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Abstract

A classic theorem of Ellis (1970) asserts that there are probabilistic languages (p-languages) that are not generated by any
probabilistic finite state grammar (PFSG) even though their support (the set of strings with nonzero probability) is regular.
Ellis’ proof is highly algebraic, and gives no indication why such p-languages exist. Suppes (1970) argued that Ellis’ con-
struction is an artefact of using irrational probability values: since the probabilities that matter all go back to frequency counts
i.e. rational numbers, he conjectured that for every p-language L with type ¢ support there must be a probabilistic grammar
(p-grammar) of the same type that generates a language L’ that is statistically indistinguishable from L. Here we prove a
strengthened version of the Suppes conjecture: for any p-language L with any type ¢ < 3 support and for arbitrary € > 0
there is a probabilistic finite state language (PFSL) L’ that approximates L within e. While the result seemingly justifies
Suppes’ point of view, we argue that in the final analysis it is Ellis who had this right. We provide an asymptotic character-
ization of PFSLs over a one-letter alphabet in terms of exponentially decaying probabilities: this characterization makes it
clear that only a small subclass of p-languages with regular support behaves the way we expect from languages generated by
PFSGs and further, that the matter is quite independent of whether the probability values are rational. Having a more nuanced
understanding of the mathematical relation between p-grammars and p-languages puts us in a better position to address the
practical problems of fitting PFSA to real-world data, and here we take the first steps in this direction by discussing why
Hidden Markov Models, which offer only a slight reformulation of PFSA, escape the exponential decay problem and offer a
way out of the poverty of stimulus issue first noted by Miller and Chomsky (1963).

1 Background

A type ¢ probabilistic grammar (or p-grammar for short) is standardly defined (see e.g. Levelt 1974) as a type ¢ grammar
where all productions have some nonzero probability — if the sum of probabilities assigned to productions sharing the same
left hand side is 1 we speak of normalized p-grammars. The probability of a derivation is the product of the probabilities of
the rules that appeared in the derivation (with multiplicity), and the probability of a string is the sum of the probabilities of
its derivations. As is well known, the fact that a p-grammar is normalized is insufficient to guarantee that the probabilities it
assigns will sum to 1. For example, the CFG that generates all binary branching structures, S — SS|a, when both rules are
applied with p = 0.5, will yield weights that sum to 0.5.

A probabilistic language (or p-language) is a language L and some assignment p : L — R™ such that the sum of the
assigned values is 1. In the finite state domain the normalization restriction is sufficient: normalized probabilistic finite state
automata (PFSA) generate strings with probabilities that sum to 1. Since we could always extend p to assign O to all strings
not in L, it is generally sufficient to speak of functions f : T — R for which " . f(«) is convergent and identify the
p-language L as the support of f i.e. the set of strings « for which f(«) > 0. Given that a p-grammar is simply a grammar
plus an assignment of probabilities, and a p-language is simply a language plus an assignment of probabilities, it is reasonable
to have the following

Conjecture 1 Type ¢ p-grammars correspond to type ¢ p-languages.

In one direction, the proof is relatively easy: ignoring the production probabilities a type ¢ p-grammar G will, by definition,
yield a type ¢ language L, and it is clear that all and only strings in L will have positive derivation probability. If we assign
the start symbol S € T the value 1, and make an appeal to the fact that the p-grammar is normalized, it is easy to see that
the total probability mass assigned to sentential forms reachable from .S in n steps is always 1, partitioned so that terminal
strings so reachable have ¢ and those with nonterminals still present have 1 — ¢. By a limit argument it follows that the total
probability mass assigned to members of L will be < 1, and if it is strictly less than 1 we can always add in some extra string
to absorb the difference.



In the other direction, however, the going is not so smooth: even over a one-letter alphabet, and already for type 3
languages, we can find a p-language L3 for which no p-grammar (or p-acceptor) will ever work. The first such example was
constructed by Ellis (1970), who focused on the type 3 case: here we present a version of his proof that extends his result to
type 2 grammars (and can be pushed further, but this would take us away from the main line of argumentation). Note that over
a one-letter alphabet 7' = {a}, by assigning each string a™ a weight f(a,) = p, > 0 such that > p; < 1, and possibly
padding out this sum by assigning pg = 1 — Y.~ p; to the empty string, we can guarantee that the support language, the set
of all strings with or without the empty string, is regular.

