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Abstract. The length / of addition chains for z is shown to be bounded from below by log, z+
logs 5(2)—2.13, where s(z) denotes the sum of the digits in the binary expansion of z. The
proof given here will also hold for addition-subtraction chains if s(z) is replaced by an appro-
priate substitute. At first the proof is presented in a simplified version yielding the slightly weaker
result 7 > log, z-+log, s(z)—O ({log log s(2)).

1. The problem of computing x* from x by few multiplications gives rise to a con-
sideration of so-called addition chains

1 =ay,ay,a,..,aq =z, ‘ (0
ag = ami+ap‘ With m;,p, < i fOI‘ 1 < i S, I'

If for the evaluation of x* divisions are also admitted, then we have more generally
a; = *a,ta,, the choice of the signs depending on /. Without restriction also in
such addition-subtraction chains the a; ’s are assumed to be positive and different from
each other. '

By induction on # the inequality a; < 2! is obtained, which yields the lower bound

I > log, z, )

which can be attained for z = 2%. Improvements, therefore, are possible only by
exploitation of further properties of z. In this sense we consider the binary expansion

z2=%02  (e{01})

and, with regard to addition chains especially, the sum of the digits
5@ = )¢, 3)
An improvement of (2) based upon s (z) is obtained in the following way: In (1)
we distinguish large and small steps, namely

G={ilm=p=i-1}, K={ilm<i-lorp <i-1} 4
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with the cardinalities g = [G], k = |K|, hence / = g-+k. Since the large steps do not
change the maximal sum of the digits reached so far, and each of the small steps,
by reason of

sx+y) <s+s(@), )]

can at most double it, we have k = log, s (2).
If we recursively define 45 = 1,

4, = {2A,_1 for iegG,

(6)
yd;-; for iek|

where y = %(1 +./5) denotes the positive solution of 14y = y2, then we can show
by induction that a; < A4, for j < i. This implies

z=a <4, =2%, g+klog,y>log,z,
and, by means of 1—log, y = log,(y/5—1) = 0.30 ..., finally
| = g+k >=log, z+0.3k = log, z+0.3 log, s (2). ™

This result will hold also for addition-subtraction chains if s () is replaced by

$@=min{YIL||z= 3,2, [e{-1,01}] (8)
As a good approximation, the number of changes from {, = 1 to {4y = 0 in the
binary expansion of z lies between %.’9 () and 5 (z). Special numbers z = 22"— 1 show
how improvements of (7) are limited: we have s(z) = 2%, and there are addition
chains for z of length '

B

I =2"+n—-1 =~ log, z+log, s (2)—1,
eg. 1,2,3,5 10,15 (n=2,1=5).
Our main result is the lower bound

I = log, z+log, s (z2)—2.13 )]

for the length of addition chains, which again remains true for addition-subtraction
chains with 5 (z) instead of s (z). The proof, however, is rather complicated. There-
fore, after the explanation of some technical tools, we will first give a simplified
presentation which, by modification of the proof of (7), will show the basic idea more
clearly, yielding the slightly weaker estimate

1 > log, z+log, s (2)—O (log log s (2)). (10)

For reference, we mention Brauer’s and Erdds’s results |1, 2] and the extensive
treatment of addition chains in Knuth’s book [3], particularly Exercise 29. Accord-
ing to a private communication, A. Cotrell (Berkeley) has a proof of I > log, z+
log; s (2)—1. A

The author is indebted to V. Strassen for the first hints at taking the present
subject and helpful discussions.
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2. For binary numbers x = ) &, 2v and finite subsets P = Z we define
xin P<> A (£, =1=veP).
v

Maximal nonempty subsets Q € P with the property
u<v<wauweQ)=veQ
are called‘components of P, and with regard to the partition into components
P =\J Q, the width of P is f(P) = min|Q,].
Fo; de N we define extensions E, b;r
E,P=Pu(P-1)u..u(P—d), where P+t = {n+tlneP}.
Lemma 1. §(P) = b implies that f(E, P) = b-+d and

EP| _ |P
e <5 (i

Proof. The proof is based upon the partition into components P = ;) 0;. Because

. J
‘E; P = ) E; Q; each component of E; P contains an E, Q;, hence
J

B(EsP) = mjin |Ea Q)| = nbiﬂ (1941 +d) = B(P)+d > b+d.

