
A FORMAL FOUNDATION FOR A AND A-BAR

MOVEMENT

It is natural to think of sentences in natural language as exhibiting long-
distance dependencies. A surprising fact, established over decades of linguis-
tic investigation, is that such dependencies are naturally treated as falling
into one of two groups. ‘A’ dependencies (typified by raising, passivization,
etc) are those which allow for re-binding, which disallow reconstruction, and
which do not license parasitic gaps. ‘A-bar’ dependencies (typified by wh-
movement, relativization, etc) disallow re-binding, allow reconstruction, and
do license parasitic gaps. Furthermore, when an expression enters in to both
A and A-bar dependencies, all of its A dependencies must ‘precede’ its A-bar
dependencies [2]. This relational property of dependencies is known as the
ban on improper movement. In the government and binding (GB) tradition,
all of these properties of these two dependency types must be independently
stipulated—none follow from any of the others. Here I will present a simple
and constrained formal system in the GB tradition with two kinds of long
distance dependency forming operations, the interaction of which gives rise
to the major syntactic property of A and A-bar movement: the ban on im-
proper movement. Additionally, the resulting system seems to provide the
right kinds of structures over which to naturally enforce the other charac-
teristic semantic properties (reconstruction and re-binding) of each kind of
movement. The difference between A and A-bar dependencies as regards
the licensing of parasitic gaps cannot be made to follow from the formal
architecture of the system, as neither do parasitic gaps. However, natural
grammars can be written for fragments of English in which the difference in
licensing of parasitic gaps obtains without stipulation.

1. Minimalist grammars

Minimalist grammars [6] are a midly context-sensitive grammar formalism
embodying some of the core ideas of Chomsky’s minimalist program. Ex-
pressions are finite sequences of pairs consisting of exponents (strings) and
finite sequences of features, and there is a single binary operation (‘merge’)
and a single unary operation (‘move’). Both operations are conditioned
solely on the basis of the features in their arguments, and both simplify
their arguments in the sense that the number of features contained in the
result is strictly less than the sum of the number of features contained in
the arguments. Formally, a minimalist grammar over an alphabet Σ is given
by a tuple G = 〈lic, sel, Lex〉, where lic and sel are finite sets of licensing
and selection feature types, and Lex ⊆fin Σ × F

∗ is a finite set of atomic

1

2 A FORMAL FOUNDATION FOR A AND A-BAR MOVEMENT

expressions, where F := {+f, -f, =s, s : f ∈ lic, s ∈ sel}. An expression is a
finite sequence φ0, . . . , φn, where φi ∈ Σ∗ × F

∗, 0 ≤ i ≤ n.
The definition of the merge operation is broken into two cases depending

upon the shape of its second argument:

(σ, =sδ), φ1, . . . , φn (τ, s), ψ1, . . . , ψk

(στ, δ), φ1, . . . , φn, ψ1, . . . , ψk

mergeA

(σ, =sδ), φ1, . . . , φn (τ, sγ), ψ1, . . . , ψk

(σ, δ), φ1, . . . , φn, (τ, γ), ψ1, . . . , ψk

mergeB

Move is similarly partitioned into cases:

(σ, +fδ), φ1, . . . , φi−1, (τ, -f), φi+1, . . . , φn

(τσ, δ), φ1, . . . , φi−1, φi+1, . . . , φn

moveA

(σ, +fδ), φ1, . . . , φi−1, (τ, -fγ), φi+1, . . . , φn

(σ, δ), φ1, . . . , φi−1, (τ, γ), φi+1, . . . , φn

moveB

A derivation of an expression e is an at most binary branching tree whose
nodes are labelled with expressions, and where the following conditions ob-
tain:

(1) leaves are labelled with lexical items
(2) for every unary branching node f with unique child e, 〈e, f〉 ∈ move

(3) for every binary branching node f with left child g and right child
e, 〈g, e, f〉 ∈ merge

A well-formed derivation is one in which every node is labelled with an
expression φ0, . . . , φn satisfying

δj ≈0 δi iff j = i(SMC)

where φk = (σk, δk), and aα ≈0 bβ iff a = b. Note that, as |lic| is finite,
the SMC bounds the length of any expression occurring in a well-formed
derivation at |lic| + 1.