Theorem 1 PCFGs over a one-letter alphabet do not generate all one-letter p-languages with regular support.

Proof Define the weights as a set with infinite transcendence degree over Q. (That such sets exist follows from the fundamen-
tal theorem of algebra and from the existence of irreducible polynomials of arbitrary degree. If ¢1, ¢, t3, ... is such a set, so
will be s1, s2, 83, . .. where s; = [t;]/(1 + |t;])2¢, and the latter will also sum to < 1). Now consider the generating functions
which are defined by taking the nonterminals as unknowns and the terminal a as a variable in the manner of Chomsky and
Schiitzenberger (1963), except using the probabilities assigned to the rules as weights: for example the grammar of binary
trees used above yields the functional equation S = 0.55% + 0.5a. In the general case, solving the set of equations for the
generating function associated to the start symbol S is very hard, but over a one-letter alphabet the only variable introduced
by CF rules will of necessity commute with all probabilistically weighted polynomials in the same variable. Since all defining
equations are polynomial, the output probabilities are algebraically dependent on the rule probability parameters. Since a CF
rule system with n rules can generate at most n algebraically independent values, it follows that s1, s2, 53, ..., 5,41 can’t all
be obtained from the CFG in question. O

Discussion The original proof by Ellis constructs an infinite set of weights as 1/,/p;, where p; is the smallest prime larger
than 4°, and proceeds by counting the degree of the field extensions. This works well for the finite state case, where the
functional equations are linear and the solutions are rationally dependent on the rule probabilities, but for CF and more
complex grammars the equations are polynomial and only algebraic dependence can be assumed.

Thus, there are more things in probabilistic heaven and earth than are dreamt of in your grammatical philosophy. In the
regular domain already, there are p-languages outside the reach of regular or even context free p-grammars. The situation is
made particularly nasty by demonstrating the phenomenon over a one letter alphabet: clearly if we find grammatically un-
reachable probability distributions over this alphabet we can create examples over any size alphabet whatsoever. In response,
Suppes (1970) argued that

From the empirically oriented standpoint (...) Ellis’ example, while perfectly correct mathematically, is
conceptually unsatisfactory, because any finite sample of L drawn according to the density p could be described
also by a density taking only rational values. Put another way, algebraic examples of Ellis’ sort do not settle the
representation problem when it is given a clearly statistical formulation. Here is one such formulation. (...)

Let L be a language of type © with probability density p. Does there always exist a probabilistic grammar G
(of type 1) that generates a density p' on L such that for every sample s of L of size less than N and with density
ps the null hypothesis that s is drawn from (L, pl,) would not be rejected?

I have deliberately imposed a limit /V on the size of the sample in order directly to block asymptotic arguments
that yield negative results.

Suppes conjectured that the problem, stated thus, has an affirmative solution, and Levelt (1974:44) actually lists this as a
theorem (though the surrounding text makes its conjectural status quite clear):

Conjecture 2 p-languages with type 7 support are statistically indistinguishable from languages generated by type ¢ p-
grammars.

In Section 2 we will investigate whether this Suppes/Levelt conjecture is tenable by explicitly characterizing the languages
that can be generated by type 3 p-grammars or, what is the same, by PFSA, over a one letter alphabet. Our main result
is Theorem 2, which asserts that PFSA, (possibly also endowed with silent A-moves that change state but emit no symbol)
generate all and only p-languages with probabilities that show exponential decay. Next we show that Conjecture 2 can be
strengthened (p-languages with type 7 support are statistically indistinguishable from languages generated by PFSA) but only
in a trivial sense: for more ambitious language modeling efforts Theorem 2 still presents an insurmountable barrier. This is
somewhat surprising in light of the fact that finite state language modeling, in the form of Hidden Markov Models (HMMs)
remains, to this day, the dominant algorithm in computational linguistics — we investigate the reasons for the disconnect
between theory and practice in the concluding Section 3.



