Remarks on number theory III On addition chains

bν

P. Erdős (Budápest)

Consider a sequence $a_0 = 1 < a_1 < a_2 < \ldots < a_k = n$ of integers such that every a_1 $(l \ge 1)$ can be written as the sum $a_1 + a_j$ of two preceding elements of the sequence. Such a sequence has been called by A. Scholz (1) an addition chain. He defines l(n) as the smallest k for which there exists an addition chain $1 = a_0 < a_1 < \ldots < a_k = n$.

Clearly $l(n) \ge \log n/\log 2$, the equality occurring only if $n = 2^{u}$. Scholz conjectured that

$$\lim_{n \to \infty} l(n) \frac{\log 2}{\log n} = 1$$

and A. Brauer (2) proved (1). In fact Brauer proved that

(2)
$$l(n) \leqslant \min_{1 \leqslant r \leqslant m} \left\{ \left(1 + \frac{1}{r}\right) \frac{\log n}{\log 2} + 2^r - 2 \right\}$$

where $2^m \leqslant n < 2^{m+1}$. From (2) by choosing $r = \left[(1-\epsilon) \frac{\log \log n}{\log 2} \right]$ it follows that

(3)
$$l(n) < \frac{\log n}{\log 2} + \frac{\log n}{\log \log n} + o\left(\frac{\log n}{\log \log n}\right).$$

In the present note I am going to prove that (3) is the best possible. In fact I shall prove the following

THEOREM. For almost all n (i. e. for all n except a sequence of density 0)

$$l(n) = \frac{\log n}{\log 2} + \frac{\log n}{\log \log n} + o\left(\frac{\log n}{\log \log n}\right).$$

⁽¹⁾ Jahresbericht der Deutschen Math. Vereinigung 47 (1937), p. 41.

⁽²⁾ Bull. Amer. Math. Soc. 45 (1939), p. 736-739.

78 P. Erdös

In view of (3) it will suffice to prove that for every ε the number of integers m satisfying

$$\frac{n}{2} < m < n, \quad l(m) < \frac{\log n}{\log 2} + (1 - \varepsilon) \frac{\log n}{\log \log n}$$

is o(n). In fact we shall prove that the number of integers satisfying (4) is less than $n^{1-\eta}$ for some $\eta = \eta(\epsilon) > 0$.

To prove our assertion we shall show (as the stronger result) that the number of addition chains $1 = a_0 < a_1 < ... < a_k$ satisfying

(5)
$$\frac{n}{2} < a_k < n, \qquad k < \frac{\log n}{\log 2} + (1 - \varepsilon) \frac{\log n}{\log \log n}$$

is less than $n^{1-\eta}$ for some $\eta > 0$ $(\eta = \eta(\varepsilon))$.

An addition chain is clearly determined by its length k and by a mapping $\psi(i)$, $1 \le i \le k-1$, which associates with i two indices $j_1^{(i)}$ and $j_1^{(i)}$ not exceeding i. To such a mapping there corresponds an addition chain if and only if for every i, $a_i(i) + a_j(i) > a_i$.

We split the indices $i, \ 2 \le i \le k-1$, into three classes. In the first class are the indices i for which $a_{i+1} = 2a_i$. In the second class are the i's for which $a_{i+1} < 2a_i$ and $a_{i+1} \ge (1+\delta)^r a_{i+1-r}$ for every r > 0 ($\delta = \delta(\varepsilon)$ is a sufficiently small positive number). In the third class are the i's for which $a_{i+1} < 2a_i$ and $a_{i+1} < (1+\delta)^r a_{i+1-r}$ for some r > 0. Denote the number of i's in the classes by $u_1, u_2, u_3, u_1 + u_2 + u_3 = k-1$.

Assume now that (5) is satisfied, we are going to estimate the number of addition chains satisfying (5). First we show that (5) implies

(6)
$$u_2 + u_3 = o(k)$$
.

To prove (6) observe that if $a_{i+1} \neq 2a_i$ then $a_{i+1} \leqslant a_i + a_{i-1}$. Thus from $a_i \leqslant 2a_{i-1}$ we obtain

$$a_{i+1} \leqslant 3a_{i-1}.$$

Thus from (5) and (7), since there are at least $\frac{1}{2}[(u_2+u_3)]=[\frac{1}{2}(k-u_1-1)]-1$ intervals (i-1,i+1), $1 \le i \le k-1$, which are disjoint half-open (i. e. open to the left) and for which i is in the second or third class, we have

$$\frac{n}{2} < a_k < 2^{u_1+1} 3^{(k-u_1)/2} = 2^k \cdot \frac{2}{(\frac{4}{3})^{(k-u_1)/2}} < 2^{k-(u_2+u_3)/100}$$

or $k > \frac{\log n}{\log 2} \left(1 + \frac{u_2 + u_3}{100} \right) - 1$, which contradicts (4) if (6) is not satisfied.

The number of ways in which we can split the indices i into three classes having u_1 , u_2 , u_3 elements $(u_1+u_2+u_3=k-1)$ equals $\binom{k-1}{u_2+u_3}\times \binom{u_2+u_3}{u_2}$. Now since $u_2+u_3=o(k)$, $\binom{u_2+u_3}{u_2}<2^{u_2+u_3}=(1+o(1))^k$, also $\binom{k}{u_2+u_3}\binom{k}{u_2+u_3}=\binom{k}{o(k)}=(1+o(1))^k$. Further for u_2 and u_3 we have at most k^2 choices. Thus the total number of ways of splitting the indices into three classes is $(1+o(1))^k$. Henceforth we consider a fixed splitting of the indices into three classes.

