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l. The study of optimum multiplicative schemes for calculating the simplest poly-
nomials of the form xn, where n> I (cf. [l] for the definition of schemes) reduces ro

the examination of a certain number-theoretic combinatorial function l(n), the least
possible number of multiplications in such schemes. Ve will call this function the

additive complexity of the natural number n, or briefly the length of a. The height
/h) i" also the least number of additions necessary ro obtain z from 1.

The function l(n) was first defined by A. Scholz [2]and its simplestproperties
as well as an uPPer bound and asymptotics were found and proved by A. Brauer [l]. p.

Erdo's [4] Proved a theorem refining the asymptotic law for t(n) for "almost all" n.

The interesting problem of a nontrivial lower bound for lG\ was treared in bl,
where this bound was found for numbers n of a very special form (the total number of
one's in the binary decompositionof .n is ar most 3); D. E. Knut [6] someu/hat strengthened

this result (4 one's). A number of open problems related to rhe "local" (passage from

lb\ o l(2il ana so on) and "global" ("ramified" numbers and so on) behavior of
/h) was discussed in [6]; the latter article also contains a complete survey of results
through 1967.

In the Present note a refinement is given of an upper bound for t(n\ (Theorem 1),
a nontrivial general lower bound (Theorem 2) is proved, and it is proved that this bound
cannot be improved with a slightly larger constant (Theorem 3). Ve will also discuss
the problem of calculatlog l(n) on a modern compute!.

2 Ve set tr(z) = - [- logrn) (the number of digits in the binary represenration of
n if n is not a Power of 2, and the number of zeros in this representation if n is a

Power of 2).(11 The following bounds and "recursion inequalities" for l(n) are enrirely
elementary:

?"(z) <l(n) <21, (n), (1)

l(n,.n,\ <l(n,) *1.(n,), (2)

l(nr*nr)<l(ra,) *l(nr), if nr22, nr22, (3)

t(n+t)<l(z) +1. U)
The upper bound for l(n\ can be improved:

Theorem l. For any tuo natural numbers n and p ute baue the inequality

l(n) < (l+1/p))"(n)+2o-'-p-l/p. (5)

Remark. Theorem 1 was first proved, though in a somewhat weaker form, by A.

AMS (l4OS) subject classificatiozs (1970). Primary 10430, 10-04.
(1) Unlike [6], *here I(n): [t"grr] is always one less than the number of digits (["] i"

the integral part of a real r). 
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then proved again [Z] in the same weaker form

l(r,) < (t+ t/ p) A, (n) *tr.
Corcllary 1. For all n2l we baue tbe inequalities

t(n) {3/ z?r(n) -tlr, l(n) {,/,?,.(n) *,/,, t(n) 4i/ o},(n) *,r/,.. (6)

We may conclude from the table of values(2) tor lb) that the inequalities (6) ob-
tained from (5) when p = 2, ) and 4 cannor be strengthened for numbers n and height
l(n) S l2 io this notarion.

Conjecture. The bound (5) is sharp in the sense that for any N ) 0 there exist
n ) N and p ) 0 such that equality holds in (5).

Corollary 2. Tbere exists a constant a, I ( a ( 1+ (zlogre)/e < 2.1, such that
forall z)2 wehave

l(z) <I (n1*o,'lu(n) /log,?"(n). (7)

Theorem 1 is

- 2logrlogz\b).
reached when

proved below 1$3). Inequality (7) is obtained from (5) it p : Iog, tr(z)
In fact the minimum of the expression in the right side of (5) is

p : log, (# l, tr) ) - 2rog,Iog, t (n) +o (t) ;

after simple calculations we obtain the inequality

l(n)<l,(n)* . ^(ll , +2 . L(n), ,log'l,og'r(') .logr?"(n) - logr?"(n) log, l, (n) '
which also implies (7) in view of the obvious inequality x > \rogre/e).lolzr G > 0).

Remark. Erdos proved [4] that for ,,almost all,' n the length /h) is asymptotically
equal to A(z) + I(z)/I(I(z)); thus the lower bound for the constanr ain (7) cannor be
decreased.

