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81, Introduction and notation

This report deals with a problem related to some results of

cholz [3] concerning "addition chains". An addition chain for a

ral number n is a finite ordered set of natural numbers n

uch that n, = 1, n =n and every number of the chain except n, is

sum of two preceding members of the chain. Obviously for such a chain,

0, n1’ LECIE Y

2 and n, is either 3 or L,

The problem of constructing addition chains for a natural number
related to the following problem [@.f,1]:

is an arbitrary element of a semigroup, what is the minimal number

ultiplications necessary to compute a" from a? If n eess N 1s

02 k

n n
ddition chain for n, then we can form the set a = a 0, al, «uu,
= a”. Each number of this set is the product of two preceding ones

the number k gives the member of multiplications which is necessary
ompute a" from a by means of this chain. In general k need not be
smallest number of multiplications necessary to compute a” from a.
Let C%.be the collection of all addition chains for n. If'CéZG%,
A(C) e the number of elements in the chain minus one. We will also
that A(C) is the length of C and we note that A(C) is precisely
number of multiplications which is necessary to compute a" from a by

s of the chain C, We also let
A(n) =min{A(C)|ceC },

note that A(n) is the minimum number of multiplications which is
n
ssary to compute a from a.
Some obvious consequences of the above definitions are that A(1) = 0,
=1, A(3) =2, and A(4) = 2,
A Brauer Eﬂ and E.G, Strauss Dﬂ have prowved that

lim ——-———-—lg(n)n =1
n>o o
1n (n)




ver, Scholtz has stated in [3] that
A(n) > log, n.

these results, it is obvious that there exists a natural number

“ which A(n) is a maximum. One of the main purposes of this re-

log2
is to prove that the function is a maximum for n = T1, where
= 9 and AMn)_ 1,463 ,.. . However, we also compute A(n) for
log2 n

.2l numbers n and techniques for computing upper bounds for A(n)
iven.

In the second section we prove some elementary inequalities for
and use these inequalities to show that if n is a number for which

— 1is a maximum, then there exists a prime p such that —ALBL— =
n ‘ log2 P

n

In the third section Brauer's techniques are modified in order to
» a theorem which yields a sharper result than Brauer's inequality
 Special cases of the theorem which are necessary for section 5
11so discussed. '

The main content of section L4 is two tables which are needed for
yroof of the main theorem. A proof for some of the entries in table
sntained in the appendix.

The last section of the report contains a proof that i%églﬁ is a
2

mum for n = T1.
We wish to express our gratitude to the members of the department

ire mathematics of the Mathematical Centre and to F. GSbel for
» discussion and comments during the research for this report.

§2. Elementary inequalities.

2.1. Proposition. For every natural number n,

1é(n) z 1.
g, n

Proof. It is clear that max{n|A(n) < 1} = 2. Suppose now that

some natural number k we have shown that max{nlk(n) i_k} = 2kc Let

a natural number such that A(m) < k+1 and let cexgm such that




) = A(m). If we delete the last term from the chain C, we have a

in whose length 1is at most k and by our induction assumption, all
chese terms are less than or equal to 2k. Since the last term of C
che sum of two preceding terms, it follows that the last term of C

+ . .
less than or equal to 2k 1. Moreover, equality holds only 1if 2k

+ .
>ngs to C. Thus max {n|r(n) < k + 1} = 21 holds for every intege:
0. It follows easily that A(n) > log, n and so —ALEJ—-> 1.
- 2 log2 n—

2.2, Proposition. Let r, s, n be natural numbers such that n = r:

aln) < alr) + a(s).
sover, for any natural number n,

A(n+1) < a(n) + 1 and A(n+2) < A(n) + 1.

Proof. In order to prove the first assertion, let k = A(r), let

02t Ty is an addition chain for r and assume

sees Sy is an addition chain for s. We define an addition chain ft

A(s), assume r

5 follows:

K
e
| A

k"

rs. k i_i < k+l.

length of this addition chain is k + 1 and so

A(n) <k +1=2x(r)+ a(s).
The second and third assertions are easy consequences of the fact
t every addition chain starts with the numbers 1 and 2; hence any
in which ends with n can be extended to a chain ending with n + 1

1 + 2 with only one extra addition.

