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1 Introduction

As a preliminary, this paper shows (a) how a syntactic theory that incorporates a level of logical form (LF) can be
applied fairly directly in a parser. This demonstration, while not strictly novel (Schubert and Pelletier, 1982; Shieber
and Johnson, 1993) is nonetheless vital for cognitive scientists and others who wish to maintain the Competence Hy-
pothesis (1) about the grammar-parser relationship.

Hypothesis 1 (Competence Hypothesis) A reasonable model of language use will incorporate, as a basic com-
ponent, the generative grammar that expresses the speaker-hearer’s knowledge of the language (Chomsky, 1965, 9)

The main result is that (b) LF can be eliminated in such a competence-based processor using a program-
transformation technique called deforestation (Wadler, 1990). ‘Eliminated’ in this sense means that it is possible
to derive another parser that does not build any LF representations — a program that does not allocate any data
of type LF. Such a formal result suggests that any evidence for LF in processing could always be explained by an
equivalent theory without LF. Representations at that level, therefore, should not be viewed as causally implicated
in sentence processing, despite suggestions to the contrary in the literature.

There is good evidence that the data structures or units of representation posited by theories of trans-
formational grammar are actually implicated causally in online language processing.

(Berwick and Weinberg, 1984, 197)

This paper’s main argument is most clearly stated in a terminology that distinguishes between computational/1 st -
level theories and algorithmic/2nd -level theories (Marr, 1982; Stabler, 1983; Pylyshyn, 1984). Theories in the former
category specify an information-processing task by defining the function that is to be computed. This is the conven-
tional interpretation for theories of linguistic competence. Theories in the latter category are proposals about the
way in which calculation of the function proceeds. This is the conventional interpretation of psycholinguistic theo-
ries, for instance, of human sentence comprehension. The claim that an LF-using parser can be deforested into an
non-LF-using one is a claim about theories at this latter level. The claim is that for every algorithmic/2nd -level
theory of natural language understanding that specifies an intermediate stopover at LF, there exists an equivalent
theory at the same level that does not require such a stopover. To the extent that the argument is convincing, it
casts doubt on two prominent hypotheses (2,3) about the role of grammar in processing

Hypothesis 2 (No Levels are Irrelevant) To understand a sentence it is first necessary to reconstruct its anal-
ysis on each linguistic level (Chomsky, 1957, 87)

Hypothesis 3 (LF Hypothesis) LF is the level of syntactic representation that is interpreted by semantic rules (Lar-
son and Segal, 1995, 248).

by exhibiting a counterexample where understanding does not require reconstruction of the LF level, and where
semantic rules would not apply at LF.

To make the argument, the paper develops a program that calculates formulas of a first-order logic for a fragment
of English. The goal is to reflect as faithfully as possible the computations specified by transformational grammar
along the deductive path from surface structure (SS) or Spell-Out to LF. Section 2 reviews how, in the functional pro-
gramming language Caml (Weis and Leroy, 1999; Cousineau and Mauny, 1998) combinator-parser techniques (Burge,
1975; Frost and Launchbury, 1989) yield an SS parser whose definition mirrors the grammar it is a parser for. Sec-
tion 3 expresses May’s (1977) Quantifier Raising (QR) idea as a simple Caml function. In combination with section 2,
this leads to a natural language understanding program that can handle the core data that motivated QR in the first
place. Then, section 4 shows how deforestation leads to an equivalent natural language understanding program that
does not use LF.
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2 A combinator parser for surface structure

Parsers can be expressed as functions from lists of words (symbols, lexical items, et cetera) to new remainder-lists
paired with tree-structure (Leermakers, 1993). This tree-structural output typically encodes the derivation, on the
grammar, of whatever elements the parsing function was able to chew off of the given word-list argument, but in fact
the technique itself can accommodate outputs of any type.

