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1 Introduction

We propose a Proof-Theoretic Semantics (PTS) for a fragment E+
0 (delineated below, and extended in

the sequel) of Natural Language (NL). This semantics is intended to be incorporated into type-logical
grammars(TLG) [4], constituting an alternative to the traditional model-theoretic semantics (MTS),
originating in Montague’s seminal work [3], used in TLG. The essence of our proposal is:
1. For sentences, replace truth conditions (in arbitrary models) by canonical derivability conditions
(from suitable assumptions). In particular, this involves a “dedicated” proof-system (in natural deduction
form), based on which the derivability conditions obtain. The system should be harmonious, in that
its rules satisfy certain balance between introduction and elimination, in order to qualify as meaning
conferring. Two notions of harmony are shown to be satisfied by the proposed rules. The approach put
forward here is different from a related one by Ranta (e.g., [9]), who relates NL constructs to constructive
type-theory in Martin-Löf’s theory.
2. For sub-sentential phrases, down to lexical units (words), replace their denotations (in arbitrary
models) as conferring meaning, by their contributions to the meanings (i.e. derivability conditions) of
sentences in which they occur. This adheres to Frege’s context principle, the latter made more specific
by the incorporation into a TLG. For lack of space, extraction of sub-sentential phrase meanings is not
shown here.
To the best of our knowledge, there has been no attempt1 to develop PTS as part of a grammar for NL.
The following quotation from [13] (p. 2) emphasizes this lack of applicability to NL, the original reason
for considering PTS to start with:

Although the “meaning as use” approach has been quite prominent for half a century now and pro-

vided one of the cornerstones of philosophy of language, in particular of ordinary language philosophy,

it has never become prevailing in the formal semantics of artificial and natural languages. In formal

semantics, the denotational approach which starts with interpretations of singular terms and pred-

icates, then fixes the meaning of sentences in terms of truth conditions, and finally defines logical

consequence as truth preservation under all interpretations, has always dominated.

In attempting to incorporate PTS into the grammar of NL, we are not committing ourselves to the
accompanying philosophical position w.r.t. semantics, as put forward prominently by, for example, Dum-
mett and Brandom [discussion in the full paper].

∗Work carried out while the first author was on leave at St Andrews university
†Computer Science dept., the Technion-IIT, Haifa, Israel (francez@cs.technion.ac.il)
‡School of Computer Science, University of St Andrews, Scotland, UK (rd@st-andrews.ac.uk)
1[1] provides natural deduction for English, some similar to the rules here, at least in spirit; however they are not claimed

to confer meaning.
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There are some differences in the way our PTS is conceived, due to the difference between E0 and tradi-
tional formal calculi for which ND-systems were proposed in logic as a basis for PTS.
– Logical calculi are recursive, in that each operator (connective, quantifier) is applied to (one or two)
formulas of the calculus. Thus, there is a natural notion of the dominant (or main) operator which is
being introduced/eliminated from a formula. In E+

0 , on the other hand, there is no such notion of a
dominant operator. Furthermore, the operators are introduced according to their grammatical function;
for example, ‘every’ may be introduced either into the subject or into the object of a transitive verb, or
into both.
– Formal calculi are usually taken to be semantically unambiguous, while E+

0 (and NL in general) is
semantically ambiguous. In a PTS, the semantic ambiguity manifests itself via different derivation (from
same assumptions). [The full paper will show how traditional scope ambiguity manifests itself in PTS].
– Since E+

0 has no non-trivial (formal) theorems (derived from no assumptions) [shown in the full paper],
a different notion of PTS-validity ([7],[12]) is needed [presented in the full paper].

2 The natural deduction proof system

2.1 The NL core fragment E+
0

The fragment E+
0 has sentences headed by intransitive and transitive verbs, and noun phrases with a noun

and a determiner (proper names are included in the full paper). In addition, there is the copula (later,
adjectives and relative clauses are added). This is a typical fragment of many NLs, syntactically focusing
on subcategorization, and semantically focusing on predication and quantification. Some typical sentences:
every/some girl smiles, some/every girl is a student, every/some girl loves every/some boy. Anticipating the
TLG for E+

0 , we refer to expressions such as every X, some Y as nps (noun-phrases). In E+
0 , nps can be

endowed with grammatical functions (gf) within sentences in a fairly obvious way, fitting the pre-theoretic
use of this term: subj (subject) and obj (object).