2 PFSA over a one letter alphabet

To define a probabilistic finite state automaton (PFSA) over a one-letter alphabet {a} requires a set of states & = {s1,..., S},
for each state 7 a set of values ¢; ; that characterizes the probabilities of moving from state s; to s; upon consuming (emitting)
the letter a, and a set of values [; ; that characterizes the probabilities of moving from state s; to s; by A-move i.e. without
consuming (emitting) a. In what follows we will treat PFSA as generating devices — the results presented here remain true for
acceptors as well. To simplify the notation, we add a start state sy which only has A-transitions to s; for ¢ > 0, and replace
all blocked transitions by transitions leading to a sink state s, that has all (emitting and non-emitting) transitions looping
back to it and has weight 0 in the vector w that encodes the mixture of accepting states. This way, we can assume that in
every state s; and at every time tick the automaton A will, with probability 1, move on some state s; and emit (or not emit) a
symbol during transition with probability ¢, ; (resp. I; ;) collected in the matrix T (resp. L). We have the following

Theorem 2 If p : {a}* — R™T is a PFSA p-language it is ultimately periodic in the sense that there exists a fixed k and [ such
that for all 0 < 4 < k either all weights p(a**"*) are zero once i + rk > [ or none of the weights p(a’*"*) are zero for any r
such that i + rk > [ and all weight ratios p(a*t"***) /p(a’*"*) tend to a fixed value \¥ < 1.

Proof We only sketch the proof here — for details see Kornai (2007) Theorem 5.8. The probability P(a*|A) of A emitting a* is
the sum of the probabilities over all paths that emit a k times. We add a zero symbol z and consider the automaton A’ that emits
z wherever A made a \-transition: we collect the probabilities in a formal power series p(a, z) with non-commuting variables
a and z — in matrix notation, p(a, z) = Y, (aT + zL)k. Given a fixed start state sy and some weighted combination w of
accepting states, the probability of a string z1, . .., z,, € {a, 2}" being generated by A’ is obtained as the inner product of the
zeroth row of (T + L)™ with the acceptance vector w. The spectral radius of L is less than 1 (since states with no emission
ever can be eliminated) and the matrix series [ + L + L? + L3 + ... converges to (I — L)~!. This gives

P(a*|A) =eL((I - L) 'T)*(I - L) 'w (1)

Since the only parts of (1) dependent on k are the k—th powers of a fixed matrix (I — L)™', the growth of P(a*|A) is
expressible as a rational combination of k-th powers of constants A1, Ag, ..., A, (the eigenvalues of (I — L)_lT arranged
in decreasing order) with the fixed probabilities ¢; ; and I; ;. Therefore, the probabilities P(a"|A) and P(a™|A) will be
both dominated by a rational function of A} (resp AT*) (recall that by the Perron-Frobenius theorem A; will be real, positive,
unique, strictly greater in absolute value than all other \;, and strictly less than 1 for each connected component) so their
ratio will tend to AT~ ™. (Because of multiple transitive components connected by one-way A-transitions linear multiplicative
terms can accompany the exponential main term, but these tend to 1 as we take the limit of the ratio.) O

Example 1 Letpy =271, p1 =po =p3 =ps = 2’2/22171)5 =...=py = 2’3/222 and in general divide the probability
mass 2~ among the next 22" strings. By Theorem 2 this distribution will differ from any distribution that is obtained from
PFSA by inspecting frequencies is finite samples, even though all components are rational, since in PFSA log probabilities
can change at most linearly, rather than exponentially as the example demands.