2. Hypothetical reasoning

Features in minimalist expressions can be thought of as resources [5], and
there is an intuitive relation between selection features (=s) and implica-
tional types in resource logics (A −◦ B). (This intuition has been made
explicit in the translations of Vermaat [7] and Amblard [1].) The typical
long distance dependency dealt with in linguistic theory involves an overt
expression dependent upon another, structurally lower, one.1 Although we
have previously been mediating such dependencies by introducing the de-
pendent expression in its lowest such position, and then checking off its
features as other positions it is dependent upon become available, another,
natural, approach would involve introducing the dependent expression only
in its highest, surface, position, and checking its entered-into dependencies

1The desired notion of ‘lowness’, c-command in the derivation tree, is more difficult to
state over a derived tree representation. See Kracht [4].

A FORMAL FOUNDATION FOR A AND A-BAR MOVEMENT 3

en masse. From our bottom-up perspective, we achieve this by an operation
which temporarily eliminates features from an expression, thereby ‘freeing
up’ other features, which were previously hidden due to the list-like nature
of the feature data structure. Temporarily eliminated features are ‘stored’ in
an |lic|-ary array ~a (a function from lic to F

∗). Given an array ~a, ~ai denotes

the object in the ith cell and ~a+i c is the array ~b like ~a except that ~bi = ~a⌢
i c.

For ~a an array, and i, j ∈ lic, ~a〈i,j〉 is identical to ~a, but that ~a
〈i,j〉
j = ~ai and

~a
〈i,j〉
i = ~aj . Given two arrays, ~a and ~b such that ~ai 6= ǫ ⇒ ~bi = ǫ, we define

~a⊕~b such that (~a⊕~b)i = ~a⌢
i
~bi.

(σ, =sδ);~a

(σ, δ);~a +j s
hypA

for some j such that ~aj = ǫ.

(σ, +iδ);~a

(σ, δ); (~a +i -i)〈i,j〉
hypB

for some j such that ~aj = ǫ.
Elements of the array ~a (hypotheses), are discharged once an expression

is merged which has the appropriate feature sequence.

(σ, =sδ);~a (τ, s);~b

(στ, δ);~a ⊕~b
dischargeA

(σ, +iδ);~a (τ, γ-i);~b

(τσ, δ);~c ⊕~b
dischargeB

where ~ai = γ and ~c is like ~a except that ~ci = ~bi = ǫ.
Derivation trees are defined analogously to the merge and move system.

Given a lexicon Lex the string language associated with Lex by a minimalist
grammar with hypothetical reasoning is defined to be the set of string com-
ponents of the roots of well formed derivation trees. It is straightforward to
verify that the current system is strictly less expressive than the merge and
move system: given a lexicon Lex, the string language associated with that
lexicon by a minimalist grammar with hypothetical reasoning is context-free.

3. Combining movement and hypothetical reasoning

As defined in the previous section, merge and discharge are two sides of
the same coin: merge inserts an expression, with features still to be checked
(fβ), and discharge inserts an expression, whose features have already been
checked (αf). A natural generalization of both of these operations is to
insert expressions, some of whose features have already been checked, and
the remaining features of which must still be checked (αfβ).

The definition of the operation insert is given in four cases. The first two
(insertA and insertB) can be viewed either as the merge operation extended

4 A FORMAL FOUNDATION FOR A AND A-BAR MOVEMENT

over expressions with feature arrays, or, alternatively, as the first case of the
discharge operation extended over expressions with moving pieces.

(σ, =sδ), φ1, . . . , φn;~a (τ, s), ψ1, . . . , ψk;~b

(στ, δ), φ1 , . . . , φn, ψ1, . . . , ψk;~a⊕~b
insertA

(σ, =sδ), φ1, . . . , φn;~a (τ, sβ), ψ1, . . . , ψk;~b

(σ, δ), φ1, . . . , φn, (τ, β), ψ1, . . . , ψk;~a⊕~b
insertB

The final two cases are similar to the second case of the discharge opera-
tion. The final case (insertD) is the most interesting, making use of both
hypothetical reasoning and actual movement.

(σ, +iδ), φ1, . . . , φn;~a (τ, α-i), ψ1, . . . , ψk;~b

(τσ, δ), φ1, . . . , φn, ψ1, . . . , ψk;~c⊕~b
insertC

where ~ai = α and ~c is like ~a except that ~ci = ~bi = ǫ, and for no φj = (σj , δj)
or ψj = (τj , γj) does δj or γj begin with -i.

