On the Complexity of Abstract Categorial
Grammars

In this abstract we investigate the respective complexities of the member-
ship and the universal membership problems for Abstract Categorial Grammars
[dGO1]. This problem has already been addressed in [YKO05] and we present here
some more precise results and some new ones.

Abstract Categorial Grammars [dG01] are appealing since they can represent
many well-known formalisms [dGP04] while using a small set of primitives. They
use the linear A-calculus which is associated to the intuitionnistic implicative
linear logic with proper axioms (IILL,,) via the Curry-Howard isomorphism.
The formulae of IILL,, are built from a finite set of atoms A and the binary
connective —o. 74 denotes the set formulae of ITLL,, that can be built from
A. In the linear A-calculus, the proper axioms of IILL,, are represented by
constants having the corresponding type. Thus linear A-terms are built on
higher-order signatures like ¥ = (A, C,), where A is the finite set of types on
which formulae are built, C is the set of constants and 7 is a function which
associates a formula from Z4 to each constant of C. We adopt the convention
that the signature X is the triple (A4, C,7), and the signature ¥; is the triple
(A;,Cy, ;) for any i € N. We assume that the reader is familiar to A-calculus,
the notions of free variables, fn-reduction etc... In the following we assume
that we are given an infinite enumerable set of variables V. Given a higher-order
signature ¥ the family (A$)qez, of linear A-terms built on ¥ is defined as the
smallest family verifying:

1. if c€ C then c € A;(C),
2. iffx €V and o € 74 then 2% € A
3. ift € A and 27 € FV(t)" then \zP.t € AJ™*

4. if t; € AL7% ty € A and whenever 27 € FV () (resp. x7 € FV(ts)),
for any v/ € Ta, 27 ¢ FV(ty) (resp. x7 ¢ FV (1)) then t1ty € AL.

The set J,cz, AS: is denoted by As.
Given two higher-order signatures ¥; and Y5 a homomorphism between X,
and Yo is a pair H = (f, g) such that f is a function from Z4, to Z4, such that

f(B—a) = f(a) — f(B) and g is a function from A$ to Ag(za) verifying:

LFV(t) denotes the set of variables that are free in ¢.

1. if ¢ € Oy then g(c) is a closed term (i.e. FV(f(c)) =0) of Ag(;l(c)),
2. if x € V then g(z®) = x/(®),

3. if APt € A then g(AzP.t) = e/ (P) g(t) and,

4. if t1tg € A§ then g(tita) = g(t1)g(t2)

It should be clear that whenever t € AS then g(t) € Ag(;). We will write H(«)
and H(t) instead of f(a) and g(t).

An ACG defined as a quadruple G(31, X9, £, 5) where ¥; and Yo are higher-
order signatures, respectively the abstract vocabulary and the object vocabulary,
L is a homomophism between Y7 and X, the lezicon and S is an element of
Aq, the accepting type. Then G defines two languages:

1. the abstract language: A(G) = {M € A$, |M is closed},
2. the object language: O(G) = {M € Ax,|3N € A(G).L(N) =g, M }.

An ACG G = (341,39, L, S) is said lezicalized if for all ¢ € Cy, L(c) contains
at least the occurrence of a constant in Cy. In [YKO05], both membership and
universal membership of lexicalized ACGs are shown to be in NP.

ACGs are classified into a hierarchy which is based on the notion of or-
der of a type. The order of an atomic type « is ord(a) = 1 and ord(a —
B) = max(ord(a) + 1,0rd(3)). The definition of order is extended to higher-
order signatures and ord(X) = max{ord(r(c))|c € C}; and to homomophisms
between signatures. The order of a homomophism H between ¥; and 35 is
ord(H) = max{ord(H(a))|a € A1}. Then the set G(n,m) is the set of ACGs
G = (%1,%9,L,5) such that ord(X1) < n and ord(L) < m.