The proof system N+
0 is defined over a language L+

0 , extending (and schematizing over) E+
0 . We use

X, Y, ... to schematize over nouns, P,Q to schematize over intransitive verbs, and R to schematize over
transitive verbs. In addition, L+

0 has a countable set P of individual parameters, ranged over by meta-
variables (in boldface font)nj, r. We refer to L+

0 sentences as pseudo-sentences. Pseudo-sentences inherit
the grammatical functions in the obvious way. For an L+

0 pseudo-sentence S, we use the notation S[np/gf ]

to indicate that S has np in its gf -position. For example, S[every X/subj] indicates a pseudo-sentence with
subject every X. These pseudo-sentences include every X P , every X R every/some Y and every X R j.
Similarly, S[j/obj ] indicates a pseudo-sentence with object j, like some X R j, or r R j. Also, S[−/gf ]

denotes a sentence “missing” an np in its gf -position (e.g., S[−/subj] is a verb-phrase). A pseudo-sentence
is ground if it has parameters in all its gf -positions, otherwise non-ground.

2.2 The natural deduction proof-system N+
0

We start with a BHK-like justification of the forthcoming rules.

• every [evidence transforming]: A proof of S[every X/gf ] is a function mapping each proof of
j is an X (for some fresh j) into a proof of S[j/gf ]. For example, a proof of every X P is a function
mapping each proof of j is an X to a proof of j P . Similarly, a proof of every X R r is a function
mapping each proof of j is an X to a proof of j R r.
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Γ, S`S (Ax)

Γ, [j is an X]i`S[j/gf ]

Γ`S[every X/gf ]
(eIi

gf )
Γ`j is an X Γ`S[j/gf ]

Γ`S[some X/gf ]
(sIgf )

Γ`S[every X/gf ] Γ`j is an X

Γ`S[j/gf ]
(eEgf )

Γ`S[some X/gf ] Γ, [j is an X]j , [S[j/gf ]]i`S′

Γ`S′ (sEi,j
gf )

where F(Γ S[every X/gf ], j) in (eIgf ), and F(Γ S[some X/gf ]S
′, j) in (sEgf ).

Figure 1: The meta-rules for N+
0

• some [evidence combining]: A proof of S[some X/gf ] is a pair of proofs, one of j is an X and the
other of S[j/gf ]. For example, a proof of some X P is a pair of proofs, one of j is an X, and the
other of j P . A proof of some X R r is a pair of proofs, one of j is an X and the other of j R r.

We next present the ND-rules for N+
0 . As is traditional, we enclose discharged assumptions in (indexed)

square brackets, using the index to mark the rule-application responsible for the discharge. The presen-
tation is in Gentzen-style ND, using (single consequent) sequents (with shared contexts), formed over L+

0

pseudo-sentences. There is an introduction-rule and elimination-rule for each determiner forming an np,
in each gf . For a (finite) set Γ of L+

0 sentences and a parameter j, let F(Γ, j) mean that j is fresh for Γ,
i.e. not mentioned in Γ.
We present in Figure 1 the N+

0 -rules via meta-rules, parameterized by grammatical functions (gf). In
the rule names, we abbreviate ‘every’ and ‘some’ to ‘e’ and ‘s’, respectively. For example, the meta-rule
(eIi

gf ) generates rules (eIi
subj), (eIi

obj). We assume the usual definition of a (tree-shaped) ND-derivation.
A derivation is canonical if it ends with an application of an introduction-rule. Let Γ`S denote deriv-
ability of S from Γ, with DΓ`S denoting such a derivation; Γ`cS and DΓ`c

S stand for the canonical
counterpart. Also, [[S]]∗Γ denotes the collection of all derivations of S from Γ (possibly empty).
Below we present a sample N+

0 non-canonical) derivation, establishing

some U is an X, every X R some Y, every Y is a Z ` some U R some Z

some U is an X

[r is a U]1

[r is an X]2 every X R some Y

r R some Y
(eEsubj)

some U R some Y
(sIsubj)

some U R some Y
(sE

1,2
subj

)
[some U R j]3

[j is a Y ]4 every Y is a Z

j is a Z
(eEsubj)

(some U R some Z
(sIobj)

some U R some Z
(sE

3,4
obj

)

Lemma: If Γ`S, than Γ,Γ′`S.

3 The sentential proof-theoretic meaning

In the discussions of PTS in logic, it is usually stated that ‘the ND-rules determine the meanings (of
the connectives/quantifiers)’. However, no explicit denotational meaning (“semantic value”) is defined
(proof-theoretic, not model-theoretic, denotation). In other words, there is no explicit definition of the
result of this determination. If one wants to apply Frege’s context principle to those PTS-meanings,
and derive meanings for sub-sentential phrases (including lexical words) as contributions to sentential
meanings, such an explication is needed. We take here the PTS-meaning of an E+

0 sentence S, as well as
of an L+

0 non-ground pseudo-sentence S, to be the function from contexts Γ returning the collection of all
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the canonical derivations in N+
0 of S from Γ. In accordance with many views in philosophy of language,

such a collection of derivations can be viewed as providing G[[S]], grounds of asserting S.
Definition (PTS-meaning, grounds): For a sentence S, or a non-ground pseudo-sentence S, in L+

0 :

[[S]]PTS
L+

0
=df. λΓ.[[S]]Γ [= λΓ.{DΓ`c

S}] G[[S]] =df. {Γ | Γ`cS}

where:

1. For S a sentence in E+
0 , Γ consists of E+

0 -sentences only. Parameters are not ”observable” in
grounds for assertion.

