The Equivalence of Tree Adjoining Grammars and Monadic
Linear Context-free Tree Grammars

Stephan Kepser and Jim Rogers
CRC 441 Computer Science Department
University of Tubingen Earlham College
Tubingen, Germany Richmond, IN, USA

1 Introduction

Tree Adjoining Grammars (Joshi et al., 1975; Joshi and SehalP97) (TAGS) are a grammar for-
malism introduced by Joshi to extend the expressive poweonfext-free string grammars (alias
local tree grammars) in a small and controlled way to rendetat known mildly context-sensitive
phenomena in natural language. The basic operation in thesemars, the adjunction operation,
consists in replacing a node in a tree by a complete tree dirmnma finite collection.

Context-free Tree Grammars (CFTGS, see (Gécseg and $tdia®7) for an overview) have been
studied in informatics since the late 1960ies. They pro@dery powerful mechanism of defining
tree languages. Rules of a CFTG define how to replace nonrgirmodes by complete trees.

It has been observed quite early after the introduction &3 £hat the adjoining operation seems to be
a special case of the more general deduction step in a CFTi@tien. TAGs look like special cases
of subclasses of CFTGs. This intuition was strengthenedhbyimg that the yield languages definable
by TAGs are equivalent to the yield languages definable byadigninear non-deleting CFTGs, as
was shown independently by Monnich (1997) and Fujiyosldi Kasai (2000). The question of the
strong equivalence of the two formalisms remained unaresiver

Rogers (1998, 2003) introduced a variant of TAGs called stoist TAGs. Non-strict TAGs generalise
the definition of TAGs by releasing the conditions that thet nmode an foot node of an elementary
tree must bear equal labels and that the label of the noderepkeced must be equal to the root node
of the adjoined tree. The first proposal of such an extendid®@s was made by Lang (1992). The
new variant of TAGs looks even more like a subclass of CFTGsd ilhdeed, non-strict TAGs and
monadic linear CFTGs are strongly equivalent. This is thenmesult of the present paper.

The paper is organised as follows. The next section intreslwontext-free tree grammars and tree
adjoining grammars. Section 3 provides the main result isf plaper by describing how to code
monadic linear CFTGs (MLCFTG henceforth) and their derra by non-strict TAGs and non-strict
TAGS by MLCFTGs. The next section presents a logical chariettion of the expressive power of
MLCFTGs, which is a consequence of the main result of the pdpee to lack of space all formal
definitions and proofs are devised to a technical appendix.

2 CFTGs and TAGs

We assume familiarity with trees and tree domains (see Agiggand start with the definition of a
context-free tree grammar quoting (Engelfriet and Schmi@r7).

Definition 1 A context-free tree grammas a quadruplé&s = (Z, ¥ ,S P) where

> is a finite ranked alphabet términals

F is a finite ranked alphabet abnterminalsor function symbols
disjoint with Z,

Se 70 s thestart symbaland

P is a finite set of productions (or rules) of the form
F(X1,...,%) — T, whereF € 7 X andt € Ts 5 (X4).

As usual, we sefr; E> o2 if and only if there is a productioR (x1, . ..,Xx) — T such thab; is obtained
from o7 by replacing an occurrence of a subtfeg;, ...,&x) by the treet[¢,,...,&] (details in the
appendix). For a context-free tree gramr@amwe defineL(G) = {t € Ts | S% t}. L(G) is called the
tree languagegenerated bys.

We define three subtypes of context-free tree grammars. AuptmnF(xq,...,x) — T is called
linear, if each variable, ..., X, occurs at most once in Linear productions do not allow the copying

of subtrees. A tree gramm@= (Z, ¥ ,S P) is called dinear context-free tree grammar, if every rule
in Pis linear. All the CFTGs we consider in this paper are linear.

Secondly, a ruld=(xy,...,X) — T is non-deletingif each variablex, ..., % occurs int. A CFTG is
non-deleting if each rule is hon-deleting.

Thirdly, a CFTGG = (Z, ¥ ,S,P) is monadicif 7 X = 0 for everyk > 1. Non-terminals can only be
constants or of rank 1. Monadic linear context-free treengnars are abbreviated MLCFTGs.

The second class of grammar formalisms we consider in tipisrzre Tree Adjoining Grammars. We

are particularly interested in so-called non-strict Treggofning Grammars. Non-strict TAGSs were

introduced by Rogers (1998, 2003) as an extension of TAGgdflacts the fact that adjunction (or

substitution) operations are fully controlled by obliggtand selective adjoining constraints. There
is hence no need to additionally demand the equality of hedd@ot node labels or the equality of

the label of the replaced node with the head node of the astjdiree.

Definition 2 (Rogers, 2003) A non-strict TAG is a pdiE,|) whereE is a finite set of elementary
trees in which each node is associated with

e alabel — drawn from some alphabet,
e aselective adjunctiofSA) constraint — a subset of the set of names of the elemeinégs, and
e anobligatory adjunction(OA) constraint — Boolean valued

andl C E is a distinguished non-empty set of inital trees. Each elgang tree has a foot node.

An adjunction is the operation of replacing a nadgith a non-empty SA constraint by an elementary
treet listed in the SA constraint. The daughtersrobecome daughters of the foot nodetofA

substitution is like an adjunction except thmais a leaf and hence there are no daughters to be moved
to the foot node of. A tree is in the language of a given grammar, if every OA a@mst on the way

is fulfilled, i.e., no node of the tree is labelled wittue as OA constraint. SA and OA constraints only
play a role in derivations, they should not appear as lald@lees of the tree language generated by a
TAG. Hence the tree language of a TAG is the set of tree geleebgtthis TAG with all SA and OA
constraints stripped off.

