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1 Introduction

An NP-hardness proof for nonlocal multicomponent tree-adjoining grammar (MCTAG, Joshi, 1985; Weir,
1988)1 is extended to some linguistically relevant restrictions of that formalism. It is found that there are
NP-hard languages among the languages described by nonlocal MCTAGs even if the following restrictions
are imposed: every (or alternatively at least one) tree in every tree set has a lexical anchor; every tree set
may contain at most two trees; in every such tree set, there is a dominance link between the foot node of one
tree and the root node of the other tree and this dominance link must be obeyed in the derived tree. This is
the version of MCTAG used in Becker et al. (1991).

While standard TAGs are closed under lexicalization (Schabes, 1990), it is not known whether this also
applies to nonlocal MCTAG. So it would be conceivable that lexicalized nonlocal MCTAG are mildly context-
sensitive. However, we show that lexicalized nonlocal MCTAG in fact contains languages that are NP-
complete. Moreover, even if both restrictions (dominance links and lexicalization) are applied to nonlocal
MCTAG at the same time, it still remains NP-complete. (For reasons of space, only NP-hardness but not
membership in NP is discussed in this abstract.)

The restriction of the proof to the lexicalized and dominance-link conditions is mathematically straightfor-
ward. It is linguistically significant, however, because it has been argued (Becker et al., 1991) that phenomena
such as German scrambling put natural language outside of the class LCFRS, a characterization of the class
of mildly context-sensitive languages (Weir, 1988). This would put natural language outside of standard
TAG, and even outside of set-local MCTAG, which is equivalent to LCFRS. (Joshi, 1985; Weir, 1988).

It should be noted that there exist alternative views on the complexity of scrambling. The data that would
put it outside of LCFRS is based on the assumption that scrambling is grammatical for an unbounded number
of levels of embedding, no matter what the order of scrambled arguments is. However, this assumption is
hard to check empirically, because beyond three levels of embedding it is near impossible to obtain reliable
grammaticality judgments from speakers due to the processing load. It is exactly the judgments about
sentences beyond three levels of embedding that would be necessary in order to choose among grammar
classes inside LCFRS and those outside of it. For example, tree-local MCTAG is inside LCFRS, and it derives
some though not all of the sentences with more than tree levels of embedding (Aravind Joshi, p.c.). See also
Joshi et al. (2002) for discussion. We are not pursuing the interesting empirical question of choosing among
these perspectives here. Our enterprise is merely mapping out the boundary between those linguistically
relevant grammar classes which are polynomially recognizable and those which, assuming P 6= NP , are not.

Since there are polynomially recognizable languages outside of the class LCFRS (Boullier, 1998), the hope
is that a suitable grammar class can be found that contains all natural languages and whose members are still
polynomially recognizable. The contribution of the present work to that search is that nonlocal MCTAG is,
unfortunately, not a candidate for such a class even if linguistically plausible restrictions – i.e. lexicalization
and/or dominance links – are applied.

1In an MCTAG, instead of auxiliary trees being single trees like in standard TAG (Joshi and Schabes, 1997) we have auxiliary
sets, where a set consists of one or more (but still a fixed number of) auxiliary trees. Adjunction is defined as the simultaneous
adjunction of all trees in a set to different nodes. In a tree-local MCTAG, all trees from one set S must be simultaneously
adjoined into the same elementary tree T . In a set-local MCTAG, all trees from one set S must be simultaneously adjoined into
trees that all belong to the same set S2. If this requirement is dropped altogether, we obtain non-local MCTAG.
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2 A nonlocal MCTAG that generates an NP-hard language

This section presents a proof of the NP-hardness of standard (i.e. nonlexicalized, non-dominance-links) non-
local MCTAG with adjunction constraints. This is essentially the proof that was reported by Dahlhaus and
Warmuth (1986) for scattered grammars. It was noted by Rambow and Satta (1992) and Rambow (1994)
that the proof carries over to certain nonlocal MCTAGs in principle, but they do not actually perform the
construction of the NP-hard grammar. We flesh out the proof in detail here, as we are going to need it later
where it will be modified for the restricted cases.