The inequality (11) follows from
|E, Pl <; |Es Q4 =;(IQ;I+J)

zlg,l(1+ 151) Z|Q,|(1+") ) 234

In view of the addition of binary numbers we define an operation V for finite
subsets P, R < Z such that PV R shall denote the minimal set with the property

xin PAyin R=x+y in PV R for arbitrary x, y. (12)
If Oy, Q,, ... denote the components of Pu R and

0, otherwise,

(13)

then we have PY R = {J @}, i.e. extra bit positions for carries are necessary only
J

where P and R overlap. From that we conclude
B(PV R) = B(P), B(R), (14)
|PV R| < |P|+]|R]. (15)
For the discussion of addition-subtraction chains we shall use the modified
definition
x in P <> there exist &, {—1,0, 1} such that
x=Y &2 and A (&, £ 0=>veP),
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and (12) can then be replaced by
xinPAyi_nR:ixiyi_leVR. (129

3. In this section we shall prove inequality (10) for addition chains. Possibly
there may be some arbitrariness of succession in (1) which is eliminated by imposing
the conditions

l=a<ag <a,<..<a =z m<p<i forl <i<l
According to the distinction in (4), we recursively define ranks

ry+1 forieg,

ro =0, Iy =
: ri—y for ie k|

(16)

which register the shifts of the binary expansion caused by doubling steps. From
Iy, S I, and

j<iA5=r,—r_,=>a_,<2“’a, (17)
we obtain r,, = r,_,. The difference d; = r,_; —r,,, approximately measures how far
the binary expansion of a,, is shifted away from that of Apy e

With regard to a number d > 1 which will be chosen appropriately later on, we
subdivide X = K, w K,, where

Ky ={ieKld <d}, K,={ieK|d>d}, (18

and recursively define numbers b, < b, < ...< b, and finite subsets P, = Z such
that the conditions

a, in P, (19)
B(P) = b, (20
J<tAS=r—rj=>P,c E; P, - (21)

are preserved. The crucial point, thereby, will be that the P,’s do not become too
large. Accordingly, we shall keep track of the growth of the quantities |P,|/b, and b,

The recursion is initiated by P, = {0}, b, = 1. Three cases have then to be
considered:

(i) for ieQ put Pi = P[—]_"l"l, bl = bi—['
(i) for ie K, put
Py = E; 1 (P—y+1), by = by +1+d,. (22)

By reason of (21), the extension to the left by d;, many places assures am, in Pyand a,,
in P,. The additional extension by one place to the right takes care of possible carries.
Lemma 1 yields (20) and

[P _ 1Pl
Ll R bl ol LI 23
S h (23)
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(iii) for i e K;, finally, r,, = ry_, is important; from (21) with ¢t = {—1 we obtain
a, in P, < P;-;. In this case we define
P,=P_VEP,, b =b_,, wheret=>b_,—b,, (24)

The insertion of E, and (14) guarantee (20), and (19) follows by means of (12).
By Lemma 1 and (15) we have (in correspondence to (5))

[Pl _ 1Pyl | [Py
< L,
B S b, T b, (25)
Now (22), (23), (25), and z = g; in P, yield

s(@) L |P = b,lP—'I <(l + 3 (1+d,)) 2"=:§_<(1+k1 d) 2=, (26)

-~
bl feKy

Instead of (6) we here use the inequalities

a; < 2a,4 forieGuK,;
a < (1+2-%) ayy for ie K, (see (17)),

hence
z < 2040 [T (14-2-4) < 29+k3(1 4295,

ieK;
Combining this with (26) and taking logarithms gives
I =g+k+k, = log, z+1log, s (2)—k, log, (1429 —log,(1+k, d). (27)

In case of k = log, s (2)/0.3, (10) is an immediate consequence of (7); otherwise we
use (27) with d = l[log,(k+2)1.

4. The arrangement a, < @; < ... <a; may be inadequate for the proof of (9),
just because, other reasons aside, all further considerations shall cover the case of
addition-subtraction chains as well. In contrast to the definitions (4) and (16) of
the sets G, K and the ranks r;, which depend on the incidental numbering of the steps
of the chain, we shall now introduce corresponding invariant quantities. At the same
time we shall exhibit an especially suitable order of the steps.