One of the differences between TAGs and CFTGs is that there gich concept of a non-terminal
symbol or node in TAGs. The thing that comes closest is a nalolelled with an OA constraint set
to true. Such a node must be further expanded. The opposite is a rntddamempty SA constraint.
Such a node is aterminal node, because it must not be expaiddds labelled with an OA constraint
set tofalse but a non-empty SA constraint may or may not be expanded. démeyeither be regarded
as terminal nor as non-terminal nodes.

3 The Equivalence of MLCFTGs and TAGs

In this section, we show how MLCFTGs and their derivations lsa encoded in non-strict TAGs and
vice verse. We start with the encoding of MLCFTGs. In gene€dTGs may have deleting rules.
The application of such a rule leads to the deletion of cotegabtrees generated in previous steps.
This deletion cannot be rendered by TAGs. But for MLCFTGsadlhig a solution to this problem, as
the following result shows.

Proposition 3 (Fujiyoshi, 2005)For every monadic linear context-free tree grammar thetistexan
equivalentnon-deletingnonadic linear context-free tree grammar.

We therefore assume our MLCFTGs to be non-deleting. Undsrassumption an equivalent non-
strict TAG can be constructed. The general constructioa ig¢hat each right-hand side of a rule is
in some sense an elementary tree with the foot node beingdkieemof the variable node.

Proposition 4 For every non-deleting MLCFTG there exists an equivalemt:sinict TAG.

The full proof is to be found in the appendix. The main ideahis following. The right hand side
of each rule is taken as an elementary tree. The non-terminauch a rhs have to be constrained
by an obligatory adjunction constraint. The associatedcsigk adjunction constraint contains those
right hand sides that the non-terminal may be expanded tdording toP. If the rhs contains the
variablex, the mother ok is the foot node. If it does not contaxpthen it is the rhs of a non-terminal
of arity 0. Hence the rhs will only be used for substitutior &t adjunction.

We will now show that for every TAG there exists an equivalshtCFTG. To do this we define a
special type of CFTGs, CFTGs that are very similar to noitistAGs.

Definition 5 LetG = (Z, ¥ ,S P) be a linear CFTG. A rul& (xy,...,Xc) — t is footedif there exists
a positionp in the domain ot such thatp has exactlk daughters, for K i < k: A(pi) =%, and no
position different from{ p1,..., pk} is labelled with a variable. The nogss called the foot node and
the path from the root dfto pis called thespineoft. A CFTGG is footedif every rule ofG is footed.

Proposition 6 For every non-strict TAG there exists an equivalent footeéd G.
The full construction and proof can be found in the apperaixyvell as the proof of the next result.

Proposition 7 Atree language is definable by a footed CFTG if and only ifdieBnable by a monadic
linear CFTG.

We are now in the position to present the main result of ouepap

Theorem 8 The class of tree languages definable by non-strict Treeididp Grammars is exactly
the class of tree languages definable by monadic linear gbiftee tree grammars.

4 A Logical Characterisation of MLCFTGs

The aim of this section is to show that the theorem above asudtseby Rogers (2003) on TAGs can
be combined to yield a logical characterisation of monaidiedr CFTGs.

Theorem 9 A tree language is generable by a monadic linear contexd-free grammar iff it is the
two-dimensional yield of an MSO-definable three-dimeraditnee language.

5 Conclusion

We showed that non-strict TAGs and monadic linear CFTGs tongly equivalent. We thereby
rendered an old intuition about TAGs to be true (at least @or-strict ones). The strong equivalence
result yields a new logical characterisation of the expvespower of monadic linear CFTGs. A
tree language is definable by a MLCFTG iff it is the two-dimienal yield of an MSO-definable
three-dimensional tree language.

It is known that there is a whole family of mildly context-s#tive grammar formalisms that all turned
out to be weakly equivalent. It would be interesting to coreptheir relative expressive powers
in terms of tree languages, because, finally, linguists mterdsted in linguistic analyses, i.e., tree
languages, and not so much in unanalysed utterances. k@ based formalisms, the notion of
strong generative capacity has to be extended along treproposed by Miller (1999). The current
paper is one step in a program of comparing the strong gérercapacity of mildly context-sensitive
grammar formalisms.

References

Engelfriet, Joost and Erik Meineche Schmidt (1977). 10 ahd .QJournal of Computer and System
Sciencesl5(3):328-353.

Fujiyoshi, Akio (2005). Linearity and nondeletion on moitadontext-free tree grammarkiforma-
tion Processing Letter93(3):103-107.

Fujiyoshi, Akio and Takumi Kasai (2000). Spinal-formed tmti-free tree grammarsTheory of
Computing System33(1):59-83.

Gécseg, Ferenc and Magnus Steinby (1997). Tree langualge&rzegorz Rozenberg and Arto
Salomaa, edsHandbook of Formal Languages, Vol 3: Beyond Wopls 1-68. Springer-Verlag.

Joshi, Aravind, L.S. Levy, and M. Takahashi (1975). Treaiadj grammarJournal of Computer and
System Scienceg$0(1):136-163.

Joshi, Aravind and Yves Schabes (1997). Tree adjoining grars. In G. Rozenberg and A. Sa-
lomaa, eds.Handbook of Formal Languagesolume 3: Beyond Words dflandbook of Formal
Languagespp. 69-123. Springer, Berlin.

