
On the Complexity of Abstract Categorial

Grammars

In this abstract we investigate the respective complexities of the member-
ship and the universal membership problems for Abstract Categorial Grammars
[dG01]. This problem has already been addressed in [YK05] and we present here
some more precise results and some new ones.

Abstract Categorial Grammars [dG01] are appealing since they can represent
many well-known formalisms [dGP04] while using a small set of primitives. They
use the linear λ-calculus which is associated to the intuitionnistic implicative
linear logic with proper axioms (IILLax) via the Curry-Howard isomorphism.
The formulae of IILLax are built from a finite set of atoms A and the binary
connective ⊸. IA denotes the set formulae of IILLax that can be built from
A. In the linear λ-calculus, the proper axioms of IILLax are represented by
constants having the corresponding type. Thus linear λ-terms are built on
higher-order signatures like Σ = (A, C, τ), where A is the finite set of types on
which formulae are built, C is the set of constants and τ is a function which
associates a formula from IA to each constant of C. We adopt the convention
that the signature Σ is the triple (A, C, τ), and the signature Σi is the triple
(Ai, Ci, τi) for any i ∈ N. We assume that the reader is familiar to λ-calculus,
the notions of free variables, βη-reduction etc. . . In the following we assume
that we are given an infinite enumerable set of variables V . Given a higher-order
signature Σ the family (Λα

Σ)α∈IA
of linear λ-terms built on Σ is defined as the

smallest family verifying:

1. if c ∈ C then c ∈ Λ
τ(c)
Σ ,

2. if x ∈ V and α ∈ IA then xα ∈ Λα
Σ

3. if t ∈ Λα
Σ and xβ ∈ FV (t)1 then λxβ .t ∈ Λβ→α

Σ

4. if t1 ∈ Λβ→α
Σ , t2 ∈ Λβ

Σ and whenever xγ ∈ FV (t1) (resp. xγ ∈ FV (t2)),

for any γ′ ∈ IA, xγ′

/∈ FV (t2) (resp. xγ′

/∈ FV (t1)) then t1t2 ∈ Λα
Σ.

The set
⋃

α∈IA
Λα

Σ is denoted by ΛΣ.
Given two higher-order signatures Σ1 and Σ2 a homomorphism between Σ1

and Σ2 is a pair H = (f, g) such that f is a function from IA1
to IA2

such that

f(β ⊸ α) = f(α) ⊸ f(β) and g is a function from Λα
Σ1

to Λ
f(α)
Σ2

verifying:

1FV (t) denotes the set of variables that are free in t.
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1. if c ∈ C1 then g(c) is a closed term (i.e. FV (f(c)) = ∅) of Λ
f(τ1(c))
Σ2

,

2. if x ∈ V then g(xα) = xf(α),

3. if λxβ .t ∈ Λα
Σ1

then g(λxβ .t) = λxf(β).g(t) and,

4. if t1t2 ∈ Λα
Σ1

then g(t1t2) = g(t1)g(t2).

It should be clear that whenever t ∈ Λα
Σ1

then g(t) ∈ Λ
f(α)
Σ2

. We will write H(α)
and H(t) instead of f(α) and g(t).

An ACG defined as a quadruple G(Σ1, Σ2,L, S) where Σ1 and Σ2 are higher-
order signatures, respectively the abstract vocabulary and the object vocabulary,
L is a homomophism between Σ1 and Σ2, the lexicon and S is an element of
A1, the accepting type. Then G defines two languages:

1. the abstract language: A(G) = {M ∈ ΛS
Σ1
|M is closed},

2. the object language: O(G) = {M ∈ ΛΣ2
|∃N ∈ A(G).L(N) =βη M}.

An ACG G = (Σ1, Σ2,L, S) is said lexicalized if for all c ∈ C1, L(c) contains
at least the occurrence of a constant in C2. In [YK05], both membership and
universal membership of lexicalized ACGs are shown to be in NP.

ACGs are classified into a hierarchy which is based on the notion of or-

der of a type. The order of an atomic type α is ord(α) = 1 and ord(α →
β) = max(ord(α) + 1, ord(β)). The definition of order is extended to higher-
order signatures and ord(Σ) = max{ord(τ(c))|c ∈ C}; and to homomophisms
between signatures. The order of a homomophism H between Σ1 and Σ2 is
ord(H) = max{ord(H(α))|α ∈ A1}. Then the set G(n, m) is the set of ACGs
G = (Σ1, Σ2,L, S) such that ord(Σ1) ≤ n and ord(L) ≤ m.