2.3. Corollary. If n = rs, then

1x(n) < max{lé(r) > 12(5)9,}'
ng n g2 r g2

Proof. Since A(n) < A(r) + A(s), then

A(r) A(s) .

AMn)  Alx) + A(s) Alr) + a(s)
log2 r’ log2 sl

log2 n — log2 n log2 r + log2 s f_max{




A(n)
log2 n
Alp)  _" aln)
log2 hs) 1og2 n’

2,4, Corollary. If n is a natural number such that is a

um, then there exists a prime p < n such that

is case, n is a power of p.
Proof. It follows from the preceding corollary that

2dm) max{—ziiﬁ—ﬂp is a prime divisor of n}.
log2 n — log2 D

A(n) . _Alp)
° Z
log2 n log2 P

for every prime p so that there must

An) o Mp) 14 fo11ows
log2 n log, p

1e other hand

; a prime divisor p of n for which

A(p) _ A(n)

.y that n and hence n is a power of p. Clearly, this

> p must be unique.
§3, Upper bounds for A(n).

The proof of the following theorem essentially uses the techniques
cauer [?]. One of its applications is to obtain a sharper result
Brauer's inequality (12).

3.1, Theorem. Let n and k be two natural numbers such that n zﬁ22ka

N log, nj
Aln) f_[;ogg n] + \:—-{%—11 -k + 21{_1 + 1,

Proof. Let
€1€7_1 *** €1€g> (e, =1 and ¢ e{o, 1})

k
the theorem is as follows: We first construct an initial addition

ne binary representation of n and let t = [5]. The method of proof

n. By doubling previous terms and adding members of the initial chain
erms,we compute the maximum number of terms that are needed for an

tion chain to contain the following numbers:

IREERE El—k+1o’ €1€qq *°° € k+151-k °°° €1 Dk+1® *°° €1€q1_q v 81605

llustrate our method, we first consider the following example.

Example. Let n be the natural number whose binary representation
00 101 110 111 01 and let k = 3. It follows that 1 = 13 and




= L, We break the number up into 4 blocks of length 3 with a blocl
length 2 left over; i.e. 100, 101, 110, 111, and 01. Our initial

in (in binary notation) is

n, =1, n., = 10, n, = 11, n

1 5 = 101, and ), = 111,

3

next number that we consider is 1000, It is sum of two members of
initial chain; namely n) + ng. We also note that the number 101
also in the initial addition chain. Thus, the next 4 members of

addition chain are formed as follows:

n

5 ny + o 1000, ng = no +n; = 10000,

0 > >

ng + ng 100000, and ng = n + n_ = 100101,

7 7703

the next step, we examine the number 110, It is not in the initial

in but 11 is. Hence the next 4 members of the chain are formed as
lows:

n9 = ng + ng = 1001010, Ny = n9 + n9 = 10010100,

n, =n,,+mn, = 10010111, and n,, = n,, + n,. = 100101110,

11 10 2 12 11 11

tinuing, we note that 111 is in the initial chain and so the next

erms are defined by:

Nyg = Myp ¥ g5 Oy = 0yg ¥ Nyg, Iyg = my) +ong), and

Dig = n15 + my = 100101110111,

ally, since 01 is in the initial chain, let Nyg = g + e,
n,g + n, = 10010111011101. Thus we have an

ition chain of length

+ n17, and n

19 = 231y (b=1)(3+1) + (13=12+2),

Proof of the theorem.

Step 1. Let the initial addition chain be

k times

1, 10, 11, 101, 111, .0, 171 .. 1




. -1 . . . . .
' are precilsely 2k members of this chaln since 1t contains all

le odd numbers between 1 and 2k.