Kepser, Stephan and Uwe Monnich (2006). Closure propedifidinear context-free tree languages
with an application to optimality theonfheoretical Computer Sciencgs4(1):82-97.

Lang, Bernard (1992). Recognition can be harder than mgarsinProc. of the 29 Int. Workshop on
Tree Adjoining Grammars

Miller, Philip H. (1999). Strong Generative Capacity: The Semantics of Linguisticiadism CSLI
Publications.

Monnich, Uwe (1997). Adjunction as substitution. In Ge#ah Kruijff, Glyn Morill, and Richard
Oehrle, eds.Formal Grammar '97 pp. 169-178.

Rogers, James (1998A Descriptive Approach to Language-Theoretic Complex@®sLI Publica-
tions.

Rogers, James (2003). wMSO theories as grammar formalishimeoretical Computer Science
2932):291-320.

Technical Appendices

A Trees and Tree Grammars

A.1 Two-Dimensional Trees

We consider labelled finite ordered ranked trees. A treedsred if there is a linear order on the
daughters of each node. A tree is ranked if the label of a nogdiés the number of daughter nodes.

A tree domain is a finite subset of the set of strings over ahturmbers that is closed under prefixes
and left sisters. Formally, a sBtCsin N* is called aree domainff for all u,ve N*:uve D=ueD

and forallue N*ie N:uie D=Vj<i:ujeD. An element of a tree domain is an address of a
node in the tree. It is calledosition

Let X be a set of labels. Areeis a pair(D,A) whereD is a tree domain andl : D — X is a tree
labelling function. The set of all trees labelled with syrisbivom Z is denotedzs. A tree language
L C 75 is just a subset ofs.

A set of labels isrankedif there is a functiorp : £ — N assigning each symbol an arity.t = (D, A)
is a tree of a ranked alphabEtthen for each positiop € D : p(A(p)) =n=- pne€ D,pm¢ D for
everym> n.

If X is a set (of symbols) disjoint frorh, then7s(X) denotes the set of tregs x where all elements
of X are taken as constants. The elementX afe understood to be “variables”.

Let X = {x1,X2,Xs,... } be a fixed denumerable set wdriables Let Xo =0 and, fork > 1, Xx =
{Xg,..., %} C X. Fork>0,m> 0,t € 75(Xx), andty,...,tx € 7s(Xn), we denote byt]ts, ... t]
the result ofsubstituting it for x; in t. Note thattts,...,t] is in 7z (Xm). Note also that fok = 0,
tlty,.... 0] =t.

A.2 Context-Free Tree Grammars

For a context-free tree gramm@r= (Z, ¥ ,S P) we define the direct derivation relation. Let> 0
and letoy, 02 € 754 (Xn). We defineoy E> o, if and only if there is a productioR (x1,...,X) — T, a

treen € 73,7 (Xn+1) containingexactly oneoccurrence ok, 1, and tree<y, ..., &k € Tsus (Xn) such
that

01: n[xla"'7xl"|7F(Ela"'7Ek)]

and
02 =N[X1,. .- X0, T[&1,. .., &]]-

In other words o, is obtained fromo; by replacing an occurrence of a subtfeg;, ..., &) by the
treet[&1,...,&]

As usual,%; stands for the reflexive-transitive closure:gf. For a context-free tree gramm@t we
defineL(G) = {t € Ty | S%} t}. L(G) is called thetree languagegenerated bys. Two grammarss
andG' areequivalent if they generate the same tree language,li@G) = L(G').

We note that there are different types of derivation moddmelg for CFTGs in general. These
are (beyond the general one above) the inside-out and etitsiderivation modes. In inside-out

derivation mode, a non-terminal node can only be expandisubtree below it does not contain
any other non-terminal. In outside-in derivation mode, a-terminal node can only be expanded if
the path from the root to this nodes does not contain anothesterminal node. In general, these
different derivation modes generate different tree laggsaBut forlinear CFTGs, all three different
derivation modes generate the same tree language for agjimermar, as was shown by Kepser and
Monnich (2006). Since we only consider linear CFTGs in teger, we just defined the general
derivation mode.

A.3 Tree Adjoining Grammars

We present now the formal definitions of non-strict TAGs ameltree languages they generate. Aet
be a set of linguistic labels aridla be a finite set of labels disjoint frov (the set of names of trees).
Atree is a pairD,\) where

e Disatree domain,
e A:D — Ax0O(Na) x {true,false} a labelling function.

Hence a node is labelled by a triple consisting of a lingaitdbel, an SA constraint, and an OA
constraint. We denotéy na the set of all trees. Aelementanytree is a triple (D, A, f) where D,A)
is atree and € D is a leaf node, théoot node

Definition 10 A non-strict TAG is a quintupl& = (A,Na E,|,namg where

e Ais a set of labels,

o Nais a finite set of tree names,

e E is afinite set of elementary trees,

e | C E is a finite set of initial trees, and

e name: E — Nais a bijection, the tree naming function.

An adjunction is the operation of replacing a nadgith a non-empty SA constraint by an elementary
treet listed in the SA constraint. The daughtersrobecome daughters of the foot nodetofA
substitution is like an adjunction except thmais a leaf and hence there are no daughters to be moved
to the foot node of.