In what follows we show that the membership problem for the grammars of
G(2, n) is polynomial. We also show that the universal membership problem
is NP-complete for lexicalized grammars of G(2, 2) and we exhibit a lexicalized
grammar of G(3, 1) whose language is NP-complete. These last results are an
improvement over [YK05] who shows that the universal membership problem is
NP-complete for lexicalized ACGs of G(4, 2) and exhibit a lexicalized ACG of
G(4, 3) whose language is NP-complete. Furthermore, if P 6= NP, these results
are optimal with respect to the hierarchy G(n, p) . Indeed, since we show that
the membership problem for grammars of G(2, n) is polynomial it is not possi-
ble (if P 6= NP) to find a grammar whose language is NP-complete in G(2, n);
and, it is obvious that the universal membership is polynomial for grammars in
G(2, 1).2

The proof that the membership problem for grammars of G(2, n) is polyno-
mial is based on a result of [Sal06]. In that paper,the subterms of a λ-term u

2The normal forms of terms in the language, noted with de Bruijn convention, can easily
be shown to be recognized by a bottom-up tree automaton whose size is linear with respect to
the size of the grammar. Since normalizing a linear λ-term can be done in polynomial time,
this gives the result.
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are denoted by the pairs (C[], t) (where C[] is a context3) such that C[t] = u.
Furthermore, these subterms are used as atomic types in order to type linear
λ-terms. So, given u an element of ΛΣ which is in long normal form, the family
of sets (Dα

u )α∈IA
is defined as the smallest family verifying:

1. if α ∈ A then Dα
u = {(C[], t) ∈ St|t ∈ Λα

Σ},

2. Dβ⊸α
u = Dβ

u ×Dα
u .

The elements of Dα
u are then used to type terms of Λα

Σ; the rules used to type
terms are the following:

d ∈ Dα
u

Axiom
u; xα : d ⊢ xα : d

(C[], a) ∈ Su
Constant

u; ⊢ a : θ(C[], a)

u; Γ, xα : d ⊢ t : e
λ−abst.

u; Γ ⊢ λxα.t : d ⊸ e

u; Γ1 ⊢ t1 : d ⊸ e u; Γ2 ⊢ t2 : d
App.

u; Γ1, Γ2 ⊢ t1t2 : e

Given u an element of Λα
Σ in long normal form and (C[], t) ∈ Su, θ(C[], t) is

defined as follows:

1. if C[] = C′[[]t′] then θ(C[], t) = θ(C′[t[]], t′) ⊸ θ(C′[], tt′),

2. if t = λx.t′ then θ(C[], t) = θ(C[λx.Ct′ ,x[]], x) ⊸ θ(C[λx.[]], t′),

3. θ(C[], t) = (C[], t) otherwise.

It is then proved that for u closed and in long normal form, we have u;⊢ v :
θ([], u) is derivable if and only if v =βη u. Thus to prove that a term u of ΛΣ2

is an element of O(G) it suffices to construct a term t of ΛS
Σ1

such that u;⊢
L(t) : θ([], u). To this end we saturate a set H of pairs (α, d) of ({α}×Dα

u )α∈A1
.

During one step, we transform the set H into a set H′ in the following way:

1. if there is c ∈ C1 such that τ1(c) = α with α ∈ A1 and for d ∈ D
L(α)
u ,

u;⊢ L(c) : d is derivable then we let H′ = H ∪ {(α, d)}

2. if there is c ∈ C1 such that τ1(c) = α1 ⊸ · · · ⊸ αn ⊸ α0 with αi ∈ A1

for all i ∈ [0, n] and for all i ∈ [1, n] (di, αi) ∈ H and u;⊢ L(c) : d1 ⊸

· · · ⊸ dn ⊸ d0, then we let H′ = H ∪ {(α0, d0)}.

It is obvious that, with these rules, one may build a set containing the
pair (S, θ([], u)) if and only if there is t ∈ ΛS

Σ1
such that u;⊢ L(t) : θ([], u) is

derivable, i.e. such that L(t) =βη u or u ∈ O(G). This algorithm can easily
be implemented in polynomial time (parameters of the grammar being allowed

to appear as exponents), since, the size of an element of D
L(α)
u is bounded by

the product of the size of α and of the size of u. This finally shows that the
membership problem for ACGs of G(2, n) is polynomial.

3That is to say that C[] is a λ-term with a hole.
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We now show that the universal membership problem for grammars of
G(2, 2) is NP-complete. We reduce this problem to the X3C problem which
is known to be NP-complete [GJ79]. X3C problems have as input a pair
(X, B) where X = {a1; . . . ; a3n} is a set of 3n pairwise distinct elements and
B = {B1; . . . ; Bm} is a set where Bi = {ai1 ; ai2 ; ai3} with 1 ≤ i1 < i2 < i3 ≤ 3n.
Solving an X3C problem amounts to find C ⊆ B such that C is a partition of X .
To prove the NP-hardness of the universal membership problem of lexicalized
ACGs of G(2, 2), for any instance of an X3C problem (X, B) we give an ACG
GX,B and a term tX,B such that tX,B ∈ O(GX,B) if and only if the X3C problem
admits a solution. We let GX,B = (Σ1, Σ2,L, D0) where A1 = {D0; . . . ; Dn},
C1 = {E}∪{EBi,k1,k2,k3,k|Bi ∈ B∧0 ≤ k < n∧1 ≤ k1 < k2 < k3 ≤ k}, τ1(E) =
Dn and τ1(EBi,k1,k2,k3,k) = Dk+1 ⊸ Dk. We also let A2 = {ι}, C2 = {e} ∪ X
with g /∈ X , τ2(ai) = ι for 1 ≥ i ≥ 3n and τ2(e) = ι ⊸ · · · ⊸ ι