(σ, +iδ), φ1, . . . , φn;~a (τ, α-iβ), ψ1, . . . , ψk;~b

(σ, δ), φ1, . . . , φn, (τ, β), ψ1, . . . , ψk;~c⊕~b
insertD

where ~ai = α and ~c is like ~a except that ~ci = ~bi = ǫ, and for no φj = (σj , δj)
or ψj = (τj , γj) does δj or γj begin with -i.

Movement and hypothetical reasoning are as before (but extended with
feature arrays and moving expressions respectively).

(σ, +jδ), φ1, . . . , φi−1, (τ, -j), φi+1, . . . , φn;~a

(τσ, δ), φ1, . . . , φi−1, φi+1, . . . , φn;~a
moveA

where ~aj = ǫ.

(σ, +jδ), φ1, . . . , φi−1, (τ, -jγ), φi+1, . . . , φn;~a

(σ, δ), φ1, . . . , φi−1, (τ, γ), φi+1, . . . , φn;~a
moveB

where ~aj = ǫ.

(σ, =sδ), φ1, . . . , φn;~a

(σ, δ), φ1, . . . , φn;~a+i s
hypA

for some i such that ~ai = ǫ.

(σ, +iδ), φ1, . . . , φn;~a

(σ, δ), φ1, . . . , φn; (~a+i -i)〈i,j〉
hypA

for some j such that ~aj = ǫ, and for no φk = (σk, δk) does δk begin with -i.
Derivation trees are defined as before. Although adding hypothetical rea-

soning to the standard minimalist grammar framework increases the strong
generative capacity of the formalism, the weak generative capacity is un-
changed (i.e. L(MG) = L(MGhyp)).

Given this setup, we identify hypothetical reasoning with A movement,
and movement with A-bar movement. The ban on improper movement is an

A FORMAL FOUNDATION FOR A AND A-BAR MOVEMENT 5

immediate and simple consequence of the fact that hypothetical reasoning
takes place before an expression is inserted, and movement after.

4. Conclusions

The fact that there is a sharp dividing line between the multiple depen-
dencies an expression may enter into provides the strong generative capac-
ity necessary to obtain a non-stipulative account of the semantic asymme-
tries between A and A-bar movement. Differences between A and A-bar
movement such as the ability of A moved, but not A-bar moved items to
bind moved-over expressions can be recovered via a semantic interpretation
scheme that simply binds all and only expressions within the scope of an
expression when it is first inserted into the structure. And differences with
respect to ‘reconstruction’ (A-bar movement allows this, A movement does
not) is implementable in multiple, interestingly different, ways. First is to
follow the suggestion of Chomsky [3], according to which reconstruction is
mediated by interpreting an expression in one of its moved-through posi-
tions. As our expressions have only ever been present in A-bar positions,
we can only interpret them there. Another option, which makes more use
of the derivational ambiguity now inherent in the syntactic calculus, is to
require that expressions are interpreted in the position in which they are
inserted. Reconstruction then indicates that an expression was inserted into
a (particular) non-surface position, and thus also ties together the binding
mechanism with the scope taking mechanism.

While it is logically possible to concoct a semantics which yields the exact
opposite pattern, it is most natural, given the architecture of our syntactic
formalism, to group together reconstructability and the inability to rebind
variables with A-bar movement, and non-reconstructability and the ability
to rebind variables with A movement. Thus we have a system which ap-
pears able to make sense of the fact that the two types of long-distance
dependencies in natural languages have the clusters of properties they do.

References

[1] M. Amblard. Grammaire minimaliste catégorielle et interface syntaxe/sémantique.
PhD thesis, Université Bordeaux I, in progress.

[2] N. Chomsky. Lectures on Government and Binding. Foris, Dordrecht, 1981.
[3] N. Chomsky. The Minimalist Program. MIT Press, Cambridge, Massachusetts, 1995.
[4] M. Kracht. Syntax in chains. Linguistics and Philosophy, 24(4):467–529, August 2001.
[5] C. Retoré and E. P. Stabler. Resource logics and minimalist grammars. Research on

Language and Computation, 2(1):3–25, 2004.
[6] E. P. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects of

Computational Linguistics, volume 1328 of Lecture Notes in Computer Science, pages
68–95. Springer-Verlag, Berlin, 1997.

[7] W. Vermaat. The minimalist move operation in a deductive perspective. Research on
Language and Computation, 2(1):69–85, 2004.