Formally, lett,t’ be two trees ant a non-strict TAG. Thet' is derived front in a single step (written
t ? t') iff there is a positionp € D; and an elementary tres= E with foot nodefs such that

o Ai(p) = (L,SAOA) with L € A, SAC Na, OA € {true,false},
e Dy={qeD|pveNt:q=pviu{pv|ve DssU{pfyv|ve Nt pve D},

M(g) ifgeDiandfve N*:q=py,
e M\v(g) =< As(v) if ve Dsandg= pv,
A(pv) if ve NT pve Di,q= pfsv.

We writet’ = ad j(t, p,) if t’ is the result of adjoiningint at positionp. As usual,::; is the reflexive-
transitive closure ofg. Note that this definition also subsumes substitution. Asstution is just an
adjunction at a leaf node.

A tree is in the language of a given grammar, if every OA caistron the way is fulfilled, i.e., no
node of the tree is labelled witiiue as OA constraint.

SA and OA constraints only play a role in derivations, thegudtl not appear as labels of trees of the
tree language generated by a TAG. Ietbe the first projection on a triple. It can be extended in a
natural way to apply to trees by setting

e Dy, «) = Dy, and for eaclp € Dy,

® Ay (P) =Lif At(p) = (L,SA OA) for someSAC Na, OA € {true,false}.

L(G) = {ﬂl(t)

A.4 Three-Dimensional Trees

Now

Jse | such thas:gt,
#p € Dy with A(p) = (L, SAtrue) for someL € A,SAC Na |

We introduce the concept dfiree-dimensionalrees to provide a logical characterisation of the tree
languages generable by a monadic linear CFTG. Multi-dinoeas trees, their logics, grammars and
automata are thoroughly discussed by Rogers (2003). Her@jsvquote those technical definitions
to provide our results. The reader who wishes to gain a baetiderstanding of the concepts and
formalisms connected with multi-dimensional trees is ireéferred to (Rogers, 2003).

Formally, a three-dimensional tree domdiB Crn (N*)* is a finite set of sequences where each el-
ement of a sequence is itself a sequence of natural numbehgtsat for allu,v € (N*)* if uve T3
thenu e T3 (prefix closure) and for eaahe (N*)* the set{v |ve N*,uve T3} is a tree domain in
the sense of Subsection A.1.

Let X be a set of labels. Aee-dimensional trees a pair(T3,\) whereT 3 is a three-dimensional tree
domain and\ : T3 — X is a (node) labelling function.

For a node € T3 we define its immediate successors in three dimensiondl@asdox<zy iff y=x-m
for somem € N*, i.e.,x is the longest proper prefix gf x<,y iff x=u-mandy = u-mj for some
ue T3 me N* j € N, i.e. xandy are at the same 3rd dimensional level, big the mother of in a
tree at that level. Finallyg<1y iff =u-mjandy=u-m(j+ 1) forsomeue T3 me N*, j € N, i.e.x
andy are at the same 3rd dimensional level anslthe immediate left sister gfin a tree at that level.

We consider the weak monadic second-order logic over tlioak<s,<»,<1. Explanations about
this logic and its relationship to T3 grammars and automaisabe found in (Rogers, 2003).

We next define the two-dimensional yield of a three-dimemalidtree. Let(T3,A) be a tree-
dimensional tree. A node € T3 is an internal node, ifp # € (p is not the root) and there is a
p’ with p<z p’ (p has an immediate successor in the 3rd dimension). For amaiteode we define
a fold-in operation that replaces the node by the subtregoisr Consider the s& of immediate
successors op. By definition it is a two-dimensional tree domain. We demdnid have a foot

node, i.e., a distinguished node= Sthat has no immediate successors in the second dimensien. Th
operation replacep by S such that the immediate successorgan the second dimension become
the immediate successors bfn the second dimension.

Formally, lett = (T3,A) be a tree-dimensional tree. We gdg footed in the second dimensidhfor

every nodep the two-dimensional tree doma{p’ | p<3 p'} has a foot node.

Let p € T3 be an internal node. Henge= p'm for somep’ € T3 (the immediate predecessor mf
andme N*, Let P’mf € T3 be the foot node of the immediate successongwheref € N*. Define

T3 = {reT3 | e (N*) :r=pru
{P(m-n)r | Pmnre T3,ne N r € (N*)*} U
{p(m-f-n)| p'(m-n)eT3ne N}

The set in the first line is the set of node of whiphs not a prefix. It is unchanged. The set in the
second line is the set of successorgpah the 3rd dimension. They are folded in at the placgof
The set in the third line is the set of successop af the second dimension. They are appended to the
folded-in foot node. The labelling of the nodesTif' is derived from the labelling of the originating

nodes inT 3.
A(s) if se T3|Ar' € (N*)* :s= pr’
N(s)=<¢ Apmnr) if s=p(m-nr,ne N*re (N*)*}
A(P(m-n)) if s=p(m-f-n),neN*

Now we define fold-iti(T3,A), p) = (T3, \).

The operation is similar to an adjunction operation in a TAE\wtion. It can be iterated until there is
no internal node left. If choo$&3) is a choice function that chooses an arbitrary internal riozta
a (three-dimensional) tree domaii3, then

r [fold-in((T3,A),choos¢T3)) if there is an internal node i3
fold-in(T3,A) = { (T3\) otherwise

Now define recursively fold-H(T3,A) = fold-in(T3,A) and fold-if*t(T3A) =
fold-in(fold-in%(T3,A)). For every treet there is ak € N such that fold-ifi(t) = fold-in**1(t)
because there are no internal nodes left. Hence we can safedyfold-in“(t), because for every tree
t the fixed point is reached after finitely many steps.