Intuitively, the main property of nonlocal MCTAG that is underlying this proof is the following: We
make use of the fact that nonlocal MCTAG allows us to introduce pairs of terminals into the derivation at
two different (indeed arbitrarily distant) places in the tree, but requires us to introduce them at the same
time. This allows us to build a grammar that counts up to the same arbitrary number in two places of the
derivation. In the final string, each of these numbers is expressed in unary as a block of identical terminals.
In designing our grammar, we may either choose to delimit these blocks from each other by special separator
symbols, or simulate addition by leaving out these separators. In this case, since the string contains no
record of the derivation, a recognizer only sees the sum and not the summands, and must in effect guess
which summands have been chosen.

We now present a polynomial reduction from the strongly NP-complete problem 3-Partition to a specific
MCTAG.

3-Partition.

Instance. A set of 3k natural numbers ni, and a bound B.
Question. Can the numbers be partitioned into k subsets of cardinality 3, each of which sums to B?

To simplify the construction, assume that 3-Partition is restricted in the way that there are at least three
numbers ni (i.e. that k ≥ 1) and that each of the numbers ni is greater or equal to two.

An instance of 3-Partition can be described as the sequence 〈n1, . . . , n3k, B〉, or equivalently as the string
xan1xan2 . . . xan3k(ybB)k where a, b, x, y are arbitrary symbols. (In this string, x and y are only used as
separators. It will be seen later why the end of the string was chosen to be repeated k times.) In Figure 1,
we provide a nonlocal MCTAG G1 that has the property that 〈n1, . . . , n3k, B〉 is an instance of 3-Partition
if and only if the string xan1xan2 . . . xan3k(ybB)k is accepted by G1. (Ignore the dominance links in Figure
1 for now.) This grammar is based on the growing scattered grammar G in Dahlhaus and Warmuth (1986).

G1 has one initial tree, αstart; one single auxiliary tree, βcreate−triple; and five auxiliary tree sets. We
indicate obligatory adjunction sites with OA and null-adjunction sites with NA. Foot nodes are always
null-adjunction sites and therefore not explicitly marked as such. There are no substitution sites in G1.

To get an idea of how the grammar works, look at Figure 1. All terminals are introduced to the left of
the spine of their auxiliary tree, so whatever is introduced towards the top of the derived tree will appear
towards the left of the string.

Call a non-terminal node saturated iff it has a null-adjunction (NA) constraint, and unsaturated iff it has
an obligatory adjunction (OA) constraint. In the derived trees produced by G1, every non-terminal node is
either saturated or unsaturated. All non-terminal nodes that are introduced into the derivation, except root
and foot nodes, are unsaturated – they must be adjoined into at some point. Because the root (as well as the
foot) nodes of every auxiliary tree have null-adjunction constraints, as soon as an auxiliary tree is adjoined
into a node, that node is saturated – it is replaced by a null-adjunction node. Most trees contain exactly
one unsaturated node and therefore adjoining them keeps the number of unsaturated nodes in the derivation
constant. The exceptions are the singleton trees αstart and βcreate−triple, which introduce more than one
unsaturated node, and the trees βclose−triple.2, βend.1 and βend.2, which introduce none.

All derivations must start with the initial tree αstart, which introduces an X and a triple 〈Y, Ŷ , Ŷ 〉.
Subsequent steps in the derivation may use βcreate−triple nondeterministically to introduce any number of

additional triples 〈Y, Ŷ , Ŷ 〉. For clarity of exposition, we can assume that these triples are all introduced as
early as possible and that there are k of them, corresponding to the number of sets created by the partition
in the instance of 3-Partition that is to be recognized.

