - 1); 4; 
(7); mi + m2 + 2; 2«+wi+™*+i + cr(a + mx + m2 - 1), 2*+wi+™2+2 

+ a (a + mi + m2 — 2) ; 4. 

LEMMA 12. / / W*-> ^ i is a proper truncation of a word belonging to one of the 
seven classes, then B(ba) S 6M, and for W = BBDm^FiDm\ the bound 6 
is attained. 

Only part of the first two statements of Lemma 11 will be proved; the 
remainder of Lemmas 11 and 12 is of the same nature, and in fact easier. 
The bounds on b3-, bj+i are almost immediate from (3.9). 

Given numbers a / < . . . < a/, B(ai) ^ M, 1 S i ^ s, it is quite easy to 
see that there exists an AC A = {at} containing the a/ such that B(at) S M. 
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For the first statement of Lemma 11 let 5 = 3, and for a3 > OL2 ^> a\ let 
ai = o-(ai, 0; 6, 0), a2 = o-(a3, a2) + or(ah 0; 6, 2), a3' = o-(a3, «2) + 
triai, 0; 6, 4). Define i by 

A = U <jf, 

and form ^ by taking 61 = a3' + ai, 62 = 61 + a2 , &3 = 61 + 62, and 
64 = Ô3 + 62 = 2«3+3 + a{az — 1, c2 + 3) + 2«2+i + 2 ^ + ,(&*! + 5, 0) -
cr(ai, 0; 6, 2). By letting «i, a2, az —» 00 under the condition a2 /6 > «i )$> 
a3 — a2 > 6 (say), it is easily seen by (2.4) that for any e > 0 there is an A 
such that Bio) S M for a 6 <̂ %, j < *', and JB(64) > (5 - e)M; hence, the 
bound 5 is attained. On the other hand, it is clear that BQ)i) g 2M and 
B(b2) ^ 3M. Write 53 = 62 + *. If x 5* &i, then £(x) g M; thus, by (2.2), 

£ ( è 4 + m ) = Bib,) =B(h + 62) = £(2&2 + x) = B(62) + B(x) è 4M. 

If x = &!, there are two cases to consider: B(b2) ^ 2M and JB(&2) > 2M. 
In the first of these, BibA+mi) ^ JB(62) + J5(6i) ^ 4M, while in the second, 
b2 = fri + ^, where -6(3;) ^ M; therefore, again by (2.2), 

Bib,+mi) = Bib,) = Bibs + b2) = £(262 + ôi) = B(3&i + 2y) 

S 5 ( 3 ) 5 ( 6 0 + 5 (y) ^ 5M. 

Hence 5 f e ) = 5(64 + w l) ^ 5ikT. 
For the second statement of Lemma 11 proceed as above with 5 = 4, 

«3 > a2^>au ai = <r(ai, 0; 8, 0), a / = cr(a3, a2) + <r(ai, 0; 8, 2), a3' = 
o"(a3, a2) + o-(ai, 0; 8, 4), ai = cr(a8, «2) + cr(ai, 0; 8, 6), 61 = a4' + a / , 
b2 = bx + a2, bz = b2 + ai, bé = 2bz, and 65 = b± + bz = 2a 3 + 4 + 
<r(a3, «2 + 4) + 2«2+2 + 2«2+i + 2«2 + cr(8ai + 7, 0) to show that the bound 
8 is attained. On the other hand, B (bi) g 2M and B(b2) ^ 3M. There are 
two cases to consider: (1) B(b2) > 2M and (2) B(b2) =" 2M. In (1), 
b2 = bi + x, where 5(x) ^ M. If 63 = 62 + y, where B(y) g M, then 
5(&3) ^ Bibx + x + y) g 4M; otherwise, 63 = b2 + bx and B(fa) = 
B(2&i + x) g 3M. In (2), J5(68) ^ 4M obviously holds. Now since only one 
non-.D (at T̂ i) remains, BÇb^) ^ 8. 

By Lemmas 11 and 12, the hypothesis of Lemma 10 holds with C = 1, 
R = 8. 

This completes the proof of Theorem 4. 

THEOREM 5. S = 2 • (log 2/log 48) > \. 

Proof. I t easily follows from the second statement of Lemma 11 that if 
A = U *&j, *£t and ^ \ + i cannot both be words of (2); thus, Bicj), Cj 6 &j, 
grows at most like (6-8) i / 2 . 

More careful use of Lemmas 11 and 12 would probably yield a larger lower 
bound for 6. 
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Note added in proof. A much more extensive bibliography will be found in 
D. E. Knuth's book {The art of computer programming, Vol. 2, Addison-Wesley, 
Reading, Massachusetts, to appear) along with numerical tables of l(n), a 
proof of the conjecture at the end of the second paragraph of § 1, and related 
results. 
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