Step 2.The numbers 8181_1 eee 81-k+1o can be written as the sum
ro members of the initial chain, namely the last term plus some
» term, Thus we let it be the next term of the addition chain.

we consider the number

€1k®1-k-1 *°* F1-ok+1°

r El—k = 81-k-1 = ces = €1—2k+1 = 0 or there exists a least index

h that e, = 1 and 1-k > i > 1-2k+1. In the former case by doubling

REREE el—k+1o and then doubling the obtained number, etc., we can

;ruct the number €1€7.1 **° €1 oK+ R k steps beyond the 1nitial

1, In the latter case, the number El—ksl—k+1 cee Ei+1€i belongs
1e initial addition chain (since it is the representation of an

k .
yumber less than 2 ). In this case we double €181_1 oo el_k+10

-hen double the obtained number and repeat this procedure exactly

L times. Then we add € es to the last number we obtained

1-kF1-k-1 *°*
~epeat the doubling process exactly i - (1-2k+1) times in order to

Ln the number el 121 °°° El—2k+1’ Thus 1t takes
1 + (l=k-1i) + 1 + i = (1-2k+1) = k+1

tional terms to construct €1€7.1 *** €1 ok+1 from the initial chain.
Step 3. Suppose that we have constructed an addition chain for

ceo €9 pkt1° We compute the maximum number of terms necessary to

truct an addition chain for 6131_1 N El—(r+1)k+1 using the addi-

chain for €167.1 **° €l yk+1’ As 1n step 2, either € rk =

k=1 *°0 T E1o(p+1)k+1
1 and 1-rk > i > 1-(r+1)k+1, In the former case we use the doub-

= 0 or there is a least index i such that

process to obtain an addition chain for €181 1 °°° el—(r+1)k+1
ust k steps from €1€9.1 **° €1 rk+1® In the second case we proceed
n step 2 by using the doubling process exactly l-rk+i+1 times, ad-
«v+ €;, and then doing the doubling process i-1+(r+1)k-1

in k+1 addi-

El—rkel-rk+1
times. In this case we obtaln 6181_1 0o el-(r+1)k+1

al steps from €1€9.1 **° €1 pk+1®




Step ., Since we can construct an addition chain for €1€9_1 °°°
- by step 3, we need only compute the maximum number of steps

assary to construct an addition chain for e using th

lEl_,‘ ) 8160

ition chain for e.e We use the methods of steps

1%1-1 °*° f1-tk+1”
nd 3 and note that it will take 1l-tk+1 of the doubling steps plus
nost one addition from the initial chain. Thus there are at most
k+2 additional terms necessary for the chain.

Step 5. We can now add up the maximum number of terms from each
p. There are 21{_1 terms from step 1, at most k+1 terms from step 2
nost (t-2)(k+1) terms from step 3, and at most 1-tk+2 terms from
o 4. Thus the maximum number of terms that we have is

L (t=1)(k+1) + 1 -tk + 2 = KT 1ok + o1,

= |1 =
we observe that t = [E] and 1 = Eogg n], then

togy, nl 4y
)\(n)f_@_ogenj+—-——l-{-——+2 -k + 1.

The theorem is also valid if k < 2°0

, however, such a result is
needed in this report and so a proof is not included.
Using the theorem, we are able to find an upper bound for the

er of A(n). For n sufficiently large, we put
k = [log, log, n - 2log, log, log, n + 2].

follows that

k1 2log, n - lfoge ?} ) log, n
—_(loge log2 n)2 k —*log2 log2 n—Zlog2 log2 lo
S
A(n) 1 )
—_— < 1 + + 1o .
log2 n — log2 log2 n-Zlog2 log2 log2 n (log2 log2 n)2
hence
Aln) 1 1
T s <t T o * O Tog, Tog, )
log2 n — log2 log2 n log2 log2 n

s result is sharper than Brauer's inequality (12).

For the proof in section 5, we consider upperbounds for A(n) in




= 2 or k = 3. For convenience, we denote the smallest integer
. +
1 is not smaller than a by Eﬂ .

The case for which k = 2, The initial chain in this case is 1, 10,

n binary notation). If n is any natural number which is larger

3, then all possible first three digits for the binary represen-
n of n are 100, 101, 110, and 111, In case the first three digits
100, 101 or 110, then we can obtain the first three digits in three