The ranks r, shall be constructed in such a way that the conditions
my=p=>r=r,+1, (28)
Iy =Ty, =nh~lorr, <r,=rn (29)

are fulfilled (7,,, > r,, can be avoided by exchanging m; and p,). Then (29) leads to
the classification '

G={iln=r,+1}, K={iln=r,} (30)

of the steps 1 <7 </, and by (28) G, = {i|m, = p,;} is a subset of G; in addition,
let GIZ = G\Go.
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Again we write d; = r,,—r,, and subdivide X into
Ko = {iGKld, = 0} KIZ = {lEK'di } (31)

The definition of the r,’s and of the new order is accomplished by a recursive con-
struction of the levels L, = {ilr; = p}. ‘

Starting with ag = 1,r, = 0, and L, = {0}, assume that Lo, L,, ..., L,-, are
already fixed, together with the new order of the steps belonging to/ = Ly u L, u
U L,_;. Then at first all elements i € {1, ..., [}\/ with m,, p; € L,-, are added (in an
arbitrary order). We define r; = p for these elements; later on they will form the
set G L,

If y, = IGn L,| > 2, then new i’s with m, % p, are successively added to L,
(i.e. r, = p) as long as this is possible under the condition that r,, and r,, are already
defined each time. These elements then form Kn L, and L, is complete.

If y, = 1, the first element thus added to L, must be an i € K, (if there is such
an element at all), so we proceed as in the case y, > 2 only if the second step is
also possible with some i € Ky, (i.e. r, < p). Otherwise L, is complete after the first
step.

Accordingly, the structure of L, belongs to one of the following zypes:

GG ... L, begins with at least two G-steps; further G-steps, and after that,
further K-steps can follow.
G L, consists of a single G-step.

GK,, K, ... L, begins with a single G-step which is followed by at least two
K,,-steps and possibly further K-steps.

GK,, L, = {u,v} with e G, ve K,,, and there is no i % v with p,e L,,
I, < P.

Qur special strategy in the case y, = 1 serves to avoid GK;, K, at the beginning

of L,; instead of such a Kp-step there will follow a Gy,-step in L,;;. The inherent

meaning of this particular design will become apparent later on.

In order to illustrate the construction of the levels L,, we give an example: For
the addition chain

(aos ay, ...y a35) = (1,2, 4,8, 9,17, 19, 27, 34, 46, 51, 92, 126)
we obtain the sets

Ly, = {0}’ L, = {l}: L, = {2}’ L, = {3’ 4}:

L,=1{56,179}, Ls = {8,11,12, 10},

Go =1{1,2,3,8,11}, G, = {5}, Ko =1{9,12}, K,, = {4,6,7,10},
and the new order

112]14]8,9]17,19,27,46] 34,92, 126, 51.

As Lg is of type GG ..., the elements 34, 92 and equally 126, 51 may be exchanged.

Thus the new order is not always unique. From now on we restrict our discussion to

those chains which are already in such a “new” order. In addition, we may assume
that G,,-steps occur only at the beginning of the L, ’s. Then i € G,, will imply (after
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an ecventual exchange of my, p,)

m = i—-2e G, P = i—1 GKIZ’ Lr‘-l = {i"'2, i"'l}.
Writing a,—, = x, m;—; = j, and a; = y we have

ry <Ti-1 = ri—1, a-y = |xtyl, a; = [2x 1y (32
with proper choice of the signs in the case of addition-subtraction chains. In this
situation we can assume without restriction that L, does not contain further G-steps
apart from £, for a doubling of @,_, can also be achieved by the K,,-step la,>ay}s
and if 2x is computed by doubling a,—,, then the result a,—,+a;-; of the Gy,-step
can be obtained in the form |2x+a;| by a K,,-step as well.

The further parts of the proof are based on a partition Ky, = K; w K, similar
to (18) which will be chosen suitably later on. By

G, = {ieGli-1ekK} (ze{l,2)) (33)
it induces a corresponding partition G;, = Gy W G,. So we have

G=G,wG wG,, K=KywK; vk, and | = g+ko+ky+ky.  (34)

5. As in Section 3, the next step of the proof is the construction of numbers b; € N
and sets P; < Z under the conditions (19), (20), and (21); again let P, = {0}, bo=1.
(i) For ie G, put

P1=P"+1, bi=bw
where p = max L, ;.
(i) For ie G, v K, v K, put
Py = Ejti(Piy+1), by = by +1+4;
(see (22), (31).
(iii) For ie K, put
PI=PI—IVEer,J bt=bl—1’
where © = by —b,,, (see (24)); here r,, = r,—, is guaranteed by r,, = r; and p; < 1.
(iv) For ie G, we have i—1€ K,, hence
Pl"l = Pi"Z v Et Pm.-p
where 7 = b;—,—b,,_,. In view of (32) we therefore put
Py = (P!—2+1) VE, Pm;-n bl = bl"l-

‘We may restrict the proof of (21) to the case t = i € G, which, compared to Section 3,
represents the essential innovation of the present proof. For j<i-2 (hence 6 =
r—r;>>1) we use (21) as induction hypothesis with ¢ = i—2, and obtain
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Ey Py 2 Ey(P—,+1) 2 E;—y Pi—; 2 P,
For j = i—1, the conclusion of (21) amounts to
P,VR < P,u(P—1), . (35)

where R = E, P, . As Py=(P—+1)VR implies P,—1= P,V (R-1), we
obtain

x+%in(l’,-—1), %in(P,—-l)

for arbitrary x in P,_,, y in R,lin (R—1), hence
x+y in (Pi—1)u P,,

which implies (35) according to the definition of the operation V (see (12)).

