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Chapter 1

Introduction

This collection represents the preprinted proceedings of the eighth Mathematics of
Language Conference (MoL8 ), held in conjunction with the 2nd North American
Summer School in Logic, Language, and Information (NASSLLI), in Blooming-
ton, Indiana, June 19-22, 2003. The chapters of this volume represent the papers
selected for the conference on the basis of abstract submissions.1 In addition to
the submitted papers, the MoL8 conference program contains a variety of spe-
cial events: a symposium on Language and Game Theory; a invited lecture by Ed
Keenan and Ed Stabler (coextensive with the final lecture of theirNASSLLI courseA
Mathematical Theory of Grammatical Categories; an invited lecture by Aravind
Joshi; and a symposium on Statistical and Symbolic Aspects of Natural Language
Learnability. The full conference program appears on the following page.

We would like to record our thanks to all those who submitted abstracts to
the conference, to the program committee (listed following the program) for their
hard work and high standards, to the participants in the special sessions. We are
especially indebted to Larry Moss, past president ofMoL who, in his guise as
NASSLLI organizer, also served asde factoLocal Arrangements Chair forMoL8 .
Finally, our preparation of this proceedings was greatly facilitated by a LATEX 2ε
class file adapted from work by Geert-Jan Kruijff and Gerhard J¨ager.

R. T. Oehrle
Berkeley, CA

J. Rogers
Earlham College

Richmond, Indiana

1The paper by Luis Casillas Mart´ınez appears by title only, in the absence of a submitted version
of the full paper.
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Mathematics of Language 8 Program

Friday, June 20, 2003
9.00–12.30 Symposium: Language and Game Theory

confirmed speakers:
Martin Nowak (Harvard University)
Rohit Parikh (CUNY)
Robert van Rooy (University of Amsterdam)
Discussion: Larry Moss (Indiana University)

12.30–14.00 break
14.00–14.30 m-Linear Context-Free Rewriting Systems in Abstract Categorial Gram-

mar
Philippe de Groote and Sylvain Pogodalla (LORIA)

14.30–15.00 Discovering a new class of languages
Sean Fulop (University of Chicago)

15.00–15.30 Global Index Grammar and Descriptive Power
Jose M. Castano (Brandeis University)

15.30–16.00 break
16.00–16.30 On Scope Dominance with Monotone Quantifiers

Gilad Ben-Avi & Yoad Winter (Technion)
16.30–17.00 Boolean Operators for Vectors: Negation and Disjunction of Word-

Meanings
Dominic Widdows & Stanley Peters (CSLI, Stanford)

17.00–17.30 A set-theoretical investigation of Panini’s Sivasutras
Wiebke Petersen (Heinrich-Heine-Universit¨at, Düsseldorf)
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9.00–9.30 Some Remarks on Arbitrary Multiple Pattern Interpretation

Carlos Martin-Vide (Rovira i Virgili University, Tarragona) & Victor Mi-
trana (Bucharest)

9.30–10.00 The Semantic Complexity of some Fragments of English
Ian Pratt-Hartmann (University of Manchester)

10.00–10.30 The complexity of reasoning on finite trees
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Chapter 2

On Scope Dominance With Monotone
Quantifiers

GILAD BEN-AVI� AND YOAD WINTER�

ABSTRACT. We characterize pairs of monotone generalized quantifiersQ1 andQ2 that give
rise to an entailment relation between their two relative scope construals. This result is used
for identifying entailment relations between the two scopal interpretations of simple sentences
of the form NP1-V-NP2. The general characterization that we give turns out to cover more
examples of such entailments besides the familiar type where the NPs are headed bysomeand
every.