2



At all times there is at most one of {X, X} in the derivation. So after αstart and βcreate−triple have

produced the original X and some number of 〈Y, Ŷ , Ŷ 〉, any derivation can only proceed as follows:

1. Pick the X and some Y (resp. Ŷ ) and use βconsume−y (resp. βconsume−ŷ) to generate xa on the left and
yb (resp. b) on the right. This introduces X on the left and Y on the right.

2. Optionally use βfill−triple to add an equal number of a’s and b’s to the left and right of the string.

3. Finally replace X by aa and Y by bb. Either βclose−triple or βend can be used for this. The only
difference consists in whether another X is introduced. But there is no real choice here: If there are
any Y ’s or Ŷ ’s left on the right, they need to be consumed by introducing an X on the left and then
going through steps 1 to 3 again with that X . If not, no X can be introduced or the derivation would
get stuck.

This way, the grammar produces a sequence of blocks of a’s followed by a sequence of blocks of b’s. The
sizes of the blocks of a’s correspond to the numbers ni. While X is deriving xani followed by X , either some
Y derives ybni or some Ŷ derives bni . There is a block of b’s for each n, but the blocks of b’s are permuted
and grouped in threes. While the grammar produces more words than the ones that correspond to solutions
of 3-Partition, those words in which each group of three sums to B are exactly the ones that correspond to
some solution.

Proof.2 Suppose we are given a solution of the instance of 3-Partition, i.e. disjoint sets A1, . . . , Ak, each
of which contains 3 ni’s that add to B. It will be shown that the word w = xan1xan2 . . . xan3k(ybB)k that
describes the instance of 3-Partition is in L(G1).

For any derived MCTAG tree t, do a left-to-right preorder traversal of t concatenating all the node labels
and skipping any saturated non-terminals, and call the resulting string the unsaturated yield of t. Define
a relation “⇒” (“is rewritten to”) as holding between two strings s1 and s2 wrt. an MCTAG G iff there
exist trees t1, t2 with unsaturated yields s1, s2 such that t2 can be obtained from t1 in a single (possibly
multicomponent) substitution or adjunction step. We write G ⇒ s iff G contains an initial tree t rooted in
the start symbol of G such that there is a string st that is the unsaturated yield of t and st ⇒ s. As usual,
we write

∗

⇒ for the reflexive and transitive closure of ⇒. Obviously, for all w ∈ Σ∗, G derives w iff G
∗

⇒ w.
Clearly G1

∗

⇒ X(Y Ŷ Ŷ )k. Associate each set Aq, 1 ≤ q ≤ k, with the qth group Y Ŷ Ŷ and associate

each of the three elements of the set with one of the three symbols Y , Ŷ , and Ŷ , respectively, in the group.
The association within each group is arbitrary. The derivation X(Y Ŷ Ŷ )k ∗

⇒ w is organized in 3k phases.
In the jth phase, for 1 ≤ j < 3k, X is rewritten to xanj X and in parallel the Y -symbol (resp. Ŷ -symbol)
that is associated with nj is rewritten to ybnj (resp. bnj ). In the 3kth phase X is rewritten to xan3k and in

parallel the Y -symbol (resp. Ŷ -symbol) that is associated with n3k is rewritten to ybn3k (resp. bn3k). Since
the numbers of Aq add to B, each group Y Ŷ Ŷ derives ybB.