For the i's of the first class $a_{i+1} = 2a_i$, and thus a_{i+1} is uniquely determined. If i belongs to the second class then from $a_{i+1} \ge (1+\delta)^r a_{i+r-1}$ it clearly follows that there are at most $c_1 = c_1(\delta)$ a's in the interval $(\delta a_i, a_i)$. From $a_{i+1} \ge (1+\delta)a_i$ it follows that only the a_i 's of the interval $(\delta a_i, a_i)$ have to be considered in defining a_{i+1} . Thus there are at most c_1^2 choices for a_{i+1} , and hence for the number of addition chains satisfying (5) the contribution of the i's of the second class it at most $c_1^{2u_2} = (1+o(1))^k$.

The number of possible choices given by the u_3 indices of the third class is less than $\binom{k^2}{u_3}$. To see this observe that the indices $i_1, i_2, \ldots, i_{u_3}$ which belong to the third class have already been fixed and our sequence is completely determined if we fix the indices $j_1^{(i_1)}, j_1^{(i_1)}, j_2^{(i_2)}, j_2^{(i_2)}, \ldots, j_{u_3}^{(i_{u_3})}, j_{u_3}^{(i_{u_3})}, j_{u_3}^{(i_{u_3})}, j_{u_3}^{(i_{u_3})}, j_1^{(i_{u_3})}, j_1^{(i_{u_3})}, j_2^{(i_{u_3})}, j_2^{$

Thus we have proved that the number of addition chains satisfying (5) is less than

(8)
$$\sum_{k} (1 + o(1))^{k} \sum_{u_{3}} {k^{2} \choose {u_{3}}},$$

where the summation is extended over all possible choices of k and u_3 , satisfying (5). Now we show

$$u_3 < \left(1 - \frac{\varepsilon}{2}\right) \frac{\log n}{\log \log n}.$$

To prove (9) observe that if i is in the third class then for some $r_i > 0$

$$(10) a_{i+1} < a_{i+1-r_i} (1+\delta)^{r_i}.$$

The intervals $(i+1-r_i, i+1)$ cover all the i's of the third class. From these intervals we form (in a unique way) a set of non-overlapping

80 P. Erdös

intervals (u_s, v_s) , s = 1, 2, ..., t, which contain all the intervals $(i+1-r_i, i+1)$, where i is in the third class.

A simple argument shows by (10) and the construction of the intervals (u_s, v_s) that

(11)
$$a_{v_0} \leqslant a_{u_0} (1+\delta)^{2(v_0-u_0)}.$$

The intervals $u_s < x \leqslant v_s, \ 1 \leqslant s \leqslant t$ cover all the i's of the third class. Thus

$$\sum_{s=1}^{t} (v_s - u_s) \geqslant u_3.$$

From (5), (11), (12) and $a_{i+1} \leqslant 2a_i$ we infer that

(13)
$$\frac{n}{2} \leqslant a_k \leqslant 2^{k-u_3} (1+\delta)^{2u_3} < 2^{k-u_3(1-\epsilon/2)}$$

for sufficiently small $\delta = \delta(\varepsilon)$. Thus from (13)

$$(14) k-u_3\left(1-\frac{\varepsilon}{2}\right) > \frac{\log n}{\log 2} - 1.$$

(14) and (5) clearly implies (9).

From (5), (9) and (8) we infer that the number of addition chains satisfying (5) is less than

$$(15) \qquad \qquad (1+o(1))^{\log n} \binom{A}{B},$$

where

$$A = \left[\left(\frac{\log n}{\log 2} + (1-\varepsilon) \frac{\log n}{\log \log n} \right)^2 \right], \quad B = \left[\left(1 - \frac{\varepsilon}{2} \right) \frac{\log n}{\log \log n} \right].$$

Now

(16)
$$\binom{A}{B} < \left(\frac{A}{B}\right)^B e^B = (1 + o(1))^{\log n} \left(\frac{A}{B}\right)^B$$

$$= (1 + o(1))^{\log n} (\log n)^{B(1 + o(1))} = n^{1 - \epsilon/2 + o(1)}.$$

From (15) and (16) we finally infer that the number of addition chains satisfying (5) is less than $n^{1-\epsilon/2+o(1)} < n^{1-\eta}$ for $\eta < \epsilon/2$, which completes the proof of our Theorem.

It would be of interest to obtain a more accurate estimation of l(n) and in particular to try to obtain an asymptotic distribution function for l(n), but I have not succeeded in making any progress in this direction.

We can modify the definition of an addition chain as follows: a sequence $1 = a_1 < a_2 < \ldots < a_k = n$ is said to be an addition chain of

order r if each a_j is the sum of r or fewer a_i 's where the indices do not exceed j. Denote by $l_r(n)$ the length of the shortest addition chain of order r with $a_k = n$. Using a modification of the method of Brauer and of this note we can prove that for all n

$$l_r(n) < \frac{\log n}{\log r} + \frac{\log n}{(r-1)\log\log n} + o\left(\frac{\log n}{\log\log n}\right),$$

and that for almost all n

$$l_r(n) = \frac{\log n}{\log r} + \frac{\log n}{(r-1)\log\log n} + o\left(\frac{\log n}{\log\log n}\right).$$

Peter Ungár in a letter has asked me the followig question: Define l'(n) as the smallest k for which there exists a sequence $a_0=1, a_1, a_2, \ldots, a_k=n$ where for each $j, a_j=a_u\pm a_v, u\leqslant j, v\leqslant j \ (a_1< a_2< \ldots$ is not assumed here). The problem has arisen in trying to compute x^n with the smallest number of multiplications and divisions. Clearly $l'(n)\leqslant l(n)$ and it can be shown that our Theorem holds for l'(n) too.

Recu par la Rédaction le 20, 8, 1959