2. For S a pseudo-sentence in L+
0 , Γ may also contain pseudo-sentences with parameters.

The set of canonical derivations of ground pseudo-sentences is given, and meaning is defined
relative to them!
[The full paper shows how to reconstruct in PTS the scope ambiguity inherent in E+

0 ].

4 Properties of N+
0

The origin of PTS for logic is already in the work of Gentzen [2], who invented the natural deduction
proof-system for 1st-order logic. He hinted there, that introduction-rules could be seen as the definition
of the logical constant serving as the main connective, while the elimination-rules are nothing more than
consequences of this definition. This was later refined into the Inversion Principle by Prawitz, which
shows how the introduction-rules determine the elimination-rules. The introduction-rules were taken as
a definition of the meaning of logical constants, instead of model-theoretic interpretation, that appeals to
truth in a model.
However, in view of Prior’s [8] attack on this approach, by presenting a connective ‘tonk’, whose
introduction-rule was that of a disjunction, while its elimination-rule was that of conjunction, trivial-
izing the whole deductive theory by rendering every two sentences inter-derivable, it became apparent
that not every combination of ND-rules can serve as a basis for PTS.
The property of harmony of the ND-rules, taken in a broad sense to express a certain balance between
elimination and introduction rules (absent in the tonk rules) became a serious contender for an appro-
priateness condition for ND-rules to serve as a basis for a PTS. One approach to this property, known
also as intrinsic harmony, was already relied upon by Prawitz’s observations about “reducing proofs”,
whereby every proof with a maximal formula, i.e. one resulting from an application of an introduction-
rule, immediately followed by an application of its elimination-rule, can be simplified to a more “direct”
form. Prawitz showed that for FOL proofs normalize, avoiding any such ”detour”. See [10, 11] for a
critical discussion of tonk’s disharmony, and a different conception of harmony as a condition for ad-
mitting deduction-rules as defining meaning, based on what is called in [6] generalized elimination-rules.
According to this approach, an elimination-rule allows drawing an arbitrary conclusion, provided it is
derivable from the premisses of the introduction-rule. We show N+

0 satisfies both criteria.
Intrinsic Harmony One way to explicate harmony is by the following properties of rules [5], comple-
menting Prawitz’s approach:
Local Soundness: Every introduction followed directly by an elimination can be reduced. This shows
that the elimination-rules are not too strong w.r.t. the introduction-rules. This is basically Prawitz’s
normalizability.
Local Completeness: There is a way to eliminate and to reintroduce. This shows that the elimination-
rules are not too weak w.r.t. the introduction-rules. Here, introduction/elimination refer to the same gf .
These properties lead to reduction and expansion transformations on derivations.
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Γ, S`S
(ID)

Γ, j is an X, S[every X/gf ], S[j/gf ]`S′

Γ, j is an X, S[every X/gf ]`S′ (eLgf )
Γ, j is an X`S[j/gf ]

Γ`S[every X/gf ]
(eRgf )

(fresh j)

Γ, j is an X, S[j/gf ]`S′

Γ, S[some X/gf ]`S′ (sLgf )
(fresh j)

Γ`j is an X Γ`S[j/gf ]

Γ`S[some X/gf ]

sRgf

Figure 2: A sequent-calculus for N+
0

The reduction and expansion for every are shown below. [The full paper also shows them for some.]

[j is an X]i
D1

S[j/gf ]

S[every X/gf ]
(eIi

gf )
D2

k is an X

S[k/gf ]
(Eegf )

;r

D2

k is an X
D1[k/j]

S[k/gf ]

D
S[every X/gf ] ;e

D
S[every X/gf ] [j is an X]i

S[j/gf ]

eEgf

S[every X/gf ]
eIi

gf

Generalized-Elimination based Harmony According to this view ([10, 11]), harmony is captured by
the elimination-rules having a specific form (often, simplifiable to the stated form). Suppose an operator

δ has n ≥ 1 introduction-rules, schematically presented as
Πi

A
(δI)i, 1 ≤ i ≤ n The corresponding

elimination-rule takes the form
A

[Π1]1
C · · ·

[Πn]n
C

C
(δE1,···,n) where the hypothetical premiss derivations

are discharged. Thus, C is deducible from A (formed with δ as its main operator) precisely when it is
deducible from the grounds of introducing A, namely Π1, . . . , Πn. Note that all grounds are used. We
now establish generalized-elimination harmony for N+

0 .
1. For every, the generalized elimination-rule takes the following form (see [10] for the explanation how

hypothetical derivations are expressed by such rules):
Γ`S[every X/gf ] Γ`j is an X Γ, S[j/gf ]`S′

Γ`S′ (eGEfg)

By choosing S′ to be S[j/fg], (eGEgf ) reduces to our original rule (eEgf ). The reduced rule suffices, since
the generalized one is derivable from it [shown in the full paper].
2. For some, the presented rule has already the form of the generalized elimination-rule that corresponds
to the sIgf introduction-rule.