Theorem 2 provides, and Example 1 exploits, exactly the kind of asymptotic characterization that Suppes wanted to avoid
by limiting attention to samples of a fixed size < N. In hindsight, it is easy to see where the strict empiricism embodied
in Conjecture 2 misses the mark: with the availability of corpora (samples) with N > 10'° (bigger than the entire corpus
available to language learners in the first twenty years of their lives) it is evident that our primary goal is not to characterize
the underlying distribution to 10 significant digits, but rather to characterize the tail, where probabilities of 10~° or many
orders of magnitude below are quite common. Since perfectly ordinary words often have frequencies below 107° or even
1079, rather short sentences containing these, e.g. In our battalions, dandruffy uniforms will never be tolerated will have
probability well below 10~4°. There is no surprise that perfectly grammatical sentences can have extremely low probability
(see Pereira 2000) — the primary goal is to make reasonable predictions about unattested events without memorizing the
details of the corpus. In an automaton with 10° states (quite feasible with today’s technology) and 10? letters (the size of
commonly used tagsets), we would have over 10'# free parameters, a huge number that could only lead to overfitting, were
we to follow Suppes’ dictum and restrict ourselves to precisely matching samples of size 1012. Also, the high-level poverty of
stimulus argument made in Miller and Chomsky (1963), that a childhood lasting 108 seconds is unlikely to be long enough for
gathering sufficient data and computing 10'* parameters, renders the results of such brute force model fitting quite suspicious,
a matter we shall return to in Section 3. But as long as we can be profligate with parameters, Conjecture 2 trivially holds, and
not just for one-letter alphabets:

Theorem 3 For any p-language of any type ¢ < 3 we can fit a PFSA to the first NV terms of a distribution to any required
precision.



Proof In fact, we can do more: given any p-language f : 7% — Ry and any positive € we can find a PFSA with rational
probabilities such that the p-language g : T* — R generated by it satisfies >, 7. | f() — g(a)| < € i.e. the total absolute
error of the approximation is bound by €. First, we arrange the strings of T lexicographically, and select an N such that
the total probability mass assigned to strings {s;|¢ > N} is less than €/2 — this is always possible since f converges. Next,
we approximate f(sg) by a rational within €/4, this will be g(so), and similarly we approximate f(s;) within €/8, f(s2)
within €/16 and so on, for a total error < e. Finally, we construct the PFSA to generate the first N approximate g values (the
remaining values of f will be approximated by 0) by creating a separate chain automaton for each string s; and using their
probability g(s;), a rational number, as the transition weight for a A-move from the initial state into the starting point of the
t-th automaton. For a string ajas . . . aj the chain automaton moves from state 7 to state ¢ + 1 on emitting a; with probability
1, so if only the last state is accepting it generates ajas . . . ay with probability 1. This, multiplied with the cost of the silent
initial move, gives exactly the p-language ¢.00
Discussion Since in a corpus of size N the smallest probability distinction that can be empirically made is 1/N, by picking
€ = 1/2N in Theorem 3 we can construct a PFSA with all rational coefficients whose language will be statistically indistin-
guishable from the original p-language. Conjecture 1 express the belief that the Chomsky hierarchy will generalize smoothly
from standard (unweighted) grammars and languages to the probabilistic (weighted) case. This was not an unreasonable
expectation, especially in the light of what was known at the time about the Type 0 case. For Turing machines, an important
reduction was presented in De Leeuw et al (1956), showing that a TM with access to a random number generator that pro-
duces 1s and Os with some fixed probability p is equivalent to a standard TM without random components as long as p itself
is computable — in other words, adding random operations to the deterministic Turing operations adds nothing to generative
capacity. In light of this, Ellis’ (1970) result came as something of a nasty surprise, and it was quite reasonable for Suppes to
look for a fallback position such as Conjecture 2.

Any string of Os and 1s can be uniquely mapped on a language over a one-letter alphabet: we set a; € L if the i-th digit
was 1 and a; € L if it was 0. If the string was generated by a random number generator with a fixed probability p for 1s,

the density of the associated language, defined as lim,, o M (see Eilenberg 1974, Kornai 1998) will be p. It is
easy to program a Turing machine that outputs a string (or language) with no density, but it is impossible to program a TM
that outputs (or accepts) a language with non-computable density. In other words, the key issue is not the randomness of the
machinery, but rather the complexity of the real numbers that express the probabilities, and in this sense Suppes is entirely
right in excluding the pathological cases. This is a step in the right direction, but as Example 1 shows, it is not enough: the key
issue is that probabilistic grammars have a structure on their own right, and this structure is largely unrelated to the numerical
values the probabilities may take.