Now consider a treethat has no internal nodes. It consists of the root and itsediate successors
in the 3rd dimension. These form a two-dimensional tree. filw®dimensional yield of a tree-
dimensional treéis the (two-dimensional) tree of the immediate successdteaoot of fold-irf°(t),
i.e,

yield(t) = {(p,A(p)) | p € fold-in“(t),& <5 p}.

B From MLCFTGs to TAGS

In this section, we provide the technical definitions andfgof how MLCFTGs and their derivations
can be encoded in non-strict TAGs.

Before we can show how to code MLCFTGs with non-strict TAGsharee to provide another restric-
tion on the way the MLCFTGs look and show that this is not yealtestriction. LeG = (Z, ¥ ,S P)

be a non-deleting MLCFTG. A rul&(x) — x in P is called acollapsingrule. A collapsing rule ac-
tually deletes the non-terminal nodein a tree. Such a step cannot be performed in a TAG, which
neverdeletes any structure built in a derivation. This problem lba overcome, because collapsing
rules can be eliminated from non-deleting MLCFTGs. If a CRdd&s not contain a collapsing rule,
the grammar is calledollapse-free

Proposition 11 For every non-deleting MLCFTG there exists an equivalem-deleting collapse-
free MLCFTG.

The idea of the proof is to apply the collapsing rule to alhtipand sides. Thus it is no longer needed.
Some care has to be taken, if there is another way to expamiherminal that can collapse.

PROOF Let CFTGG = (%, 7,SP) be a non-deleting MLCFTG. L&k € 7 ! such thatA(x) — xin

P. We distinguish two cases.

Case 1: There is no ruk(x) — t in P with t # x.

In this case, we apply the rulk(x) — x to all occurrences oA in all other right-hand sides d?
obtainingP’. Then ruleA(x) — x can be safely removed frof¥, because it does not contain any
occurrence oA any more. The tree language generateddyr ,S P’) is obviously the same as that
of G.

Case 2: There is a rul(x) — t in P with t # x.
Let B(x) — t’' be a rule inP that containk occurrences o\ in t’. It will be replaced by the set

8 = {B(x) —t” | t” is the result of applying\(x) — x to some occurrences #fin t'}.

The cardinality of this set isk2 This step is performed for every rule that has some occoerefA
in its rhs. The new rule s is P union all setss. Then ruleA(x) — x can be safely removed from
P’. The tree language generated(By 7 ,S P’) is obviously the same as that Gf O

MLCFTGs are not necessarily footed CFTGs, even when theyareadeleting and collapse-free. The
reason is the following. Every right-hand side of every e non-deleting MLCFTG has exactly
one occurrence of the variabte But this variable may have sisters. l.e. there may be sebirethe

rhs which have the same motherxasSuch a rule is apparently not footed. And its rhs can hardly
be used as a base for an elementary tree in a TAG. Fortuntitelygh, a non-deleting collapse-free
MLCFTG can be transformed into an equivalent footed CFTG Hsulting footed CFTG is usually
not monadic any more. But this does not constitute any prnobiden translating the footed CFTG
into a TAG.

Proposition 12 For every non-deleting collapse-free MLCFTG there existseguivalent footed
CFTG.

PROOF Let CFTGG = (%, 7,SP) be a non-deleting collapse-free MLCFTG. The transfornmatio
proceeds in two major steps. First step:

Let (A(x) — 1) € Pandf(ty,...t) be a subtree of such thak > 1, f € 3K, t; = x for some 1< j <k
andt; € 75y fori# j. Foreach K i <k,i # j we introduce a new non-termin®l ¢ # © of rank 0

and a new rulel; — t;. Rule A(x) — T is replaced byA(x) — T/ whereT’ is the result of replacing
the subtreef (t1,...tx) by f(T1,...,Tj—1,X Tj+1,..., Tk). This step does not change the generated tree
language nor the type of the grammar. It is just helpful infdrenulation of the next step.

10

Second step:

Let CFTGG = (Z, ¥ ,S P) be a non-deleting collapse-free MLCFTG after Step 1.

Let (A(x) — 1) e Pand f(Ty,... Tj—1,X, Tj41,..., Tk) be a subtree of.

We distinguish two cases.

Case 1: There is no other rulewith A(x) as its |hs.

Firstly, rule A(x) — T is replaced byA(xy,...,x) — T wheret’ is the result of replacing the subtree
f(Tl, . ..Tj,]_,X,THl, el ,Tk) by f(Xl, e ,Xk).

Secondly, consider the term rewrite rlléx) — A(Ty,... Tj_1,X, Tj11,..., Tk). This term rewrite rule
is applied to all occurrences of a subtree headed bfall rhs of P (including T').

Case 2: There is another ruleRPwith A(x) as its Ihs.

This case is more complicated, because we cannot just eeglribccurrences of subtrees headed by
A. Again, ruleA(x) — T is replaced byA(xy, ..., X) — T wheret’ is the result of replacing the subtree
f(Te,... Tj—1, % Tjs1, ..., Tk) by f(Xa,...,X) yielding new rule seP”.

Secondly, consider the term rewrite rule= (A(X) — A(T1,... Tj—1,X, Tj+1,..., Tk)). For a grammar
ruleg = (B(xg,...,Xy) —t) in P” define

app(r,g) = {B(xg,...,%) — t" | t' is the result of applying to some occurrences #fin t}.