2.1 Introduction

Scope ambiguity in simple transitive sentences of the form NP1-V-NP2 is one of the well-
studied areas in natural language semantics. It has been often observed that whether this
kind of ambiguity is manifested in natural language may depend on entailment relations
between the readings of such sentences. For instance, Zimmerman (1993) characterizes the
class ofscopeless(“name like”) noun phrases – the class of NP2s for which the two read-
ings of the sentence NP1-V-NP2 are equivalent for any noun phrase NP1 and transitive verb
V. A more general notion, first addressed by Westerst˚ahl (1986), involves uni-directional
entailment between the two readings, which is referred to here asscope dominance. A
sentence NP1-V-NP2 exhibits scope dominance if one of its readings entails the other. A
familiar case is when the subject (or object) denotes an existential quantifier (e.g.,some
student) and the object (or subject, respectively) denotes a universal quantifier (e.g.,ev-
ery teacher). Westerst˚ahl shows that in the class of non-trivial upward monotone (simple)
quantifiers over finite domains, scope dominance appears if and only if the subject or object
are existential or universal.

Altman et al. (2002) generalize Westerst˚ahl’s result, and show a full characterization of
scope dominance witharbitrary upward monotone quantifiers overcountabledomains. In
this paper we generalize Westerst˚ahl’s result in another way, and characterize scope dom-
inance between simple upwardor downwardmonotone quantifiers over finite domains.

�Computer Science, Technion, Haifa 32000, Israel;{bagilad,winter}@cs.technion.
ac.il .

9

Proceedings of Mathematics of Language 8
R. T. Oehrle & J. Rogers (editors).
Chapter 2, Copyrightc
2003, G. Ben-Avi & Y. Winter.



On Scope Dominance With Monotone Quantifiers: G. Ben-Avi & Y. Winter /10

This result is based on the numerical presentation of quantifiers over finite domains as
recently proposed by V¨aänänen and Westerst˚ahl (2001). It leads to a general characteri-
zation of entailments over finite domains between readings of sentences with (potential)
scope ambiguity as in the following cases, where both subject and object are monotone.

(1) Less than five referees read at least one of the abstracts.

(2) Less than five referees read each of the abstracts.

In sentence (1), the object narrow scope reading entails the object wide scope reading. In
(2) the entailment between the two readings is in the opposite direction. Note that the def-
inite noun phrasethe abstractsleads in both sentences to the presupposition that abstracts
exist, which is crucial for the respective entailments to hold. Similarly to Westerst˚ahl’s
result about upward monotone quantifiers, in both examples scope dominance is created
by the presence of an existential or universal quantifier. However, as we shall see, our
extension of Westerst˚ahl’s characterization also reveals cases of scope dominance with
monotone quantifiers other thaneveryor some.

2.2 Background

This section briefly reviews some notions from generalized quantifier theory, which will be
used in our characterization of scope dominance. A (generalized) quantifierover a domain
E is a setQ�℘(E). A quantifierQ overE is upward (downward) monotoneiff whenever
A2Q andA� A0 (A0 �A), thenA0 2Q. In the sequel, we sometimes use the abbreviations
“MON"” and “MON#” for “upward/downward monotone”. A quantifierQ is calledtrivial
iff either Q= /0 orQ=℘(E).

Given a binary relationR� E2 and x 2 E we write Rx
de f
= fy 2 E : R(x;y)g and

Ry de f
= fx2 E : R(x;y)g. TheObject Narrow Scope(ONS) reading of a simple transitive

sentence is naturally interpreted in a domainE as the propositionQ1Q2Ras defined below,
whereQ1 and Q2 are the subject and object quantifiers (respectively) overE, and the
relationR� E2 is the denotation of the verb.

(3) Q1Q2R
de f
, fx2 E : Rx 2Q2g 2Q1.

Similarly, theObject Wide Scope(OWS) reading is interpreted asQ2Q1R�1, which by (3)
is equivalent to the requirementfy2 E : Ry 2Q1g 2Q2.

Given two quantifiersQ1 andQ2 we say thatQ1 is scopally dominantoverQ2 iff for
everyR� E2: Q1Q2R) Q2Q1R�1.

The dual of a quantifierQ overE is the quantifierQd = fX � E : E nX =2 Qg. The
following fact summarizes some simple properties of quantifier duality.

