A STOCHASTIC MODEL OF LANGUAGE CHANGE THROUGH
SOCIAL STRUCTURE AND PREDICTION-DRIVEN INSTABILITY

1. INTRODUCTION

Language change is paradoxical: Children acquire their native language accurately, yet
over time, the language can change. Some changes may be attributed to an external event,
such as political upheaval, but not every instance of language change seems to have an ex-
ternal cause. A possible resolution to this paradox comes from the facts that (1) spoken
language has inherent variation and (2) children may take social structure into account, giv-
ing more or less weight to speech patterns correlated with age and social status. Individuals
vary in how they use their native language, and chance local fluctuations in such variation
might be enough to trigger a language change.

As we will see in Section 3, a mean-field model in which children learn from the entire
population equally does not lead to spontaneous change, even in the presence of random
variation. However, in Section 4 we will discuss a simple modification of the model, in
which children can detect age-correlated patterns in variation. When subject to random
fluctuations, this model does exhibit spontaneous language change: Children can detect
accidental correlations between age and speech, predict that the population is about to
undergo a language change, and accelerate the change, a process I will call prediction-driven
instability.

2. THE EXAMPLE OF QUESTION SYNTAX IN ENGLISH

Language has both discrete and continuous characteristics. On the discrete side, most
sentences are clearly either grammatical or ungrammatical. Most linguistic formalisms, such
as government-binding, minimalism, and optimality theory, are designed to describe such
idealized grammars. However, true speech has significant variability, and individuals may
bend the rules of the underlying idealized grammar in a variety of ways. A spoken language
may be described as a collection of similar idealized grammars that speakers draw from at
variable rates depending on context.

Let us suppose, for the sake of simplicity, that individuals have the choice between two
similar idealized grammars, G; and G5, when forming sentences, and that each individual has
particular fixed usage rates, that is he uses G5 in forming a fraction z of spoken sentences,
and (G in forming the rest. As a specific example, consider the syntax of questions in
Late Middle and Early Modern English. We take G; to be idealized English grammar with
verb-raising syntax, and G5 to be a similar grammar but with do-support:

(1) Know you what time it is? (verb-raising, G)
(2) Do you know what time it is? (do-support, G5)

Manuscripts exist that use both at a variety of rates [1]. The formulation proposed here can

represent such variation.
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However, language acquisition is now more complicated: Children must learn multiple
idealized grammars, plus the usage rates. Since verb-raising and do-support both exhibit
stability over certain time scale, we should seek a model of learning within a population that
has two stable states, one representing populations that prefer G; and a second representing
populations that prefer G5. To represent a language change from G to G5, the model must
be able to switch from one stable state to the other over large time scales, while remaining
steady over short time scales.

3. A MEAN FIELD MODEL

Initially, we might consider a large unstructured population, in which children learn from
all individuals equally and therefore hear essentially the mean usage rate. The simplest
learning model with the desired bi-stability is a differential equation for the time-dependent
mean usage rate m(t) in the population,

(3) = q(m) —m
where g(m) is the learning function. Specifically, ¢(m) is the mean usage rate of children
learning from a population that uses G5 with a mean rate m. The g(m) term represents
birth and learning, and the —m term represents death. The term mean field refers to the
fact that the population’s influence on an individual is represented by a single aggregate
property, in this case, the mean usage rate of Go. This model is deterministic and has two
stable equilibrium states. However, there is no way for it to spontaneously switch grammars.
To add the possibility of a language change, we formulate a Markov chain model for a
finite population, thereby adding random fluctuations. See Figure 1. We assume that the
population consists of N adults, each of which is one of K + 1 types, numbered 0 to K,
where type 7 means that the individual uses G at a rate j/K. The state of the chain at
time ¢ is a vector Y (¢) whose j-th element Y;(¢) is the number of individuals of type j in the
population. The mean usage rate at time ¢ is therefore

(4) M(t) = i (%) (%t))

J=0

The transition process from Y (t) to Y (¢t + 1) is as follows. With some probability, one
individual is selected and removed, to simulate death. A replacement individual is created
and its type is selected at random based on a discrete distribution vector Q(M(t)). That is,
(), (m) is the probability that a child learning from a population with mean usage rate m is
of type j, and therefore uses Go at a rate j/K when she grows up. This Markov chain model
maintains the mean field assumption because the population influences language acquisition
only through the mean usage rate of Gs.

If the population is large, then the behavior of M(t) can be approximated by the solu-
tion m(t) to the deterministic differential equation (3). If @ is defined properly, then the
resulting Markov chain will be ergodic, meaning that it must visit every possible state even-
tually. Thus, the model spends most of its time hovering near an equilibrium dominated by
one grammar or the other, but it must eventually exhibit spontaneous language change by
switching to the other equilibrium.

However, computer experiments show that under this model, a population takes an enor-
mous amount of time to switch dominant grammars. See Figure 1 for a graph of the mean
usage rate of G5 as a function of time for a typical run of this Markov chain. This model
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is therefore unsuitable for simulating language change on historical time scales. A further
undesirable property is that if a population does manage to shift to an intermediate state,
it is equally likely to return to the original grammar as to complete the shift to the other
grammar. Historical studies [1, 3] show that language changes typically run to completion
and do not reverse themselves, so again this model is unsuitable.