At the bottom of the complexity hierarchy we find the rationals: every rational number between zero and 1 (and only
these) can be the density of an unweighted language over a one-letter alphabet generated/accepted by some FSA. Adding
weights p1, ..., pr to a FS grammar or automaton accomplishes very little, since we will of necessity remain in the rational
closure of these. However, real numbers are powerful carriers of information: all algorithms can be encoded in a single real
number. When we add just one non-computable p to the weight structure, we have already stepped out of the TM domain as
de Leeuw et al (1956) demonstrated.

At the next level of the hierarchy we find the algebraic numbers: these correspond to polynomials and thus, via generating
functions, to CFGs and CFLs. While the relationship is not very visible over the one-letter alphabet, because CFLs have
letter-equivalent FSLs, and one needs to consider the structure to see the difference, algebraic numbers (and only these)
arise naturally at every stage of the analysis of unweighted CFGs — for the weighted case the same caveat about introducing
arbitrary reals applies.

As for Suppes’ objection to Ellis’ construction, all algebraic numbers, and some transcendental ones, are computable. By
Liouville’s Theorem, algebraic numbers of degree n can only be approximated by rationals p/q to order ¢~™ — if a number
can be approximated at a faster rate it must be transcendental. (Of course, it may still be transcendental even if it has no faster
approximation.) Arguments based on transcendence can be thought of as convenient shorthand for arguments based on order
of growth. The analogy is loose, and we shall not endeavor to make it more precise here, but Theorem 2 is a clear instance of
replacing the heavy machinery of transcendence by a more pedestrian reckoning of growth (in our case, exponential decay).

3 Conclusions

Having acquired a more nuanced understanding of the role that probabilities play in p-grammars, let us finally turn to some
of the computational implications and consider Hidden Markov Models (HMMs) which, in a theoretical sense, are just prob-
abilistic finite state transducers between strings of hidden states and strings of observables. Given that HMMs in generation



mode are formally equivalent to PFSA, and the latter by Theorem 2 show exponential probability decay as the generated
strings get longer, the expectation is to find the same probability decay in HMMs. Yet in practical applications, this is not
quite what we find, and it is worth looking at the root of this phenomenon. Let us consider some rough estimates of the
number of parameters in an n-gram POS tagger HMM. In the unigram case, the hidden states are simply the POS tags, so
there are on the order of 10% to consider, and there are 10* transition parameters. In the general case there are 102" states
and 1022 nonzero transition parameters: Miller and Chomsky (1963) call attention to unbounded dependencies such as The
people who called and wanted to rent your house when you go away next year are from California and suggest n = 15.

In a unigram model, there are only a few times more emission probabilities than words in its dictionary, since each word
can have only a few POS tags: 10° is a reasonable estimate. In a bigram model there will be about 10% and in a trigram
model 10'° emission values, and it is common practice to tie these together (i.e. to make emissions dependent only on the
last member of a POS n-gram, as in TnT, see Brants 2000) in order to avoid overfitting. The typical nonzero transition
probability (zeros are actually replaced by small numbers obtained from smoothing in practical applications) is in the range
10~! — 104, while the typical emission probability can vary greatly, as much as 8-9 orders of magnitude, within a single
(n-gram) state. Thus the probability differences between sentences are largely driven by the emissions, while the exponential
decay comes from the transitions alone. In other words, in the process of fitting a model to an observed distribution, the
straight PFSA model will of necessity have a large number of very low transition parameters, causing both overfitting and a
very fast exponential decay, while a straight HMM (which is a PFSA but with parameters tied in a manner more appropriate
to the task) will have higher transition probabilities (slower exponential decay) and much less of an overfitting problem.

In general, Theorems 2 and 3 don’t stand in the way of training statistically reasonable language models, they just signal
the difficulty, overfitting, that the naive empirical approach runs into. The answer is not to abandon fitting regular models,
or to abandon the probabilistic framework entirely as suggested e.g. in Chomsky (1957), but to proceed with the appropriate
parameter tying strategies.
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