This view leads naturally to a conception of a parser as a mutually-recursive set of functions, each named for
a distinct nonterminal. As in Definite Clause Grammars, one must acknowledge that nonterminals are fundamen-
tally relations between input strings and data structures that aggregate their suffixes with outputs. The Caml type
definition in Listing 1 acknowledges this by specifying that an analyzer’s output type is a sequence (Seq.t) of outcomes.
The backquote indicates a type variable in a polymorphic data type.
(∗ an outcome is a result and a remaining symbol list ∗)
type (’symbol,’result) outcome = ’result ∗ (’ symbol list )

(∗ an analyzer is a function from remaining symbols to a sequence of outcomes ∗)
type (’symbol,’result) analyzer = ’symbol list −> (’symbol, ’result) outcome Seq.t

Listing 1: Parser type

Higher-order functions – combinators – combine simpler parsers into more complex ones. These modes of combi-
nation are not necessarily restricted to those expressible in context-free grammar as van Eijck (2003) demonstrates.
However, Listing 2 exhibits just the standard complement of alternation, sequencing and result-conversion. These
combinators can be given shorter, infixable names |. , &. and >. respectively.
(∗ either p1 can parse the input, or p2 can ∗)
let ( alternative : (’a ,’ b) analyzer −> (’a,’b) analyzer −> (’a,’b) analyzer) = fun p1 p2 inp
−> Seq.append ((p1 inp),(p2 inp))

(∗ use p2 to parse all the remainders p1 leaves behind. pair−up the results ∗)
let (sequence : (’a ,’ b) analyzer −> (’a,’c) analyzer −> (’a,(’b ∗ ’c)) analyzer) = fun p1 p2 inp −>

Seq.multiply (function (result1,remainder1) −>
Seq.map

(function (result2,remainder2) −> ((result1,result2),remainder2))
(p2 remainder1)

) (∗ outermost function takes individual outcomes to sequences of outcomes ∗)
(p1 inp)

(∗ map the function f : ’b−>’c over the result of parsing inp with p ∗)
let (gives : (’a ,’ b) analyzer −> (’b −> ’c) −> (’a,’c) analyzer)= fun p f inp −>

Seq.map (function (result,remainder) −> (f result,remainder)) (p inp)

Listing 2: Combinators

Adding a tree data type type ’a tree = Node of ’a ∗ ’a tree list and some constructor abbreviations branch0-branch3 (not
listed) yields1 a parser (Listing 3) that finds the two analyses depicted in Figure 1.

let rec s words = (dp &. vp >. branch2 ”s”) words
and dp words = ((d &. np >. branch2 ”dp”) |. (pn >. branch1 ”dp”)) words
and d = term [”every”;”some”] >. branch1 ”d”
and pn = term [”cecil”;”dexter”;”john”] >. branch1 ”pn”
and np words = (((kstar adj) &. nbar) >. function (premodifiers,n1) −> Node(”np”,premodifiers@[n1])) words
and nbar words = (adjoin2 pp ”nbar” n) words
and n = term [”city”;”body”;”scale”;”man”;”woman”] >. branch1 ”n”
and adj = term [”italian”] >. branch1 ”adj”
and vp words = (((v &. dp) >. branch2 ”vp”) |. ((v &. dp &. pp) >. branch3 ”vp”)) words
and pp words = (((p &. dp) >. branch2 ”pp”)) words
and p = term [”in”] >. branch1 ”p”
and v = term [”met”;”saw”;”played”;”loves”] >. branch1 ”v”

Listing 3: Combinator parser

3 Quantifier Raising

Quantifier Raising is an adjunction transformation proposed by May (1977) as part of a syntactic account of quanti-
fier scope ambiguities. An economical theory accounting for both quantifier scope and WH-movement could postulate
a single transformational rule — Move-α — that is uniformly subject to the same constraints, but links different
levels of representation in a grammar.

1The kstar and adjoin2 combinators are not difficult but would take up too much space in this extended abstract.
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Figure 1: Two analyses returned by the parser in Listing 3

May’s QR rule applies freely to adjoin quantified phrases to the root, subject to the constraint that the moved
phrase must c-command its trace. However, viewing QR as a function from lists of quantified nodes to new linear or-
derings for those nodes (at the front of the sentence) makes it clear that the c-command condition can equivalently
be enforced on lists of Gorn addresses. One need only avoid permutations that order a super-constituent before its
sub-constituents (Listing 4).
let rec improperly bound = function

[] −> false
| x :: xs −> (List. fold left (fun prev cur −> prev || ( is prefix x cur)) (improperly bound xs) xs)

let candidate quantifier orderings ss =
Seq.map (function x −> (ss,x))