Fact 1. For any quantifiers Q;Q1;Q2 over E:

1. (Qd)d = Q

2. Q1 is scopally dominant over Q2 iff Qd
2 is scopally dominant over Qd1

3. Q= /0,Qd =℘(E)
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every0(A) = fX � E : jA\Xj � jAjg

not every0(A) = fX � E : jA\Xj< jAjg

some0(A) = fX � E : jA\Xj � 1g

no0(A) = fX � E : jA\Xj< 1g

more than half0(A) = fX � E : jA\Xj � b jAj2 c+1g

at least half 0(A) = fX � E : jA\Xj � d jAj2 eg

lessthan half0(A) = fX � E : jA\Xj< d jAj2 eg

Table 2.1: CPI-based Quantifiers

4. Q isMON" (MON#) iff Qd is MON" (MON#).

A determinerover a domainE is a functionD that assigns to everyA� E a quan-
tifier D(A). In this paper we concentrate onsimplequantifiersQ: quantifiers that sat-
isfy Q = D(A), for someA � E and aconservativeand permutation invariantdeter-
miner D. Standardly, by saying that a determinerD over E is conservativewe mean
that for all A;B� E: B 2 D(A), B\A 2 D(A). Also standardly, a determinerD over
E is calledpermutation invariantiff for every permutationπ on E, and for allA;B� E:
B 2 D(A), πB 2 D(πA), where for a setX � E, πX = fπ(x) : x 2 Xg. In the sequel,
whenever a quantifierQ can be interpreted asD(A) for suchA andD, we say thatQ is
CPI-based.

As pointed out by V¨aänänen and Westerst˚ahl (2001), every monotone CPI-based quan-
tifier Q over a finite domainE can be represented as follows, for someA� E andn� 0.

(4) a. Q= fX : jA\Xj � ng, if Q is MON"

b. Q= fX : jA\Xj< ng, if Q is MON#

The duals of such CPI-based quantifiers can be represented as follows, respectively.1

(5) a. Qd = fX : jA\Xj � jAj�n+1g

b. Qd = fX : jA\Xj< jAj�n+1g

In table 2.1 we give some examples of monotone CPI-based quantifiersD(A) over a finite
domainE for various determinersD and arbitrary setsA� E, together with their presenta-
tion according to the scheme in (4). In these examples, for any real numberr, the notations
brc anddre standardly stand for the integer value closest tor from below and from above,
respectively.

1Provably, a dual of a CPI-based quantifier is also CPI-based.
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2.3 Scope dominance with monotone CPI-based quanti-
fiers over finite domains

This section characterizes the pairs of CPI-based quantifiersQ1 andQ2 over finite domains,
whereQ1 is scopally dominant overQ2. Proposition 3 below first addresses the case where
Q1 is MON" andQ2 is MON#. Its proof uses the following simple combinatorial lemma,
whose proof is given here for sake of completeness.

Lemma 2. Let`;m;k;n2 NN s.t.`;k> 0, m� 0 and0< n� k. Let X be a set withjXj= k.
Then 1 and 2 below are equivalent:

1. There arè subsets of X: X1; : : : ;X`, s.t.jXi j= n, 1� i � `, and every x2 X is in at
most m of the Xis.

2. `n�mk.

Proof. Let X = fx1; : : :xkg. For everyX1; : : : ;X` �X let mi = jfXj : 1� j � `^xi 2Xjgj.
(1)) (2):
Let X1; : : : ;X`�X such that for everyj s.t. 1� j � `: jXj j= n, and for everyi s.t. 1� i � k:
mi �m. Thus,

`n=
k

∑
i=1

mi �mk

(2)) (1):
Assume that̀n�mk. ConstructX1; : : : ;X` � X as follows:

X1 = fx1; : : : ;xng

...

Xj = fx
(( j�1)n+1) modk; : : : ;x( jn) modkg

...