In what follows we show that the membership problem for the grammars of
G(2,n) is polynomial. We also show that the universal membership problem
is NP-complete for lexicalized grammars of G(2,2) and we exhibit a lexicalized
grammar of G(3,1) whose language is NP-complete. These last results are an
improvement over [YK05] who shows that the universal membership problem is
NP-complete for lexicalized ACGs of G(4,2) and exhibit a lexicalized ACG of
G(4,3) whose language is NP-complete. Furthermore, if P NP, these results
are optimal with respect to the hierarchy G(n,p) . Indeed, since we show that
the membership problem for grammars of G(2,n) is polynomial it is not possi-
ble (if P#NP) to find a grammar whose language is NP-complete in G(2,n);
and, it is obvious that the universal membership is polynomial for grammars in
G(2,1).2

The proof that the membership problem for grammars of G(2,n) is polyno-
mial is based on a result of [Sal06]. In that paper,the subterms of a A-term wu

2The normal forms of terms in the language, noted with de Bruijn convention, can easily
be shown to be recognized by a bottom-up tree automaton whose size is linear with respect to
the size of the grammar. Since normalizing a linear A-term can be done in polynomial time,
this gives the result.

are denoted by the pairs (C[],t) (where C[] is a context?®) such that C[t] = u.
Furthermore, these subterms are used as atomic types in order to type linear
A-terms. So, given u an element of Ax; which is in long normal form, the family
of sets (DY)aez, is defined as the smallest family verifying:

1. if @ € A then D§ = {(C]],t) € S|t € AL},
2. DI = D x D,

The elements of D¢ are then used to type terms of A$; the rules used to type
terms are the following:

deDs (Cla) €.
—— Axiom Constant
u;z® dkFaz®:d u; Fa:6(C[,a)
w;ax%:dFt:e w; it :d—oe wlaobty:d
A—abst. App.
wyI'FXx%t:d—oe w; ', Do b t1ts i e

Given u an element of A§ in long normal form and (C[],t) € Su, 6(C[,¢t) is
defined as follows:

1. if O] = C'[[Jt'] then 6(C),t) = O(C"[t[]], ') —o O(C"[), tt'),
9. if t = Azt then 0(C[),t) = 0(C[A2.Cy o []], z) — O(CM2.[]],),

3. 6(C[),t) = (C],t) otherwise.

It is then proved that for u closed and in long normal form, we have u;F v :
0([],w) is derivable if and only if v =g, u. Thus to prove that a term u of As,
is an element of O(G) it suffices to construct a term ¢ of Agl such that wu;k
L(t) : 6(]], w). To this end we saturate a set H of pairs (a, d) of ({a} X D) aea, -
During one step, we transform the set H into a set H' in the following way:

1. if there is ¢ € C such that 71(¢) = « with o € A; and for d € Df(a),

u;F L(c) : d is derivable then we let H' = H U {(a, d)}

2. if there is ¢ € C; such that 7(c) = a3 — -+ — ay, — ap with a; € Ay
for all ¢ € [0,n] and for all ¢ € [1,n] (d;i,o) € H and u;F L(c) : di —o
-+ —o d,, —o dy, then we let H' = H U {(ap,do)}.

It is obvious that, with these rules, one may build a set containing the
pair (S,0([],u)) if and only if there is t € A§ such that u;- L(t) : 0([],u) is
derivable, i.e. such that L(t) =g, u or v € O(G). This algorithm can easily
be implemented in polynomial time (parameters of the grammar being allowed
to appear as exponents), since, the size of an element of ’Df (@) is bounded by
the product of the size of o and of the size of w. This finally shows that the
membership problem for ACGs of G(2,n) is polynomial.

3That is to say that C[] is a A-term with a hole.

We now show that the universal membership problem for grammars of
G(2,2) is NP-complete. We reduce this problem to the X3C problem which
is known to be NP-complete [GJ79]. X3C problems have as input a pair
(X, B) where X = {a1;...;a3,} is a set of 3n pairwise distinct elements and
B ={By;...; By} isaset where B; = {a;,;aiy; a5} with 1 <1y < iy < i3 < 3n.
Solving an X3C problem amounts to find C' C B such that C' is a partition of X.
To prove the NP-hardness of the universal membership problem of lexicalized
ACGs of G(2,2), for any instance of an X3C problem (X, B) we give an ACG
Gx.p and a term tx p such that tx p € O(Gx p) if and only if the X3C problem
admits a solution. We let Gx p = (X1, %2, L, Do) where A1 = {Do;...; Dy},
C, = {E}U{EB»L,kll,kQ,ng,leBi EBANO<Ek<nAl <k <ky<ks< k}, Tl(E) =
D,, and 71 (EB; ki ko ks.k) = Dit1 — Dy. We also let Ag = {1}, Cp = {e} UX
with g ¢ X, 72(a;) = ¢ for 1 >4 > 3n and m2(e) = ¢ — -+ —o 1 —o +. We then

—_——

3n
let

1. L(Dg)=t—o -+ —0(—ou,
3k

2. L(E) = Axy...23,.€x1 ...23, and,

3. ‘C(EBi,kl,k27k3,k) =
AT .o Thy—1Tky+1 - - - Thy—1Thy+1 - - - Thy—1Thg+1 - - - T3k-
gr1 .. Tk —105, Ty 41 -+ - Tho—1Ai5Tho+1 -+ - Thy—1Qj3Tkz+1 - - - T3k

It is then easy to prove that the term ea; ...asn is in O(Gx p) if and only if
(X, B) admits a solution.