;ions, If 1 is the number of digits needed to represent n in the
1-3 |+
Y 2

to form a chain for n, Since 1 = [j.og2 n|" if n is not a power of

~y system, then we need at most 1-3 doublings and additions

1en it follows that in this case

iog n -3+
) x@):@%2ﬂ++L . ]-

1e case that the first three digits of the representation of n are

then we have the first two digits in two additions and we see that

1 n=2|+
) \(n) < [iog, ]* Efi—lo

rly both (3.3) and (3.4) hold if n is a power of 2,

The case for which k=3. The initial chain for this case is 1, 10,

101, 111 (in binary notation). Let n be a natural number which is
er than 7. If the first four digits of the binary representation
are 1000, 1001, 1010, 1100 or 1110, then it is possible to make

e digits in five steps. As before, we still need at most 1- L+ 13h *
steps for an addition chain for n, where 1 is the number of digits

ed to represent n in the binary system. Thus in this case

Am)15+uh%+E& [og, n]” + Efﬁijﬁ

he first four digits are 1011, 1101, or 1111, then we have the first

~

e digits and an extra O in five steps.

lo +
AMn) <5+ (1-4) + E—;—ﬂ"‘ = [og, n]" + [——g—iﬂ




A(n) and (7

ehavior of )

sion of this

n |Aa(n)

(o)
w
@ O O N O 0O O N 0N N O 00 @0 00N @O 0w o N 0N N N
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A(n)

log2 = 1s maximal for n = 71, then for each

In order to prove that

'al number n we must construct an addition chain C such that

— < AL71) From table 1 we see that A(71) = 9 and so the last

n log, T1°
L .c N 9 A(C) . e
.ality is possible if and only if n” > (T1) . This holds if and

A (C)
it 0> (71)° .Weimhmeatmﬂeof(w)9fm-1in152m

| 2

mog m m m
a2 bl @2 | w2 | = 1)?
1 1,61 61 17.15 11 183,08 16 | 1954,.91
2| 2,58 71 27.53 12 | 294,00 17 | 3139.22
31 4.1k 8 | Lk, 21 13 | L472.11 18 | 5041,00
L] 6,65 91 T71.00 14 | 758,12 19 | 809k, 91
5 110.68 10 [114.01 15 {1217.39 20 [12998.93 !

table 2.
r(n)

§5, The maximum of ————~—
log2 n

Theorem. For every natural number n # T1,

An) A1)
log2 n log2 T1

Proof. Throughout the proof we will say that A(n) <m is permitted
— . m

3 natural number n in case n > (71)9: e.g. from table 2 we see that

< 10 is permitted for n > 115. A(n)
Using tables 1 and 2, it is clear that if n < 71, then n > (71) 9 .

An) o _A(71)
log2 n ~ log, T

aence for all n > T1.

+ . . .

Suppose now that [iog2 ﬁ] =T, i.e., the binary representation of
nsists of seven digits. It follows that 64 <n < 128, For 72 <n < 111,
oplication of (3.2) yields A(n) < 9. From table 2 we see that A(n) <9




11

an) o Aa(71)
log2 n log2 T1

;72 < mn < 111, If 112 < n < 119, we apply (3.4) to obtain A(n) < 9

ermitted for all n > T1 so that for all n such

hence it is permitted. If 120 < n < 128, we apply (3.3) to find

) < 10. Table 2 implies that A(n) < 10 is permitted for all n > 11k
Aln) _ A(T1)
log2 n log2 T1

;hat we have proved the validity of for all n such
; 64 < n < 128,
If [ﬁ.og2 é]+ = 8, then 128 < n < 256. As in the preceding paragraph,

[ications of (3.2), (3.3), (3.4), and (3.5) yield A(n) < 11. This
sermitted for all n > 183 and so a special proof is necessary for
primes between 128 and 183. The construction of an addition chain
.ength less than 11 for each such prime is given in table 3 at the

of this section.

Ir [Tog, i]* = 9, then 256 < n < 512 and (3.4) and (3.5) imply
; for every such n, A(n) < 12, This is permitted for n > 294 and so
ltion chains which take less than 12 steps are given in table 3 for
primes between 256 and 29k,

If [log, n]” = 10 (i.e. 512 < n < 1024), then we can apply (3.4)

512 < n < 703 to find A(n) < 13. This is permitted for all n > LT3,
1 (3.4) and (3.5) we see that for 703 < n < 1024, A(n) < 14, This
>ermitted for n » T59. Hence special chains must be constructed for
primes between 703 and 758 and this is done in table 3.