3. Proof of Theorem l. For p 2l + log, tr(z) the inequaliry (.:) follows from the
right-most inequality in (l). Suppose p < 1 + logrl() and rhereby p < tr(z). Let us
indicate a scheme for calculating n, the number of additions in which is less than the
right side of inequaliry (5). The idea of this scheme, found by the author in L973, was
used by Brauer B] ana R. i. Val'skii [7], b,rt in a somewhar cruder form.

Thus, suppose I < p < tr(z) and let
n : n r* n2. 2p * n s - 2'p + . . . * no_ r2k-2) e + n q2(q-z) p * 

^ t

where r (nr) (p, l<i<q-l, l, (zr) {A,
q- -t-*l =S+ r, r(A:1, (n)_p(q_r)<p.

(8)

o)

Assuming that the numbers ,L, .,., nu have already been c.onstructed, we may con-
sider (B) as a comPact formulation of the scheme for calculating the number z in terms
of the known numbers n1,...rfrq, where we first carryout the A-fold doubling of. no

(2) Calculations were performed at the Institute of Control Problems of the Academy of
Sciences of the USSR by A. Futer and the author. A detailed description of the algorithm and
a table of values for l(n) will be published.



(doubling is realized as the addition of a number to itself), followed by rhe addition of
nq-t to the resulting number, then the p-fold doubling of the result, and so on. The
number of additions in this scheme, in view of (9), is given by

p (q-Z)*A*q:1 (n) + q- t- p< (t* t/ p) x (n) - p- t/ p.

we now note that, instead of the p-digit numbers ny ..:rnqt it suffices to know all
the odd p-digit numbers from 1 to 29 - 1 inclusively. In fatt if zz is such a number
and nu- 21., the fragment of the scheme consisting in the p-fold doubling and succes-
sive addition of nr should be replaced by the (p - t)-f"ta doubling of this intermediate
result and the addition of the m- and /-fold doublings of the resulting number. 2P-l
additions are necessary (and sufficient) to calculate all odd numbers less than 20.
The theorem is proved.

4. Not much is yet known conceming lower bounds for l(n\; the bound

l(n)<?u(n) (to1

is trivial, though it cannot be improved using solely rhe classical monoronically in-
creasing functions. For example, for any k > o, l(zk): I(2e): a. It is immediarely
clear that the size of the difference l(n) - tr(z) depends both on the number dn) of
one's in the binary decomposition of n and on the order cif the one,s in this decompo-
sition. A formalization of the first of these dependences is possible, and we will
Prove the corresponding bound below. The more delicate problem conceming the de-
pendence of the deviation of lb) - I(z) on the measure of irregularity of occurrence
of one's in the binary decomposition of z remains as yer open. These tc/o approaches,
we should mention, have been synthesized in very special cases in theorems derived
in bl, [6].

Theorem(A. A. Gioiaetal.). l(zA +zB +zc\:A +2 il A >B>C.

Theorem (Knut). Il u(n)24, then lb)>-tr(z)+ ) excepr in the lollowing cases
when A >B> C>D and t(24 +28 +2c +ZD)=A+2:

Case 1. A * B - C - D (example: n = 15).
Case 2. A - B - C -D + 1 (example: n = 23\.

Case 3. A - B = 3, C - D : I (example-. n : iil.
Case 4. A - B :5, B - C - C - D : 1 (example: n = 135).

I-et us prove the following general result,

Theorem 2. There exists a constant F, t/s < F S !, such tbat lor all n) l, we
haue

l,(n) +F.r,(v (z) ) <l(z). (11)

Remark. Inequality (11) is apparently true for alI n) 1 with unir consranr B = 1.
Furthermore, rhe very plausible equality

t(zzk - r):z.+k, 
.

which is implied by the unproved conjecture tr(z) + I(y(z)) St(n\ and the obvious in-
equality l(Z2k - i 3Zk + A has yet to be either proved or disproved.



We will also prove that the (unique) upPer bound for the constant B cannot be

increased.