6. The recursive definition of the b,’s yields

feK,
In order to estimate |P)|/b; we use (23) forie Gy U G, v Ky W Ky, (25) forie Ky
and

[P _ 1Pl | [Py
< i-1
bl = bi"z + bm,-,

for i e G,. (37

The latter inequality shows that |P,|/b, < 2*%% can be replaced by |P|/b; < 2%
A further improvement is possible if one of the levels contains several K,-steps.
We denote

Ky={ieKli=min(K,n L)}, Ki=K\K

! 14 x4 1 (38)
kz = IKZI: 2 = IKZ l’ vp = IKZ 0 Lpl’
hence
k£+k£' = k2 = Z Up, Z'(vp'—l) = :'Z’,
P P
where )’ denotes summation restricted to {plv, = 1}.
P
If we define g5 = 1, g, = (1+v,) g,—, recursively, then by induction on p
m< forielyw..wL, UL+ NG (39)
bt ~ qp 1l 0 ... p W p+1 s

because according to (25), the quantity |P,|/b, can increase by at most v, q,-1 Within
the v, many Kj-steps in L,; for ie G, n L,+; both quotients on the right-hand
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side of (37) are bounded by g,-,, and g, = 29,~; as v, = 1 in this case. From (39)
we obtain

L <Ta+5) = 2T (1+16,-1)
P
’ v,y—-1 o
KBTI+ =245
P
and finally, in view of s(z) <[Py, the inequality
ky 2> log, s (2)+k5% log, (3)—log, b, . (40)

When dealing with addition-subtraction chains, we use § (z) < |P,| instead (see (8)).

7. In this section we construct bounds 4; > a, for j < 7, analogous to those in (6).
For this we need a further subdivision of K, into

Ky = {ieKli-1e Ko}, Kb=K\Ky, (41)

i.e. Kg just contains the minimal elements of the components of K,. We start with
Ao = 1 and define recursively

24, for ieG, p=max L,
24~ for ie Ky,
A=) 94, for i€ Ky, y=1(1+/5), (42)

(1+27%)A4,—~, for ie K,,.
Then the first line of (42) implies

J<IANS=r—rj=4,<273%4,

and for ie Ky’ we have i—1 e Ky, 4,—; = yA4,-,. From these inequalities and (42)
a; < A, for j < i is obtained by induction on i.

In (42) the G-steps cause r; = max {p|L, # @} doublings on the whole. g’
g—r = Z(yﬂ—l) counts those G-steps which appear on levels L, of type GG’

in the second position or in a subsequent one, i.e. g’ = |G’|, where
G = {iE Glrt = rl—l}. » ) (43)
Writing |Kg| = ko, |Ko'| = ko we thus find that

<AI = 2r1+k° yko H (l+2—d[)

iek,,
and, after some computation, that
g+ko = logy z4+9'+0.3kg — Y. log,(14+27%), - (44
1eK,,

We supply the preceding estimations by
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Lemma 2, With reference to the foregoing notations we have that

ko+gy <k, +ki+24g'. (45)

Proof. If |[L, n K3 = ¢ > 1, then L, n K, consists of ¢ components, which must
be separated from each other by K,,-steps. In case of type GKj; K, ... there are
another two Kj,-steps, hence |K;, n L,| = c+1 and

I(Ky v KZ)n L] =,

because [K; n L] < 1. If, however, L, is of type GG ..., then we use |G’ N Ll=>1
and obtain

I(Ky v ) LJ+2|G@ n L =c,

correspondingly. The assertion (45) now follows from these inequalities and the fact
that according to the definition (33), there are at least g, additional L,’s of type GK,.
It is for this proof that the absence of levels of type GK,K, is important.

8. By combining the inequalities derived in Sections 6 and 7 we now proceed to
prove (9). By virtue of ky = ko+ko, Lemma 2 and (36) yield

by < B+ko +k5 +24g’,
where B = 1+ Y (2+44d)), and that in conjunction with (34), (40), (44) leads to

1eK,
1 = log, z+log, s (2)+k,— Y, log,(142-4)
feK,, (46)
+0.3ky +k7 log, (3)+g' —logy(B+ko + k3 +29°). '

As 0.5 > logz(g) > 0.3 we now write kg +k% +2g’ = n and take advantage of the

freedom to choose the partition K;; = K; N K, suitably. Then (9) is an immediate
consequence of (46) and Lemma 3.