4. AN AGE-STRUCTURED MODEL

To remedy the weaknesses of these mean-field models, we introduce social structure into
the population. According to sociolinguistics, ongoing language change is reflected in so-
cial variation, so there is reason to believe children are aware of socially correlated speech
variation and use it during acquisition [2].

There are many ways to formulate an age-structured population, and not all formulations
apply to all societies. For simplicity, we assume that there are two age groups, roughly
representing parents and grandparents, and that children can detect systematic differences
in their speech. We also assume that there are social forces leading children to avoid sounding
out-dated.

Let us adapt the Markov chain from Section 3 to include age structure. See Figure 2. To
represent the population at time ¢, define V;(¢) to be the number of parents of type j, and
define W;(t) to be the number of grandparents of type j. The total number of parents is Ny
and the total number of grandparents is Ny,. We also assume that apart from age, children
make no distinction among individuals. Thus, they learn essentially from the mean usage
rates of the two generations,

B o= () (M) -3 (2) ()

j=0 7=0

Here we have modified the mean-field assumption by representing the influence of the pop-
ulation on a child with two aggregate quantities. The modified transition process from
(V(t),W(t)) to (V(t +1),IW(t + 1)) is as follows. With some probability, a grandpar-
ent is removed to simulate death, and a replacement individual is selected from the par-
ents to simulate aging. A new parent is created based on the discrete probability vector
Q2(My (t), My (t)). Here, Q2(v,w) represents the acquisition process, together with predic-
tion: Children hear that the younger generation uses G5 at a rate v, and the older generation
uses a rate w. They predict that their generation should use a rate determined by any trend
and learn based on that predicted target value. If the prediction is given by 7(v,w), then
Q2(U7 w) = Q(T(U7 w))

This model turns out to exhibit the desired properties. The population can spontaneously
change from one language to the other and back within a reasonable amount of time, and
once initiated the change runs to completion without turning back. See Figure 2 for a graph
of the mean usage rate of G5 among the younger age group as a function of time for a typical
run of this Markov chain.

To understand why spontaneous change happens in this model, we approximate the
Markov chain by a system of deterministic differential equations governing the mean us-
age rates v and w of the two generations,

(6)

0 =q(r(v,w)) —v
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F1GURE 1. The basic Markov chain. Left: Diagram of the transition function.
Right: A plot of the mean usage rate M(t) of G5 from a sample path.
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where ¢(r) is the mean of Q(r). The phase space of this dynamical system is a square, and
it happens to have two stable equilibria representing populations where both generations are
dominated by one grammar or the other. Each such equilibrium has a basin of attraction.
Populations in the basin flow toward the equilibrium and settle there. The boundary between
the two basins is called the separatriz, and in this case, the separatrix passes very close to
the stable equilibria. See Figure 3. The Markov chain model will hover near one equilibrium
or the other, but since it incorporates random fluctuations, it is possible for the population
state to stray across the separatrix, where it will be blown toward the other equilibrium.

5. DISCUSSION AND CONCLUSION

We set out to build a mathematical model that can represent language learning in a
population. The model was required to have two semi-stable states, representing populations
dominated by one idealized grammar or another. To represent language change on historical
time scales, the model was required to hover near one stable state on short time scales,
but to spontaneously switch to the other after a reasonable amount of time. Language is
represented as a mixture of the idealized grammars to reflect the variety seen in manuscripts
and social data.

The Markov chain mean-field model of language learning in a population turns out not
to have all of the desired properties. Although it can exhibit the required bi-stability, the
stable states are too stable, and the simulated population cannot switch from one to the
other in a reasonable amount of time. A further shortcoming is the fact that once a change
begins, it can reverse itself.

A more complex Markov chain model that includes age structure does have all the desired
properties. The population can switch spontaneously from one language to the other. In-
tuitively, the mechanism of these spontaneous changes is that every so often, children pick
up on an accidental correlation between age and speech. The prediction step in the acquisi-
tion process amplifies the correlation, and moves the population away from equilibrium. We
therefore coin the term prediction-driven instability for this effect.

This research suggests that some social structure is necessary in a model so that it may
accurately represent the qualitative features of spontaneous language change. A further
project would be to fit the parameters of the age-structured Markov chain to manuscript
data and obtain quantitative results as well.
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FI1GURE 2. The age-structured Markov chain. Left: Diagram of the transition
function. Right: A plot of the mean usage rate My (t) of G5 in the younger
generation from a sample path.

/.// :// /j?fx\lDominated by G2

f

Dominated by G1

FIGURE 3. Phase portrait for (6). The two dots represent stable equilibria,
and the dashed curve is the separatrix between their basins of attraction. The
arrows indicate the direction of the vector field, as given by (6). The picture on
the right illustrates how a sample path of the Markov chain can hover around
one stable state, then eventually cross the separatrix and be blown toward the
other.
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