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1. The study of optimum multiplicative schemes for calculating the simplest poly-
nomials of the form x”, where n > 1 (cf. [1] for the definition of schemes) reduces to
the examination of a certain number-theoretic combinatorial function /(n), the least
possible number of multiplications in such schemes. We will call this function the
additive complexity of the natural number »n, or briefly the length of ». The height
I(n) is also the least number of additions necessary to obtain 7 from 1.

The function /(n) was first defined by A. Scholz [2], and its simplest properties
as well as an upper bound and asymptotics were found and proved by A. Brauer [3]. P.
Erdss [4] proved a theorem refining the asymptotic law for I(n) for “‘almost all’’ 7.

The interesting problem of a nontrivial lower bound for /() was treated in [5],
where this bound was found for numbers 7 of a very special form (the total number of
one’s in the binary decomposition of 7 is at most 3); D. E. Knut [6] somewhat strengthened
this result (4 one’s). A number of open problems related to the ‘‘local’’ (passage from
I(n) to 1(2n) and so on) and “‘global”’ (”ramified’_’ numbers and so on) behavior of
I(n) was discussed in [6]; the latter article also contains a complete survey of results
through‘1967- _

In the present note a refinement is given of an upper bound for /) (Theorem 1),
a nontrivial general lower bound (Theorem 2) is proved, and it is proved that this bound
cannot be improved with a slightly larger constant (Theorem 3). We will also discuss

the problem of calculating /() on a modern computer.

2. We set Mn) = - [~ logzn] (the number of digits in the binary representation of
n if n is not a power of 2, and the number of zeros in this representation if 7 is a 1

power of 2).(1) The following bounds and *‘recursion inequalities’’ for /(n) are entirely

elementary: A () <) <2 (n), 1)
l(ny-n.)<l(n,)+l(n.), (2)

Il(n+n,)<Il(n)+l(n.), if n=2, n,=2, (3)
l(nt+1)<l(n)+1. (4)

The upper bound for /(n) can be improved:
Theorem 1. For any two natural numbers n and p we have the inequality

()< (1+1/p)A(n) +27='—p—1/p. (5)
Remark. Theorem 1 was first proved, though in a somewhat weaker form, by A.
AMS (MOS) subject classifications (1970). Primary 10A30, 10—04.

(1) Unlike [6], where A(n) = [log2 n] is always one less than the number of digits ([x] is

the integral part of a real x).
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Brauer [3] and then proved again [7] in the same weaker form

(n) < (14+1/p) A (n) +2».

Corollary 1. For all n> 1 we have the inequalities
Ur)</A(n) =z, U(n)<Yh(n)+%s, 1(n)<*/(n)+Y/.. (6)

We may conclude from the table of values(2) for /() that the inequalities (6) ob-

tained from (5) when p = 2, 3 and 4 cannot be strengthened for numbers 7 and height
I(n) <12 in this notation.

Conjeclure. The bound (5) is sharp in the sense that for any N > 0 there exist
n >N and p > 0 such that equality holds in (5).

Corollary 2. There exists a constant a,1< a<1 + (2 log, e)/e < 2.1, such that

for all » > 2 we have
l(n)<A(n)+o-A(n)/log.A(n). (7)

Theorem 1 is proved below (§3). Inequality (7) is obtained from (5) if p = log2 An)
~ 2log,log, Mn). In fact the minimum of the expression in the right side of (5) is
reached when

A(n) ) — 21log, log, A(n) -I-b(i) ;

P= ng(ln2

after simple calculations we obtain the inequality
A(n) n A(n) log.log, A(n)
log, A (n) log:A(n) log.A(r)
which also implies (7) in view of the obvious inequality x > Uog,e/e)- log, x (x > 0).
Remark. Erdés proved [4] that for “‘almost all’’ 7 the length [(n) is asymptotically
equal to An) + A(n)/MA(n)); thus the lower bound for the constant q in (7) cannot be
decreased.

L(n)<A(n)+

b

3. Proof of Theorem 1. For p > 1 + log, A(n) the inequality (5) follows from the
right-most inequality in (1). Suppose p <1+ log, M(n) and thereby p < An). Let us
indicate a scheme for calculating 7, the number of additions in which is less than the
right side of inequality (5). The idea of this scheme, found by the author in 1973, was
used by Brauer [3] and R. E. Val’skil [7], but in a somewhat cruder form.

Thus, suppose 1 < p < An) and let

n=n,tn, -2P+ns-2°*+ ... +n, 20Dty 2@-Dp+s

(8)
where AMr)<p, 1<j<q—1, A(n,)<A, )
—1
e ";”) |< M”; +1, 1<A=A(n)—p(g—1)<p.

Assuming that the numbers My ceeyn, have already been constructed, we may con-
sider (8) as a compact formulation of the scheme for calculating the number 7 in terms

of the known numbers 7, ..., n ., where we first carry out the A-fold doubling of n,

(2) Calculations were performed at the Institute of Control Problems of the Academy of
Sciences of the USSR by A. Futer and the author. A detailed description of the algorithm and
a table of values for [(n) will be published.




(doubling is realized as the addition of a number to itself), followed by the addition of
m,_1 to the resulting number, then the p-fold doubling of the result, and so on. The
number of additions in this scheme, in view of (9), is given by

p(g—2)+A+q=A(n)+q—1—p< (1+1/p)r(n) —p—1/p.

We now note that, instead of the p-digit numbers My eney By, it suffices to know all
the odd p-digit numbers from 1 to 27 — 1 inclusively. In fact if » is such a number
and n, = 2'm, the fragment of the scheme consisting in the p-fold doubling and succes-
sive addition of 7, should be replaced by the (p — 1)-fold doubling of this intermediate
result and the addition of the m- and I-fold doublings of the resulting number. 22!
additions are necessary (and sufficient) to calculate all odd numbers less than 2.