We now construct a lexicalized ACG of G(3,1) whose language is NP-
complete. The language recognized by this grammar contains an encoding of
the set of 3-PARTITION problems that admit a solution. A 3-PARTITION
problem is a pair ({s1;...;S3m},n) where n is an integer and for all ¢ € [1,3m]
s; is an integer verifying 7 < s; < 5. Such a problem is said to admit a solution
if there is a partition (S;)ie[1,m) Of {51;...;83m} such that for all i € [1,m]
> scs, 8 = n. Remark that the S; must exactly contain three elements. Deter-
mining whether a 3-PARTITION problem admits a solution is known to be NP-
complete [GJ79]. We now build G = (X1, X5, £,5) with the desired properties.
We let Ay = {Bi; B2; B3; C; D; E;5 L; S}, C1 = {e;esmil; f1; fa; f3;mil; cons; h}
with:

1. Tl(e):(Bl—OBQ—OBg—OC—OD)—OS,
2. m(e/)=L — S,

3. mi(f1) = 1(f2) = 1(fs) = (B1 —0 By — B3 — C — D) —o (B; —o
By — B3 — C — D),

4. 7 (cons) = FE — L —o L,
5. 71(nil) = L and

6. (h)=(E—-oFE—oFE-—-oF—5)— (B —0 By — B3 — (C — D).

We let Ay = {x}, C3 = {a,b,c,d, o} with 72(a) = * —o x —o %, 75(b) = T2(c) =
T2(d) = % —o * an 12(0) = *. Finally we define the lexicon as follows:

1. £(a) = # for all a € Ay,

L(¢) = Mf.foooo

(¢) = Av.de

L(f1) = Af v12223y.f (b22) T2 23 (CY)

L(f2) = A\fv1az223y.f 21 (ba2) 23 (cy)

L(f3) = Afv12223y.f 21 22 (b3) (cy)
L(cons) = Axy.azxy

L(nil) = o

L(h) = Afvrz2asy.f(dwy) (da2) (das) (dy)

The idea behind the reduction is that the abstract constant cons codes for a
list constructor while nil represents the empty list, the constant i takes a list
where there are four places which are not specified and give them the type of
four kinds of stacks, By, By, Bs and C, the constant f; pushes one b on the stack
B; and at the same time it pushes with a ¢ on the stack C at the object level.
The constants e closes the bottom of the stack with an o and the constant e’
ends a list. Thus the grammar generates lists that contain integers of two kinds
represented as monadic trees of b’s or monadic trees of ¢’s. The construction
guaranties that the integers made of b’s can be partitionned in triples {p1; p2; ps}
which are put in bijection with the integers made of ¢’s such that if n is the
integer associated to {p1;p2;ps} we have n = p; + pa + p3. Thus verifying that
a certain 3-PARTITION problem ({si;...;S3m},n) has a solution amounts to
check whether a list that contains each s; represented with b’s and m times the
integer n represented with ¢’s is an element of O(G).

)

© % N o ok W N

References

[dG01] Philippe de Groote. Towards abstract categorial grammars. In Association for Com-
putational Linguistic, editor, Proceedings 39th Annual Meeting and 10th Conference
of the European Chapter, pages 148—155. Morgan Kaufmann Publishers, 2001.

[dGP04] Philippe de Groote and Sylvain Pogodalla. On the expressive power of abstract cate-
gorial grammars: Representing context-free formalisms. Journal of Logic, Language
and Information, 13(4):421-438, 2004.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability — A Guide to the
Theory of NP-Completeness. Freeman, San Francisco, 1979.

[Sal06] Sylvain Salvati. Syntactic descriptions: a type system for solving matching equations
in the linear A-calculus. In proceedings of the 17th International Conference on
Rewriting Techniques and Applications, 2006.

[YKO5] Ryo Yoshinaka and Makoto Kanazawa. The complexity and generative capacity of
lexicalized abstract categorial grammars. In LACL, pages 330-346, 2005.