(Seq. filter (function x −> not(improperly bound x)) (Seq.fromList (permutations (where are QDPs ss))))

let rec qr (ss ,places) = match places with
[] −> ss

| p::ps −>
let id = global counter () in
let remnant = substitute (indexwith id (Node(”t”,[]))) p ss in
Node ( (label ss ), (∗ adjunction: same label as old root ∗)

(indexwith id (at ss p)) (∗ adjunction: becomes new first daughter ∗)
::

[(qr (remnant,ps))] ) (∗ process the other daughter ∗)

Listing 4: Proper binding enforced on permutations of Gorn addresses

The functions sketched in this section can be combined in an end-to-end natural language understander as in Listing 5.
let analyze ssToLFprime inp =

(∗ parser returns only analyses that are finished=span all given input∗)
let surfaceStructures pf = Seq.map Pervasives.fst (Seq. filter finished (s (lex pf))) in

(∗ logical expression simplifier ∗)
let like prenex lfprime = Seq.map simplify lfprime in

like prenex (Seq.multiply ssToLFprime (surfaceStructures inp))

let withLF ss = Seq.map convert (Seq.map qr (candidate quantifier orderings ss))
let withoutLF ss = Seq.map f (candidate quantifier orderings ss)

Listing 5: Abstract analyzer with plug-in that uses LF (section 4 derives f)
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The program in Listing 5 faithfully calculates interactions between the constraints that May’s competence theory
specifies:

# Seq.iter formula (analyze withLF "john met every body in some italian city");;

‘exists v25[forall v26[(italian-city(v25) & (body-in(v26,v25) -> john-met(v26)))]]’

‘forall v27[exists v28[(body(v27) -> (italian-city(v28) & john-met-in(v28,v27)))]]’

‘exists v29[forall v30[(italian-city(v29) & (body(v30) -> john-met-in(v29,v30)))]]’

- : unit = ()

# Seq.iter formula (analyze withLF "every body in some italian city met john");;

‘exists v31[forall v32[(italian-city(v31) & (body-in(v32,v31) -> met-john(v32)))]]’

- : unit = ()

Executing the analyze withLF function causes intermediate data structures to be created. In particular, it allocates
a sequence of quantifier-raised syntactic structures. Is there an equivalent program that does not allocate this
intermediate data? Section 4 answers this question in the affirmative.

4 How deforestation applies to the parser with QR

The function candidate quantifier orderings multiplies out all nondeterminism in advance so that the definition of withLF

(Listing 5) has the form map g (maph sequence of things) which is equivalent to mapping the composition of g with
h. The composition would be: map λx. [g(h x)]︸ ︷︷ ︸

DeforestMe

sequence of things

In the case at hand, x pairs a surface structure and a Gorn-addressed list of quantified nodes. Thus, the program
transformation begins with
let f = function (ss,places) −> convert (qr (ss,places))

Listing 6: Caml definition of the form DeforestMe with x = (ss, places), g = convert, h = qr

Rule numbers in this section refer to Wadler’s program transformation rules.
(∗ 3: replace convert with its definition ∗)
let f = function (ss,places) −> match (qr (ss,places)) with

Node ( ,(Node ( ,(Node (”d”,[Node (”every” ,[])])):: np:: ) as k1):: k2:: ) −>
begin

match (indexof k1) with (∗ k1 is an indexed [XP [D every ] ... ], k2 her right−sister ∗)
Some numericstring −> Quant(Universal,numericstring,Impl ((predicateify [numericstring] np),(convert k2)))

| None −> (∗ first daughter exhaustively dominates ”every” but is not indexed ∗)
let numericstring = ”novariable” in Quant(Universal,numericstring,Impl ((predicateify [] np),(convert k2)))

end
| here −> predicateify [] here (∗ any node whose 1st daughter is not a quantified DP ∗)

(∗ 6: replace match on a function application with its definition ∗)
let f = function (ss,places) −> match (match places with

[] −> ss
| p::ps −>

let id = global counter () in
let remnant = substitute (indexwith id (Node(”t”,[]))) p ss in

Node ( (label ss ),
(indexwith id (at ss p))
::

[(qr (remnant,ps))]
)

) with
Node ( ,(Node ( ,(Node (”d”,[Node (”every” ,[])])):: np:: ) as k1):: k2:: ) −> ...