Theorem 3. For any € ) 0 tbe inequality

l.(z) + (1+e)1,(r(") )>t(n)
bolds lor an inlinite number ol natural n. Moreouer, tbe inequality

t (n)*Xv(") )>l(") (r2)

also possesses ,bis property.

Remark. Inequality (12) is stronger than the preceding inequality in view of (7)

and (10).

5. In proving Theorem 2 we will use the following assertions, which are of some

independent interest.
Let us consider an arbitrary scheme with A additions (we will refer to any indexed

sequence of additions in which either one's or the results of additions with a lower

index enter as a scheme; the result of a scheme may be nonunique) and denote by nq

the result of an addition with index q (O < q 4k aod we agree that ao : 1). An ad-

dition with index 4 is said to be a doubling if no= fir* fir- 2nr, 0 ( r ( 4 - 1. Ve

denore by is the number of doublings in operations with indices from 1 to 4 inclusive.
(In any scheme flt=fl'*il':2no:2, so that | 1ir< q.) We note that

i r-,(i o, fu- l) -i r-,{e-i o (11)

f.or all q.

Lemma 1. For any scheme uitb k additions and any Qt t Sq Sk, ue baue

nr{/irr.Fc-iq+q (14)

tabere F . (i : O, L, 2,... ) ;r a Fibonacci number.

The proof is carried out by induction on q ) 1, using ihe inequalities (ll) and

the definition of 
.Fibonacci 

numbers.

Lemma 2. For any scheme u,,ith k additions and any Q, | ( I ( k, ute baue

X"fu (n,) ) <q-in. (1r)

Proof. Induction on q) 1, using the obvious inequalities z (2m):v(m) and

v(m+n)<v(m\+v(n).
To prove Theorem 2 we use (14) and (15) and the well-known bound on Fibonacci

numbers

F,*,12.9" 9:(/5+r)/2xt.6180. (16)

Taking logarithms in (14) and using (16) and then (15), we obtain the inequality

l.(zo)*(1-f)I(r(zo))<q-1, where 1(logzcp,

which implies (ll) when nq: /t, q = l(n), and tr(vh)) > O.

To prove Theorerq 3 we set

ni:6'(2*"-l) /7+2, f:0, 1, 2, . . .i



In particular nO:8, n, = 56, and so on, or in binary represenrafion: (zO) = 110 +
10 = 1000, ("):110110 + 10 = 111000, (") :110110110110 + l0: 110110111000,
and so on. Let us prove rhat for all t > 31

l(y (n,)7>t(n,) 
-X(n,) .

Evidently

t'(n,) :3.2,-1, v (n,) :2r+r-1,
so that

(n,* r-Z) :23'2' (n,- 2) I n, - 2,

I(n,)4l(n -2) +1<3 .2t+t+l,

and, in view of (11),

so that

l(v (n,)):l(2'+'-l)>t+l+t ls)"Q+ 11 ,

t(n,) -)"(rz,) <r+2< t+l+tls[,"(r+r) </(v (lz,) )

forall t>2r/B+l/33.
6' Searches for algorithms to actually calculate the functio n t(n) have shown

that this function Possesses several "bounded general recursive', features (this is
meant metaphorically, and not strictly speaking). More precisely, to calculate /(z)
for a given z it is necessary to sort all the schemes in order of increasing length
(i.e. number of additions) and to sort in arbitrary order (say, in lexicographic order for
the selected method of coding the schemes) until rhe firsr scheme calculating a given
a is found; l(n) is set equal to the length of this scheme. Apparently no orher more
"rapid" method of calculatins t(n) for ..almost all,, z exists, though we know of no
proof of this fact. In this connection we note that if /(z) is itself an arirhmetic ,npro-

iection" of complexity in the sense of A. N. Kolmogorov, the problem of calculating
it recalls rhe constructions of the "universal solver" of L. Levi" [s], [p].

A significant increase in efficiency is achieved by using a varianr of the ,,branch

and bound" method in realizing this algorithm for calculating lb) on a compurer.
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