︸ ︷︷ ︸

3n

⊸ ι. We then

let

1. L(Dk) = ι ⊸ · · · ⊸ ι
︸ ︷︷ ︸

3k

⊸ ι,

2. L(E) = λx1 . . . x3n.ex1 . . . x3n and,

3. L(EBi,k1,k2,k3,k) =
λgx1 . . . xk1−1xk1+1 . . . xk2−1xk2+1 . . . xk3−1xk3+1 . . . x3k.
gx1 . . . xk1−1ai1xk1+1 . . . xk2−1ai2xk2+1 . . . xk3−1ai3xk3+1 . . . x3k

It is then easy to prove that the term ea1 . . . a3m is in O(GX,B) if and only if
(X, B) admits a solution.

We now construct a lexicalized ACG of G(3, 1) whose language is NP-
complete. The language recognized by this grammar contains an encoding of
the set of 3-PARTITION problems that admit a solution. A 3-PARTITION
problem is a pair ({s1; . . . ; s3m}, n) where n is an integer and for all i ∈ [1, 3m]
si is an integer verifying n

4 < si < n
2 . Such a problem is said to admit a solution

if there is a partition (Si)i∈[1,m] of {s1; . . . ; s3m} such that for all i ∈ [1, m]
∑

s∈Si
s = n. Remark that the Si must exactly contain three elements. Deter-

mining whether a 3-PARTITION problem admits a solution is known to be NP-
complete [GJ79]. We now build G = (Σ1, Σ2,L, S) with the desired properties.
We let A1 = {B1; B2; B3; C; D; E; L; S}, C1 = {e; e′; nil; f1; f2; f3; nil; cons; h}
with:

1. τ1(e) = (B1 ⊸ B2 ⊸ B3 ⊸ C ⊸ D) ⊸ S,

2. τ1(e
′) = L ⊸ S,

3. τ1(f1) = τ1(f2) = τ1(f3) = (B1 ⊸ B2 ⊸ B3 ⊸ C ⊸ D) ⊸ (B1 ⊸

B2 ⊸ B3 ⊸ C ⊸ D),

4. τ1(cons) = E ⊸ L ⊸ L,

5. τ1(nil) = L and
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6. τ1(h) = (E ⊸ E ⊸ E ⊸ E ⊸ S) ⊸ (B1 ⊸ B2 ⊸ B3 ⊸ C ⊸ D).

We let A2 = {∗}, C2 = {a, b, c, d, o} with τ2(a) = ∗ ⊸ ∗ ⊸ ∗, τ2(b) = τ2(c) =
τ2(d) = ∗ ⊸ ∗ an τ2(o) = ∗. Finally we define the lexicon as follows:

1. L(α) = ∗ for all α ∈ A1,

2. L(e) = λf.f o o o o

3. L(e′) = λx.d x

4. L(f1) = λf x1 x2 x3 y.f (b x2)x2 x3 (c y)

5. L(f2) = λf x1 x2 x3 y.f x1 (b x2)x3 (c y)

6. L(f3) = λf x1 x2 x3 y.f x1 x2 (b x3) (c y)

7. L(cons) = λx y.a x y

8. L(nil) = o

9. L(h) = λf x1 x2 x3 y.f (d x1) (d x2) (d x3) (d y)

The idea behind the reduction is that the abstract constant cons codes for a
list constructor while nil represents the empty list, the constant h takes a list
where there are four places which are not specified and give them the type of
four kinds of stacks, B1, B2, B3 and C, the constant fi pushes one b on the stack
Bi and at the same time it pushes with a c on the stack C at the object level.
The constants e closes the bottom of the stack with an o and the constant e′

ends a list. Thus the grammar generates lists that contain integers of two kinds
represented as monadic trees of b’s or monadic trees of c’s. The construction
guaranties that the integers made of b’s can be partitionned in triples {p1; p2; p3}
which are put in bijection with the integers made of c’s such that if n is the
integer associated to {p1; p2; p3} we have n = p1 + p2 + p3. Thus verifying that
a certain 3-PARTITION problem ({s1; . . . ; s3m}, n) has a solution amounts to
check whether a list that contains each si represented with b’s and m times the
integer n represented with c’s is an element of O(G).
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