This set also contains the original grammar (&, ..., x,) — t for no occurrence chosen to apply
to. The new grammar rule skt is defined as

U app(r,B(x,...,%)) —1).

The new gramma@’ = (=, 7 U{A},S P) generates the same tree languag&aas can be shown
by an induction on the length of the derivation. ARdcontains one non-footed rule less tHanBy
repetition of Step 2, all non-footed rules can be replacel. itlNote that the finally resulting footed
CFTG may have a lot more rules than the original MLCFTG. O

Proposition 13 For every footed CFTG there exists an equivalent non-stiAds.

Before providing the proof we would like to point out that ifomted CFTG there cannot be a collaps-
ing rule A(X) — X, because there is no positiprhaving daughters (cp. Def. 5). This fact is implicitely
used in the proof below.

PROOF LetCFTGG=(Z,7,SP)be afooted CFTG. Ldtlabe a set of labels such thata = |P|.
Define a bijectiomame: Na— rhs(P) mapping names ifNato right hand side of rules iR in some
arbitrary way.

For a non-terminah € ¥ X we define the set
Rhg = {namé€r) | (A(Xa,...,Xk) —) € P}.

We define a function el-treehs(P) — 75+ na by considering two cases. FOK(xg,...,x) —t) € P
such thatf € D; with A¢(fi) =X set

D = D\{fi|1<i<k}
foreachpe D:

(At(p),0,false) if A¢(p) € Z,
AMp) = { (B.Rh true) if A(p) = B 7

(D,A,)

el-tregt)

11

For(A—t) € Pset

D = D
foreachpe D:
)\(p) — { ()\t(p)>0>fa|se) ?f)\t(p)ez,
(B,Rhg;,true) if Ai(p)=Be F
f = 1forkeN,1¥eD,11 ¢ D
el-tregt) = (D,A,f)

We letG' = (Z,Na {el-tredr) | r € rhs(P)}, {el-treeS)},name be the non-strict TAG derived from
G.

For a given footed CFT®& and derived TAGG' we can define a function tag-tre€s » — 75 s Na
from footed CFTG generated trees to TAG generated treesasitnithe function el-tree as follows.
Fort = (D¢, At) € 755 We set

D = D¢
foreachpe D:
Ap) = { (At(p), 0, false) ?f A(p) €Z,
(B,Rhs,true) if Ay(p)=Be ¥
tag-treg¢t) = (D,A)

The function tag-tree is partially the inverseraf i.e., Ty (tag-tre€t)) =t for everyt € 7s .

Claim 1: For every treec Ts ; : if S%t then el-tre¢S) :(’:} tag-tret).

Proven by induction on the length of the derivatiort.of
Fors% Sthe claim is true by definition of el-tr¢g).

Lett € Ts g andS% t. By definition of% there is a treg such thas% st and a positiorp € Ds.
We distinguish two cases.

Case 1:pis not a leaf node.

Then there is 8 € 7%, 0 € 755 (X1),01,...,0k € Tsug, a rule(B(xy,...,%) — &) € P such that
s=0o[B[oy,...,04]], Blo1,...,0k] is the subtree at positiop, andt = o[§[01,...,0k]].

By Ind.H., el-tre¢S) E*> tag-tre€s) andAag.treas) (P) = (B, Rhss,true).

By definition of G’ there is an elementary tree el-ttég with naméel-treg)) € Rhg. Therefore
we can adjoint el-tre&) at positionp of tag-treés). By definition of adjoin, the result of this adjoin
operation is just tag-trée[§[o1, . ..,0k|]) = tag-tre€t), and hence el-tré&) é} tag-tre€t).

Case 2:;pis a leaf node.

Thenthereis 8 € 7°, 01 € 754, arule(B — &) € P such thas = 01[B], Bis the subtree at position
p, andt = 01[§].

By Ind.H., el-tre¢S) E*> tag-tre€s) andAg.rreds) (P) = (B,Rhss,true).

By definition of G’ there is an elementary tree el-tf¢gwith naméel-treg)) € Rhsg;. Therefore we
can substitut¢B, Rhss, true) with el-treg§) at positionp of tag-tre€s). By definition of substitution
as a special case of adjoin, the result of this substitutfmeration is just tag-trée []) = tag-tregt),
and hence el-tré) % tag-tredt).

12

Claim 2: For every treec Ts_ 5 na: if €l-tree(S) :C}t thenS::;> m(t).

Proven by induction on the length of the derivatiort.of

For el-treg¢S) % el-tregS) the claim is true by definition of el-trés).

Lett € 75+ na Such that el-tre€S) é& t. By definition of:;} there exists a treec 75+ na SUCh that

el-tredS) ?} s= t. We distinguish two cases.

Case 1: StepE;t is an adjunction step.

There is a positiorp € Ds and an elementary treec E with foot node fs. By definition of G’
As(p) = (B,Rhss, true) andnamée) € Rhss.

Hence there is a rulB(xy, ..., xx) — €) € P with e= el-treg¢€).

Hencery(s) = m(t) and there is @ € 75 (X1),01,...,0k € Tsus With T4 (S) = o[B[01,...,0k]]
andm (t) = o[€[oy,...,0k]].

By Ind.H.,S:(*;> Tu(s). ThereforeS:g m(t).

Case 2: StepE;t is a substitution step.

There is a leaf nodg € Ds and an elementary treme E with foot node fs. By definition of G’
As(p) = (B,Rhss, true) andnamée) € Rhss.