If [ioge €]+ = 11 (i.e. 1024 < n < 2048), then (3.4) and (3.5)
srt that every such number has a chain which has length at most 15,

5 is permitted for n > 1217. Chains for the primes between 102k
1217 appear in table 3.

Ir [Tog, d]* = 12 (i.e. 2048 < n < 4096), then (3.4) and (3.5)
ly that A(n) < 16, which is permitted for all n > 1955.

If [Tog, n]* = 13 (i.e. 4096 < n < 8192), then (3.4) implies that for
sss than 5632 there is an addition chain of length at most 17. This
>ermitted for all n > 3139, If n > 5632, a chain can be constructed
length at most 18 and this is permitted for n > 5041,

1f [log, 1]" = 14 (i.e. if 8192 < n < 16384), then (3.4) and (3.5)

ly that A(n) < 19, which is permitted for n > 809k,
- L 16

Using the fact that (71)° < 23 and (71)° <2

11, it follows that for




- O N W =N = W w

- 0 W —

w w - —

12

every natural number m,
16+4m
211+3m > (71) 9 )

. . +
Thus, if m is a natural numer and [iogz é] = 12 + 3m, then the above

inequality and (3.4) and (3.5) imply that 1één)ﬁ < 12;71%1'
2 2

Mn) . _ALT1)
log2 n log2 T1

Similar

techniques can be used to prove in case Eiog2 @]+ =

13 + 3m or [j_og2 ﬁ]+ = 14 + 3m.
The proof will be completed by forming addition chains for those

primes which were mentioned above. It is not known if the chains in

this table are minimal, but they are sufficiently small for our pur-

poses.
lo| r|IT|III|IV |V | VI |VII |VIII| IX X XI XII| XIII| XIV
112 3| 4| 8] 16|32 ] 64] 1281 131
112 3| 5|10} 15|30 | 45| 90| 135} 137
112l 4| 5100 15|30} 45| 90| 135} 139
112 bfs5| 9118|361 72| 14k | 149
112{3]5|10{15]25 | 50| 75| 150 | 151
112l 4kl 5 91318 { 36| T2 14k | 157
1123} 5|10|l20|L40 | 80| 160} 163
112l 3/5]| 7|10]20 | 4o| 80| 160 | 167
1213 4| 8|11 |22 | k| 838|176 | 179
1123} 5(10| 15|30 | 45| 90| 180 | 181
| 112{L4] 8|16 32|64 [128 | 256 | 257
1121315 7| 8|16 | 32| 64| 128 | 256 | 263
17213161 71316 32| 64| 128 | 256 | 269
11213} 5110]15{30 | 60| 90| 180§ 270 | 271
1i2({h] 5 811617 § 34| 681136 212 | 277
1712135 7{14128 | 35] 70| 140 280 | 281
1121315 714128} 35| 70140} 280 283
12/ k45! 9118, 36 72! 1hh {288 293 |