| here −> predicateify [] here

(∗ 7: broadcast inner case statement outwards ∗)
let f = function (ss,places) −> match places with

[] −> match ss with
Node ( ,(Node ( ,(Node (”d”,[Node (”every” ,[])])):: np:: ) as k1):: k2:: ) −> ...

| here −> predicateify [] here
| p::ps −> match (let id = global counter () in

let remnant = substitute (indexwith id (Node(”t”,[]))) p ss in
Node ( (label ss ), (∗ adjunction: same label as old root ∗)

(indexwith id (at ss p)) (∗ adjunction: becomes new first daughter ∗)
::

[(qr (remnant,ps))] (∗ process the other daughter ∗)
)

) with
Node ( ,(Node ( ,(Node (”d”,[Node (”every” ,[])])):: np:: ) as k1):: k2:: ) −> ...

| here −> predicateify [] here

(∗ hoisting lets reveals we are matching on a constructor ∗)
(∗ 5: matching on a constructor. use fact that NP is second daughter of DP ∗)
let f = function (ss,places) −> match places with
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[] −> match ss with
Node ( ,(Node ( ,(Node (”d”,[Node (”every” ,[])])):: np:: ) as k1):: k2:: ) −> ...

| here −> predicateify [] here
end

| p::ps −> let id = global counter () in
let remnant = substitute (indexwith id (Node(”t”,[]))) p ss in
match (indexof (indexwith id (at ss p))) with
Some numericstring −>

Quant(Universal,numericstring,Impl ((predicateify [numericstring] (at ss (p@[1]))),( convert (qr (remnant,ps)))))
| None −> let numericstring = ”novariable” in

Quant(Universal,numericstring,Impl ((predicateify [] (at ss (p@[1]))),( convert (qr (remnant,ps)))))

(∗ indexof (indexwith n t) = Some (string of int n) for all trees t and integers n ∗)
(∗ 5: matching on the Some constructor ∗)
let f = function (ss,places) −> match places with

[] −> match ss with
Node ( ,(Node ( ,(Node (”d”,[Node (”every” ,[])])):: np:: ) as k1):: k2:: ) −> ...

| here −> predicateify [] here
| p::ps −> let id = global counter () in

let remnant = substitute (indexwith id (Node(”t”,[]))) p ss in
Quant(Universal,( string of int id ), Impl ((predicateify [( string of int id )] (at ss (p@[1]))),( convert (qr (remnant,ps)))))

end

(∗ knot−tie in the nonempty case of outermost match: realize that we started by translating (convert (qr (ss,places))) ∗)
let rec f = function (ss,places) −> match places with

[] −> match ss with
Node ( ,(Node ( ,(Node (”d”,[Node (”every” ,[])])):: np:: ) as k1):: k2:: ) −> ...

| here −> predicateify [] here
| p::ps −>

begin
let id = global counter () in
let remnant = substitute (indexwith id (Node(”t”,[]))) p ss in

Quant(Universal,( string of int id ), Impl ((predicateify [( string of int id )] (at ss (p@[1]))), f (remnant,ps)))
end

(∗ if there are any tree nodes in ss labeled with DP, candidate quantifier orderings will have listed them in places
and the second clause of the outermost match will have replaced them with traces by the time the first clause matches
thus there cannot ever be a match on the first clause of the inner match inside [] −> ∗)

let rec f = function (ss,places) −> match places with
[] −> match ss with

here −> predicateify [] here
| p::ps −>

begin
let id = global counter () in
let remnant = substitute (indexwith id (Node(”t”,[]))) p ss in

Quant(Universal,( string of int id ), Impl ((predicateify [( string of int id )] (at ss (p@[1]))), f (remnant,ps)))
end

(∗ simplify : match imposes no constraint and has only one case ∗)
let rec f = function (ss,places) −> match places with

[] −> predicateify [] ss
| p::ps −>

begin
let id = global counter () in
let remnant = substitute (indexwith id (Node(”t”,[]))) p ss in

Quant(Universal,( string of int id ), Impl ((predicateify [( string of int id )] (at ss (p@[1]))), f (remnant,ps)))
end

Listing 7: Derivation of function f : string tree ∗ int list list → formula that does not use LF
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