Hence there is a ruleB — €) € P with e = el-treg€).

Hencem(s) s m(t) and there is @1 € 75+ with Ty (s) = 01[B] andm (t) = o1[€].

By Ind.H., S% TH(S). ThereforeS% T (t).
Claims 1 and 2 together show tHaiG) = L(G'). O

C From TAGs to MLCFTGs

In this section, we present the proof that for every TAG thexists an equivalent MLCFTG. This
happens in several steps. First, we show that TAGs can bemehés footed CFTGs. Then we
introduce spinal formed CFTGs. This type of CFTGs was definedujiyoshi and Kasai (2000). We
show that for every footed CFTG there exists an equivalengsormed CFTG. We proceed quoting
a result by Fujiyoshi and Kasai (2000) that states that feryegpinal-formed CFTG there exists an
equivalent MLCFTG.

Proposition 14 For every non-strict TAG there exists an equivalent footed G.

PROOF LetG=(X,NaE,|,name be a non-strict TAG.
Let S¢ X be a new symbol. Set

NK={(L,SAV) |3t e E3pe D;: M(p) = (L,SAV),v e {true,false}, SA%£ 0,
pk € Dy, p(k+1) ¢ D }.

13

SetN = {S} UUk=oN¥ the set of non-terminals. For an elementary tree(Dy, A, f) € E we define
rhs(t,k) by

D = DiU{fj|1<j<k}
foreachpe D :

L if A(p) = (L,0,false),L € Z,
Ap) = (L,SAV) if A(p) = (L,0,v),L € Z,SA# 0,V € {true,false},
X; if p=fj,1<j<k

rhs(t,k) = (D,A)
Note that fork = 0 the tree domai = D;. DefineP; as

{(L,SAV)(x1,...,%) — rhs(t,k) | (L,SAV) € Nt € E : namét) = SA}
U {S—rhs(i,0) iel}

andP;, as

{(L,SAfalse)(X1,..., %) — L(X1, ..., X) |
Jte Edpet: M(p) = (L,SAfalse), pke Dt, p(k+1) ¢ Dt }.

The setP of productions i, UP,. LetG' = (N,Z,S P) be a CFTG.
A simple check of the definition of the productions shows Hais footed.
Claim 1: For every tree € 7s nq: if i %t withi € | thenS:G’} rhs(t,0).

Proven by an induction on the length of the derivation. of
Foricl,ifi :*> i then there is a ruléS — rhs(i,0)) € P by definition ofP. And henceS:*> rhs(i,0).

Ifi :>t with i € | then there is as € 75 na, ane € E and a positiorp € Ds such that :> s:>t and

t= adj(s p,e), As(p) = (L,SAv) with L € X, naméde) € SAv € {true,false}. Letk = max{J | pj €

Ds}.
By Ind,H,. ,S$ rhs(s,0).

Furthermore(L SAV) € NK, Arhs(s0)(P) = (L,SAV), and((L,SAV) (X1, ...,%) — rhs(ek)) € P by
definition of P. Hencerhs(s, 0) 2 rhs(,0).

Claim 2:L(G) C L(G).

Lett € L(G). Then there is & € 75 na and ani € | such that % t" andt = m(t’) and there is no
positionp € Dy whereAy (p) = (L, SAtrue) for somelL € 2, SAC Na. Now, rhs(t’,0) é}t using only
rules fromP; by definition ofP; andt’. And Sé} rhs(t’,0) by Claim 1. Hencesé}t andt € L(G').

Claim 3: For every treé € 75 N if S:;;t using only productions fror®; then there is ac | and a

t’ € 75 na SUCh thai % t’ andt = rhs(t’, 0).

Proven by an induction on the length of the derivation. of
If SE;t then there is ane | such that = rhs(i, 0) by definition ofP;. And hence % i

If S:(’:}t using only productions fron;, then there is ars € 75y such thatS:G’} sé;t us-

ing only productions fromP;. Thus there is a positiorp € Ds a label (L,SAV) € NK with

14

L € Z,v € {true,false},As(p) = (L,SAV). There is a rule((L,SAv) — &) € P; and treeso €
Tsun(X1),01,...,0k € Tsun such thas= o[(L,SAV)[01,...,0k]] andt = 6[¢[01,...,0k]].
By Ind.H., there is am € | ands' € 75 na such thai % s ands=rhs(s,0), A¢(p) = (L,SAV).

By definition of P, there is are € E such thag = rhs(e k) andnamée) € SA Now, s adj(s,p,e)
andt =rhs(ad j(s, p,e),0). Hencei % adj(s,p,e).

Claim 4:L(G') C L(G).
Lett € 75 such that € L(G'). Thensé} t. It is simple to see that there is a tree 75 N such that

there is a derivation sequenSeé; sé}t and every rule irsé} sis in Py while every rule insé}t is in
P,. By Claim 3, there is ane | and ans’ € 75 ya such thai % s ands=rhs(s,0). Since every rule
in sé}t is in Py, there is no positiop in s' such that\y (p) = (L, SAtrue) for somelL € Z,SAC Na

Hencem(s) € L(G) by definition of L(G). But since every rule irs;é}t is in Py, it follows that
™ (S) =t by definition ofP,.
Claims 2 and 4 together show tHaiG) = L(G). O

The following definitions are quoted from (Fujiyoshi and K000, p. 62). A ranked alphabet is
head-pointing if it is a tripe (Z,p, h) such thatZ, p) is a ranked alphabet ardis a function fromx

to N such that, for each € Z, if p(A) > 1 then 1< h(A) < p(A), otherwiseh(A) = 0. The integer
h(A) is called the head oA.