13

. 1o V | VI |VII VIII | IX X XI XIII | XIV [p(C )
9H 1 1122 ] 4| 838|176 | 352 | TOk 12 -
914 1 4128 | 56( 1121119 | 238 | 357 719 13
T 1 1020 | bo| 80y 90 | 180 | 360 T27 13
30 1 1320 | 40| 80 90 | 180 | 360 733 13
ol 1 20123 | 46| 921184 | 368 | 736 12
341 18 {36 | 37| T4 111 | 185 | 370 43 13
11 20|30 | 50| 100 | 200 } 250 | 500 751 13
ST 1 18|27 | sk| 811135 | 189 | 378 757 13
3T 1 8|16 | 32| 641|128 | 256 | 512 1031 13
3301 1 16|32 | 64| 128 | 256 | 512 | 102k 12
391 1 15|16 | 32| 64| 128 | 256 | 512 1039 13
ol 1 16|32 | 64| 128 1131 | 262 | 524 1049 13
511 16|32 | 64| 128131 | 262 | 524 1051 13
514 1 11|22 | Lu| 88132 | 264 | 528 1061 13
534 1 11|22 | L4| 66132 | 264 | 528 1063 13
591 1 13122 | Lh| 66132 | 264 | 528 1069 13
yd ol 18] 27| s4{ 81 ] 135 | 270 1080 | 1087 |1k
MY 1 16| 32| 64| 128|256 | 512 | 102k 1091 13
I3 1 16{ 32 | 64| 128 1256 | 512 | 102k 1093 F13
oTh 1] 161 32| 64| 128 | 256 | 512 | 102k 1097 13
231 1 15( 17 | 34| 68136 | 272 | 5Lk 1103 13
29 1 17121 | 34| 68]136 | 212 | 5hk 1109 13
170 1 181 36 | 72| 108 | 180 | 360 | 540 1116 [ 1117 [k
231 1 14| 28] 35| 70| 1k0 | 280 | 560 1123 13
29} 1 9!/ 151} 30| 35| 70| 140 | 280 1120 | 1129 ({14
51f 1 171 21| k2| 63|126 | 189 | 378 1134 | 1151 |j1k
53| 1 32| 64 | 128| 256 | 512 |102k | 1152 o
631 1 111 16| 32| 641|128 | 256 | 512 1152 | 1163 H1h
T} 1 18] 361 72| T3{ 146 | 292 | 584 1171 13
81| 1 | 21 35| 49l 98 | 147 | 294 1176 11181 {11k
87l 1 18| 36§ 37| Tl 148 | 296 | 592 1187 13
93} 1 18] 36} 37| Th| 148 | 296 | 592 1193 13
o1 1 151 301 60| 75| 150 | 300 | 600 1201 13
13 1 1131 15} 30| 60|75 | 150] 300 1200 | 1213 (|14
170 1 | 15| 1T | 30| 60|75 150 | 300 1200 | 1217 {1k
table 3

s table completes the proof of the t




1k
Appendix

We only comment on the entries in table 1 for n<Tl,
1. We recall first that every addition chain is ordered by the
tion <.

2. An obvious inequality is
A(n) > min{(max{a(p), A(a)}|p+q = n} + 1,

ase equality occurs for some n, no comment is made about that entr;
n in the table.

3. If min{max{x(p), A(a)}|p+q = n} = A(po) = A(qo) and if p # q,

it is easy to see that we cannot have an addition chain for n in
) + 1 steps in which both p and g occur. In case this occurs, no
her remark will be made about it.

4, It is obvious that o™ can be constructed only along powers of

m steps. Moreover, 3.2m can be constructed only along powers of
d 3 times a power of 2 in m+2 steps. If n is the sum of M oor 3.2"
another number, no comment is necessary if n cannot be made in m+1
+3 steps.

5., In commenting on the remaining numbers, we denote the possible
e of a number in a chain with a Roman numeral. The remaining com-
s concern the elimination of a number m in making a chain for a
er n; i.e. m cannot te & a certain place in a minimal chain for n
: some other thing must occur.
= 11; If 8 is at III, then 3 cannot be at II.
= 19: If 16 is at IV, then 3 cannot be at II.

21: If 16 is at IV, then 5 cannot be at III.
= 29: If 20 is at V, then 9 cannot be at IV,

B B B B
1]

Since 17 cannot be made in 5 steps along 12 and
if 12 is at IV, then 17 cannot be at V.
n=31: If 24 is at V, then 7 is not in the chain.
If 15 is at V, then 16 is at least at VI.
n=L47: If 7 is at IV, then 40 cannot be at VI.
If 11 is at V, then 36 cannot be at VI.
If 13 is at V, then 34 cannot be at VI.




If
If
If
If

: If

If
If

: If
: I

If

s If

If

s If

If
Ir
If
If
Ir
If
It
If

14
15
17
20
13
17
20
40
Lo
2L
4o
oL
68
66

is
is
is
is
is
is
is
is
is
is
is
is
is

is

at
at
at
at
at
at

at V

at
at
at
at
at
at
at

65 is at
7 is at VI, then 64 cannot
11 is at V, then 60 cannot
15 is at V, then 56 cannot
17 is at V, then 54 cannot
19 is at VI, then 52 cannot be at VII.