4.1 Decidability of N+
0 derivability

We now attend to the issue of decidability of derivability in N+
0 . The positive result provided here makes

PTS-based meaning effective for L+
0 . Figure 2 displays a sequent calculus presentation of L+

0 , easily
shown equivalent to the natural deduction presentation considered thus far. The rules are arranged in
the usual way of L-rules (introduction of an antecedent) and R-rules (introduction of a succedent). In
view of the ambiguity of the S[.../gf ]-notation, it is here understood that the gf indicated is that which
is to be analyzed first during proof-search. Admissibility of weakening (W ), Contraction (C) and (Cut)
is routinely established for this calculus. The existence of a terminating proof-search procedure follows,
since the number of parameter occurrences generated by the rules is bounded [more details in the full
paper].
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5 Extending the fragment

We now consider two simple extensions of E+
0 , related to extending the notion of nouns. In E+

0 , we had
only primitive nouns. We add two forms of compound noun: one formed by adjectives and the other
by relative clauses. In both cases, in the corresponding extensions of N+

0 , we let X, Y schematize over
compound nouns also in the original rules.
Note that, while the N+

0 rules may still seem to be introducing/eliminating some kind of logical constants
(albeit not as main operator), the following rules (for adjectives and relative clauses) clearly transcend
logical rules, and are more strictly meaning-defining for natural-language constructions.
Adding intersective adjectives: Intersective adjectives are schematized by A. Typical sentences are:
/every girl/some/girl is beautiful, every beautiful girl/some beautiful girl smiles, every beautiful girl/some
beautiful girl loves every clever boy/some clever boy. A noun preceded by an adjective is again a (compound)
noun (the syntax will be treated more precisely once the grammar is presented). Denote this extension
by E+

0,adj . Recall that in the N+
0 rules, the noun schematization should be taken over compound nouns

too. Note that E+
0,adj is no longer finite, as an unbounded number of adjectives may precede a noun. We

augment N+
0 with the following ND-rules for adjectives.

Γ1`j is an X Γ2`j is A

Γ1Γ2`j is an A X
(adjI)

Γ`j is an A X

Γ`j is an X
(adjE1)

Γ`j is an A X

Γ`j is A
(adjE2)

Let the resulting system be N+
0,adj .

As an example of derivations using the rules for adjectives, consider the following derivation for

j loves every girl ` j loves every beautiful girl

In model-theoretic semantics terminology, the corresponding entailment is a witness to the downward
monotonicity of the meaning of every in its second argument. We use an obvious schematization.
[r is an A Y ]1

r is a Y
(adjE1)

j R every Y

j R r
(eEsubj)

j R every A Y
(eI1

obj) [The full paper shows harmony for the adjective rules.]
Adding Relative Clauses Typical sentences include the following. every boy/some boy loves every/some
girl who(m) smiles/loves a boy who smiles, every girl/some girl is a girl who loves some/every boy, some
boy loves every girl who loves every boy who smiles (nested relative clause). So, girl who smiles and
girl who loves every boy are compound nouns. We relate somewhat loosely to the case of the rela-
tive pronoun, in the form of who(m), abbreviating either who or whom, as the case requires. Denote
the resulting fragment E+

0,r (or E+
0,a,r if both adjectives and relative clauses are considered). The cor-

responding ND-system N+
0,r extends N+

0 by adding the following introduction and elimination-rules.
Γ1`j is an X Γ2`S[j/gf ]

Γ1Γ2`j is an X who S−gf
(relI)

Γ`j is an X who S−gf

Γ`j is an X
(relE1)

Γ`j is an X who S−gf

Γ`S[j/gf ]
(relE2) As an ex-

ample of a derivation in this fragment, consider some girl who smiles sings `N+
0,r

some girl sings exhibiting
the model-theoretical upward monotonicity of some in its first argument.

some X who P1 P2

[r is an X who P1]1

r is an X
(relE1)

[r P2]2

some X P2
(sIsubj)

some X P2
(sE1,2

subj) [The full paper will show harmony for
these rules.]

Once again, decidability of derivability is shown by means of the following additional sequent-calculus

rules:
Γ, j is an X, S[j/gf ]`S′

Γ, j is an X who S[−/gf ]`S′ (Lrel)
Γ`j is an X Γ`S[j/gf ]

Γ`j is an X who S[−/gf ]
(Rrel)
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