Definition 15 Let G = (N,Z,SP) be a CFTG such thall is a head-pointing ranked alphabet. For
n> 1, a productiorA(xs, ..., X,) — t in P is spinal-formedf it satisfies the following conditions:

e There is exactly one leaf inthat is labelled by,). The path from the root to that leaf is called
the spine ot, or the spine whehis obvious.

e For anodd € Dy, if d is on the spine ani(d) = B € N with p(B) > 1, thend - h(B) is a node
on the spine.

e Every node labelled by a variable X3\ {Xn4) } is a child of a node on the spine.

A CFTG G = (N,Z,S P) is spinal-formedif every productionA(xy,...,X,) —tin Pwithn>1is
spinal-formed.

The intuition behind this definition as well as illustratiegamples can be found in (Fujiyoshi and
Kasai, 2000, p. 63). We will not quote them here, becauseakfonmed CFTGs are just an equivalent
form of CFTGs on the way to showing that TAGs can be renderedbgFTGs.

Proposition 16 For every footed CFTG there exists an equivalent spinahfmd CFTG.

PROOF LetG=(N,Z,SP) be afooted CFTG.

Define CFTGG' = (N',Z,S P') as follows.

SetN; = {(A,1) | Ae N>9},

N2 = {(Ak) | Ac N>0 3t e rhs(P), p € Dt : M(p) = A, pk € spindt)}, and
N’ = NOUN; UN,.

15

For every(A, k) € N; UN; seth(A, k) = k (the head of A k)).

Define relab rhs(P) — 7yusux as follows.

D = D,
foreachpe D
(Ak) if Ai(p) = Ae N>0, pke spindt),
(A1) if A(p) =A€ N>, p¢ spindt),
)\relat(t)(p) = A if Adi(p) =Ac¢€ NO,
f if Ai(p)=fezuX

fe|ab(t) = (Da)\relak(t))
For treed € T\sux the inverse of relab can be defined by

D = Dt7
foreachpe D:

A if A(p) = (AK) € Ny UNy,
A if \(p) =AeNC,
f if A(p) = f € ZUX

relab *(t) = (D, Arelant))

Melas ity (P) =

Set

P = {(AK) (X x)— reladt) | I(A(X,..., %) — 1) € P,(AK) €N} U
{A—relab(t) | 3(A—t) e PAc A%},

GrammarG' is spinal-formed, as a simple check reveals.
Claim 1: For every treé¢ € 75 n: if S%t then there exists a tréée 75\ with Sé’} t’ andt =
relab 1(t).

Proven by an induction on the length of the derivation. of
For S% Sthis is trivially true.

Let S:;> t. Then there is a € 75N With S:;> S:G> t. Thus there is @ € 75 nux, and treewy,...0x €

Tsun and a rule(B(xq, ... X«) — &) € P such thas= o[B[04,...,0k]] andt = o[§[01,...,0k]].
By Ind.H., there is a tre€ € 75 With Sé} g ands=relab 1(g).

By definition of P’ there is a rulé(B,1)(x1,...x) — relab(§)) € P’. And there is @’ € Ts nux, With
o =relab }(0’) and treew), ... 0}, € Ts v With 0] = relabfl(o’j) such thas = o[(B,!)[07,...,0]].
Therefores ?t/ = o'[relab(&)[o], ...,0,]] andt = relab *(t).

The argument foB € N° is even simpler.
Claim 2: For evert tree€ € Ts p: if Sé}t thenS% relab(t).

Proven by an induction on the length of the derivation. of
For S:C} Sthis is trivially true.

Letsé} t. Then there is ae 75 with Sé} s=t. Thus there is @ € Ts U, and treey, ... Ok €

16

Tsn and a rule((B,1)(xq, ... %) — &) € P’ such thas = o[BJ0y, . ..,0k]] andt = 01[§[01, ..., 0k]].
By Ind.H.,S% relab 1(s).

By definition of P’ there is a rule (B(xs,...x) — relab(&)) € P. And relab(s) =
relab-1(o)[B[relab 1(0y),. .., relab *(oy)]].
Therefore relab'(s) = relab (o) [relab (&) [relab 1(o1),.. ., relab (ok)]] = relab (t).

The argument foB € N° is even simpler.
Claims 1 and 2 together show tHaiG) = L(G). O

Proposition 17 (Fujiyoshi and Kasai, 200@or every spinal-formed CFTG there exists an equivalent
MLCFTG.

This is a corollary of Theorem 1 (p. 65) of (Fujiyoshi and Kiag®d00). To see this, it suffices to
inspect the normal form of Theorem 1 and see that it defineethé monadic linear CFTG.

We have now also proven Proposition 7. It was shown in the @Bwopositons that for every footed
CFTG there exists an equivalent MLCFTG. The inverse dioecivas shown in Section B in Proposi-
tions 3, 11, and 12.

D A Logical Characterisation

Theorem 18 A tree language is generable by a monadic linear contex-firee grammar iff it is the
two-dimensional yield of an MSO-definable three-dimeraditnee language.

PROOFE Rogers (2003) showed in Theorems 5 and 13 that a tree laagsagnerable by a non-
strict TAG iff it is the two-dimensional yield of an MSO-deéible three-dimensional tree language.
The theorem is an immediate consequence of Rogers’ resuithanTheorem 8. d

17