For the opposite direction, assume now that G1

∗

⇒ w, where w = xan1xan2 . . . xan3k(ybB)k. Normalize
the derivation by adjoining all instances of βcreate−triple as early as possible within the derivation of w. The
normalized derivation has the form:

G1

∗

⇒ X(Y Ŷ Ŷ )k ∗

⇒ w

The symbol X is rewritten to X and after a number of steps to X again. More exactly, X produces xaniX

at the jth phase, for 1 ≤ j < 3k, and xan3k in the last phase. Furthermore, in the ith phase, for 1 ≤ i ≤ 3k,
a particular Y (resp. Ŷ ) is rewritten to ybni (resp. bni). Observe that each non-terminal Y is responsible for
a terminal y in w and the Y ’s produce exactly B b’s. Each group thus corresponds to a different set of three
numbers that adds to B and there are k such sets. �

3 Restriction to dominance links

The above proof can be easily restricted to nonlocal MCTAG with dominance links (MCTAG-DL) by adding
dominance links to G1 as in Figure 1 to produce a strongly equivalent MCTAG-DL G2. Since the two

2From Dahlhaus and Warmuth (1986), with a few extensions.
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grammars have the same language, it follows that there exist MCTAG-DL with NP-hard languages.
Proof. Call any element of {X, X} an X-like symbol and any element of {Y, Y , Ŷ } a Y-like symbol.

Observe that in the tree αstart in the original grammar G1, and vacuously in all the other trees of the
grammar, any X-like symbol dominates any Y-like symbol. Call any elementary or derived tree with this
property an X-over-Y tree. Moreover, in every tree set the tree with the X-like foot node contains only X-like
non-terminals and the tree with the Y-like root node contains only Y-like non-terminals. By straightforward
induction, every derived tree generated by G1 can be shown to be X-over-Y. We can now add dominance links
as shown in Figure 1 in a way such that a derived tree that violates any of these dominance links would have
a Y-like root node dominate an X-like foot node and would therefore not be X-over-Y. Thus the dominance
links are in effect redundant and void in the sense that adding them has no effect on the generated string
set. It follows that G2 is NP-hard. �

4 Restriction to lexicalized grammars

The grammar G1 can be modified to get a lexicalized grammar G3 that accepts a slightly different language
than G1 does. It can be shown that this language is NP-hard as well. The lexicalization constraint gives us
NP-completeness. The proof is straightforward and is omitted here for reasons of space.

Since both restrictions just presented can be applied to G1 at the same time and do not interact, there
obtains the main result of this paper:

Corollary. There exist lexicalized nonlocal MCTAGs with dominance links that generate NP-complete
languages. �
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G2 = (NT, Σ, S, I,A) where

NT = {X, X, Y, Y , Ŷ }

Σ = {a, b, x, y}

I = {αstart}

A = {βcreate−triple, βconsume−y , βconsume−ŷ , βfill−triple, βclose−triple, βend}

αstart =

SNA

XOA

Y OA

Ŷ OA

Ŷ OA

ǫ

βcreate−triple =

Y NA

Y OA

Ŷ OA

Ŷ OA

Y OA

Y ∗

βconsume−y =

8

>

>

>

<

>

>

>

:

βconsume−y.1 XNA

xa X
OA

X∗

βconsume−y.2 Y NA

yb Y
OA

Y ∗

9

>

>

>

=

>

>

>

;

βconsume−ŷ =

8

>

>

>

<

>

>

>

:

βconsume−ŷ.1 XNA

xa X
OA

X∗

βconsume−ŷ.2 Ŷ NA

b Y
OA

Ŷ ∗

9

>

>

>

=

>

>

>

;

βfill−triple =

8

>

>

>

>

<

>

>

>

>

:

βfill−triple.1 X
NA

a X
OA

X
∗

βfill−triple.2 Y
NA

b Y
OA

Y
∗

9

>

>

>

>

=

>

>

>

>

;

βclose−triple =

8

>

>

>

<

>

>

>

:

βclose−triple.1 X
NA

a XOA

X
∗

βclose−triple.2 Y
NA

b Y
∗

9

>

>

>

=

>

>

>

;

βend =

8

<

:

βend.1 X
NA

a
X

∗

βend.2 Y
NA

b Y
∗

9

=

;

Figure 1: The MCTAG with dominance links G2. (The MCTAG G1 is obtained by ignoring the dominance links,
represented as dashed lines.)
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