The theorem is proved.

4. Not much is yet known concerming lower bounds for I(»); the bound
l(n)<A(n) (10)

is trivial, though it cannot be improved using solely the classical monotonically in-
creasing functions. For example, for any & > 0, 1(2%) = XM(2%) = k. It is immediately
clear that the size of the difference I(n) — \(n) depends both on the number Un) of
one’s in the binary decomposition of » and on the order of the one’s in this decompo-
sition. A formalization of the first of these dependences is possible, and we will
prove the corresponding bound below. The more delicate problem concerning the de-
pendence of the deviation of I(n) - Mzn) on the measure of irregularity of occurrence

of one’s in the binary decomposition of 7 remains as yet open. These two approaches,

we should mention, have been synthesized in very special cases in theorems derived

in [5], [6].
Theorem (A. A. Gioia et al.). 124+ 2B 129 -4 42 if A>B>C.

Theorem (Knut). If v(n) > 4, then I(n) > Mn) + 3 except in the following cases
when A>B>C>D and 1024 +28 1 2€ L 2D) _ A 4 2:

Case 1. A-B=C-D (example: n = 15).

Case 2. A~B=C -D +1 (example: n = 23).

Case 3. A-B=3,C-D =1 (example: n = 39).

Case 4. A -B=5,B-C=C~-D =1 (example: n = 135).

Let us prove the following general result.

Theorem 2. There exists a constant B, 1/5 < B < 1, such that for all n> 1, we
have

Mr)+B-2(v(n))<i(n). (11)
Remark. Inequality (11) is apparently true for all » > 1 with unit constant B=1.
Furthermore, the very plausible equality
L .
124 - 1) =2k,

which is implied by the unproved conjecture An) + My ()) < 1(n) and the obvious in-
equality Z(22_k -1)< 2% + k has yet to be either proved or disproved.
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We will also prove that the (unique) upper bound for the constant 8 cannot be
increased.
Theorem 3. For any €> 0 the inequality
A(n)+ (1+e)A (v (n))>1(n)
holds for an infinite number of natural n. Moreover, the inequality
A(n)+i(v(n))>Il(n) (12)

also possesses this property.,

Remark. Inequality (12) is stronger than the preceding inequality in view of (7)
and (10).

5. In proving Theorem 2 we will use the following assertions, which are of some
independent interest.

Let us consider an arbitrary scheme with &k additions (we will refer to any indexed
sequence of additions in which either one’s or the results of additions with a lower
index enter as a scheme; the result of a scheme may be nonunique) and denote by 7,
the result of an addition with index ¢ (0 < g < k& and we agree that ng = 1). An ad-
dition with index g is said to be a doubling if ng=mn,+n = 2n,0<r<q-~ 1. We
denote by jq the number of doublings in operations with indices from 1 to g inclusive.

(In any scheme n, =ny +ny = 2n; =2, so that 1 <j < q.) We note that

jorr<lor (4= —fa-1=q—T, (13)
for all gq.
LLemma 1. For any scheme with k additions and any q, 1 < g <k, we have

ngS24t-Fo_joys, (14)
where F. (:=0,1,2,...) is a Fibonacci number.

The proof is carried out by induction on g > 1, using the inequalities (13) and

the definition of Fibonacci numbers.

Lemma 2. For any scheme with k additions and any q, 1 < q < k, we have
K(V(nq))Sq—jq, (15)

Proof. Induction on g > 1, using the obvious inequalities v (2m) = v (m) and
vim +n) <v(m) + vn).
To prove Theorem 2 we use (14) and (15) and the well-known bound on Fibonacci

numbers
Fi,:<2-¢', ¢=(Y5+1)/2~1.6180. (16)
Taking logarithms in (14) and using (16) and then (15), we obtain the inequality
A(ng)+(1—=Y)A(v(n,))<q—1, where y<log:q,
which implies (11) when n_=n, ¢ = I{n), and X (n)) > 0.

To prove Theorem 3 we set

n=>6-(2**—1)/7+2, t=0,1,2,...;




In particular 7, = 8, n, =56, and so on, or in binary representafion: (no) =110 +
10 = 1000, (nl) = 110110 + 10 = 111000, <n2> = 110110110110 + 10 = 110110111000,
and so on. Let us prove that for all ¢ > 33

L(v(n))>1(n) —A(n,).
Evidently

A(r)=3-2—1, ~v(n) =2""—1, (. —2)=2**(n,—2) +n,.»—2,A
so that

and, in view of (11),

L(v(n)) =1(2* —1) =t+1+ s (1H1),
so that |
1(ne) = (r) <t+2<t-+H1+Ysh (1) <I (v (1) )
for all £>2Y 811> 33,

6. Searches for algorithms to actually calculate the function /() have shown
that this function possesses several “‘bounded general recursive’’ features (this is
meant metaphorically, and not strictly speaking). More precisely, to calculate [(»)
for a given 7 it is necessary to sort all the schemes in order of increasing length
(i.e. number of additions) and to sort in arbitrary order (say, in lexicographic order for
the selected method of coding the schemes) until the first scheme calculating a given
n is found; I(n) is set equal to the length of this scheme. Apparently no other more
“‘rapid’’ method of calculating I(n) for “‘almost all’’ 7 exists, though we know of no
proof of this fact. In this connection we note that if [() is itself an arithmetic “‘pro-
jection’’ of complexity in the sense of A. N. Kolmogorov, the problem of calculating
it recalls the constructions of the ‘‘universal solver’’ of L. Levin (8], [9].

A significant increase in efficiency is achieved by using a variant of the ‘‘branch

and bound’’ method in realizing this algorithm for calculating I(n) on a computer.
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