15

, then 33 cannot

then 32 cannot

then 30 cannot

then 27 cannot

then 40 cannot

<:<2<4'°<:<2<2

, then 36 cannot
, then 33 cannot
VI, then 15 cannot
VI, then 17 cannot
V then 33 cannot b
VI, then 18 cannot
V, then 34 cannot
VII, then 8 must b
VII, then 16 must
VII, then 32 must

be at VI.
be even at VI.

be at VI.
be at VI.
be at VI.
be at VI.
be at VI.

be at V.

be at V.

e at VI,

be at V.
be at VI.

e at IIT and 3 cannot be at II,
be at IV and 5 cannot be at III.
be at V and 6 cannot be at III.
even be at VII.
be at VII.
be at VII,
be at VII.

20 is at V, then there is an even number at IV,

and we have to add an odd number in order to get 51.
Therefore 51 cannot be at VII.
is at VI, then 50 cannot
is at VI, then 49 cannot
is at VI, then 48 cannot
is at VI, then 21 and 23
46 cannot be at VII.

If
If
If
If

21
22
23
25

hence

If
be
If
be
If
be
If
be

26
at
27
at
28
at
30
at

is at VI, then 19 cannot
VITI.
is at VI, then 17 cannot
VII.

is at VI, then 15 cannot
VII.

is at VI, then 11 cannot
VII.

be at VII.

be at VII.

even be at VII.

cannot be at VI, and

be at VI, and hence 45 cannot
be at V, and hence 44 cannot

be at V, and hence 43 cannot

be at V, and hence 41 cannot
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If 39 is at VII, then 32 cannot be at V or VI.
If 33 is at VI, then 38 cannot be at VII.
If 34 is at VI, then 37 cannot be at VII.

rks together indicate that the entries in table

llman,

auer,

holz,

Problem 5152 Am. Math. Monthly, 70 (1963

On addition chains, Bull. Am. Math. Soc.
T36-T39.

Jahresbericht der Deutschen Math. Ver. k4

L1-k2,

Strauss, Addition chains of vectors, Am, Math. M

(196k4) 807-808.

correc

939)

937)
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Addendum

It might seem from the report that we have ignored some problems
.erning A(n) since we have only discussed upper bounds for A(n).
‘act, the actual computation of A(n) appeafs to be very difficult
even trying to find a non-trivial lower bound for A(n) seems to be
lifficult as trying to compute A(n). In any case, we wish to include
sw conjectures and a brief discussion of them.

We have seen from section 2 that
A(n) j_A(r) + A(s) for n = rs,
Alp) < a(p-1) + 1 for p is a prime.
lefine a new function 6 by

6(1) = 0,
6(n) = o(r) + 6(s) for n = rs,
6(p)

o(p-1) + 1 for p is a prime.

7as conjectured that a study of this function 6 would help in the

jy of A. We will show that the behavior of 6 is different from the

8(n) = A(n) > 0.

avior of A by showlng lim sup log2 =

n->oo
Proof. Let n = 23. We know that A(23) = 6 and it is easily seen
t (23) = T. Moreover, if n and k are natural numbers, then 6(n) > A(n),

k) < ka(n), and 6(n™) = k6(n). Therefore,

k k
lim sup 6(n) - A(n) . lim sup 8(237) = a(23™)

neo logy n =y g log, 23k

ko(23) - ka(23) _ 6(23) = a(23)

1
k log2 23 log2 23 —5 > 0.

> lim sup
k »o

follows that 6 does not help.

From table 1, one might conjecture that
A(2n+1) > A(2n) for all n.

ever, one can show that A(255) < 10 and (254) = 11,
fact, A(255) < 10 follows from (1) and A(254) = 11 can be shown by
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shnique similar to that which appeared in the appendix.

Also from table 1, it appears that
A(2n) = a(n) + 1 for all n.

:d, if for example n is of the form q.2m forq=1, 3, 5, T, 9, 11,
(4) holds. Nevertheless, for the number 2n whose binary represen-
m 1is

1010101010101010101010101010110,

isve constructed an addition chain which takes 35 steps, but we have
succeeded in constructing a chain for n with length less than 35.
Another conjecture was that for each n there exists a minimal

A Nay eees o such that one can always use nj to construct nj+1;
%+1=n.+njmr%+1=nj+nys;<LKMaeemm;wmmw-
ples to this conjecture, but the numbers involved are rather large.