Lemma 3. For every finite family of integers d; = 1 (i€ K,;) there is a partition
K12 = Kl w K2 SUC]I that 1Vith

kl = IKlls B=1+ Z(z'l'dl)s
1K,
0.3n—logy(B+n)+ky— ) logy(1+274) > —2.13 for arbitrary ne N.
1=K,
’ (47)
By the remarks at the end of Sections 2 and 6 it should be obvious that the entire

proof of (9) is valid for addition-subtraction chains as well, if only s (2) is replaced
by 5 (z), and “in” by “in”, respectively.
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9, In order to prove Lemma 3 we choose the partition K, = K; w K, under the
constraint d, > 2 for ie K, 'in such a way that u = &k, —log, B—dp,; becomes
maximal. Then 24+d,; > B for i € K,, because otherwise i € K; would yield a greater
value of u, and clearly 2+d; < B for i € K,. Therefore, d = max {2, B—2} separates
the d,’s of the two kinds — just as in (18). In addition, with

1, = number of the i’s with d, = ¢,

the required maximality of u» implies the conditions

i n+6a,1 < log, (l + — Z 2+1) n,) for m = d, (48)
t=d t=d
a-1 l a—1

-y n,glogz(l-— ¥l Y 2+1) n,) for2<m<d, if Yn, =1, (49)
i=m $=m t<m
S 2\ .

=3 n < log, (—E) if ny <1. (49"
=2

With respect to (47) we consider the problem of minimizing

S, = — ) nlogy(1+27Y)
1>d .
by variation of the numbers n, (now infinitely many of them are allowed to be dif-
ferent from zero) for fixed B e {l, 4, 5, 6, ...} under the restriction (43). The solution,
then, has the characteristic property that (48) does not hold with n,+1 instead
of n, for any m = d. Thus we have S, = S,(B), where

@0 44
—log, TT (1 +22-28) for B>=4,
S, (B) = v=0 (50)
—2log,(3) +5,(9) for B =1,

In a similar manner we deal with the problem of minimizing

Sy = df n(1—log,(1+2-9)

=1
for fixed B under the conditions (49), (49'), and
143 2+1)n, = B.

t<d
Here n,, ..., n4-; are restricted to N, whereas for ny real values > 0 shall be admitted.
We consider such values of ny, ..., n,—y for which the minimum is attained, and
form h = dzl n.
=2
‘In the case where & = 0 we simply have S, /3(B 1) logz( ). For # >0 we
look at f(t) = 1 —log,(14+27%) and notice the validity of

FU=D4H1 @ +1) < F@O+f) for t <t
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This convexity enables us to derive the characteristic property of the solution of

the minimum problem that (49) does not hold with #,, 41 instead of #,, for any m < d
m—1

with ) n, > 2. By analyzing this property the following structure of the solution

=2
is obtained.

There are #, > 1, > ... > t, > 2 with n,, = 1, more precisely
ty=31B2"1=2 for 1 <j<<h-1,
[B21-%] = B— jii 2+t) = 14+Q2+1,) =5,
hence B > 2'** and n, > 1, because otherwise (49") would lead to a contradiction.
Thus (49) applies to all m > 2 and gives , <3I1B2'-%1~2, hence
24 +1 <ty for 1 <j<<h—1,

and 1+3n; > B 2" Furthermore, only #, > 5 is possible, for otherwise replace-
ment of n,, by 0 and increase of n, by %(2+t,,) would reduce S,. In this way we
obtain finally

Sy+S8; 23(B2"—1)log, (2) +h—C for h> 0, | (51)
where C = log, [ ] (1+2~62-1) < 0.0451. Notice that C includes the bound S,(B)
v=0

for every B,
Now we discuss the left-hand side of (47). For B = 1, it attains its minimum with

n =4, that is
1.2—log, 5+ Sx1) = —1.78.
If B=4,thenn=1, h =0, and n, = 1 yield the value
0.3+log, (3) —log, 5+ 5,(4) > —1.96.
In the case where B > 5 and n = 0 we have
3 (B—1)log, (3) —log, B+ S,(B) > —2.09 for /i = 0.
If & > 0, then (51) gives the bound (write B2~ = x)
3 (x—1)log, (3) —log, x—0.0451 > —2.13.
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