X` = fx((`�1)n+1)modk; : : : ;x(`n) modkg

It is not hard to verify that for alli; j s.t. 1� i; j � k: mj �1�mi �mj +1. Assume for
contradiction that for somei s.t. 1� i � k: mi = m0 > m. Thus,

`n=
k

∑
i=1

mi �m0+(m0�1)(k�1) = (m0�1)k+1> mk

in contradiction to the assumption that`n�mk. Hence, for alli s.t. 1� i � k: mi �m. ut

Proposition 3. Let Q1 and Q2 be two CPI-based quantifiers over a finite domain E s.t. Q1
is MON" and Q2 is MON#. According to the presentation in (4), assume that for some
A;B� E and n;m� 0: Q1 = fX : jA\Xj � ng and Q2 = fY : jB\Yj< mg. Then Q1 is
scopally dominant over Q2 iff one of the following holds:



13n Mathematics of Language 8

(i) jAj< n+ n
m and both0< n� jAj and0< m� jBj (both quantifiers are not trivial.)

(ii) n > jAj (Q1 = /0).

(iii) m > jBj (Q2 =℘(E)).

(iv) n> 0 and m= 0 (Q2 = /0 and Q1 6=℘(E)).

Proof. It is easy to verify that if at least one ofQ1 andQ2 is trivial, thenQ1 is scopally
dominant overQ2 iff one of the clauses (ii)-(iv) holds. Thus, we assume that both quan-
tifiers are not trivial, i.e., 0< n� jAj and 0< m� jBj. Now Q1 is not scopally dominant
overQ2 iff the following condition holds:

C1. There exists R � E2 such that jfx2 A : jRx\Bj< mgj � n and
jfy2 B : jRy\Aj � ngj �m.

We claim that C1 is equivalent to the following condition.

C2. There existT � E2 andB0 � B with jB0j = m (B0 =
�

b1; : : : ;bm
	

) such thatjAnTm
i=1Tbi j � n and8b2 B0 jTb\Aj= n.

To see that, assume first that C1 holds, and considerB0 =
�

b1; : : : ;bm
	

� fy2 B : jRy\Aj � ng. For eachbi , let Ai � Rbi \A, jAi j = n. DefineT =
Sm

i=1(Ai �
fbig), and observe that from the assumptions about theAis it follows thatfx2 A : jRx\Bj< mg�
An
Tm

i=1Ai .
As for the other direction, if C2 holds, defineR= T \ (A�B0).

Now, C2 is equivalent to the requirement that there existm+1 subsets ofA: A1; : : : ;Am;Am+1

such thatjAi j= n, 1� i �m+1, and
Tm+1

i=1 Ai = /0. To see that, letAi corresponds toTbi \A
for anyi s.t. 1� i �m, and letAm+1 corresponds toAn

Tm
i=1Ai . By Lemma 2, this require-

ment holds iffjAj � n+ n
m. ut

The dual of the kind of scope dominance that is characterized in Proposition 3 is the
case in whichQ1 is MON# andQ2 is MON". Using Fact 1 and the observation in (5), we
get the following corollary of Proposition 3.

Corollary 4. Let Q1 and Q2 be two CPI-based quantifiers over a finite domain E s.t. Q1
is MON# and Q2 is MON". According to the presentation in (4), assume that for some
A;B� E and n;m� 0: Q1 = fX : jA\Xj< ng and Q2 = fY : jB\Yj �mg. Then Q1 is
scopally dominant over Q2 iff one of the following holds:

(i) jBj > (m�1)(jAj�n+2) and both0< n� jAj and0< m� jBj (both quantifiers
are not trivial.)

(ii) n = 0 (Q1 = /0).

(iii) m = 0 (Q2 =℘(E)).

(iv) n> jAj and m� jBj (Q1 =℘(E) and Q2 6= /0).

Proposition 5 below covers the case in which both quantifiers are MON#. The proof is
similar to the proof of Proposition 3, and is omitted here.
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Proposition 5. Let Q1 and Q2 be twoMON# CPI-based quantifiers over a finite domain
E. According to the presentation in (4), assume that for some A;B � E and n;m� 0:
Q1 = fX : jA\Xj< ng and Q2 = fY : jB\Yj< mg. Then Q1 is scopally dominant over
Q2 iff one of the following holds:

(i) 2� jBjm > n�1
jAj�n+1 and both0 < n� jAj and0 < m� jBj (both quantifiers are not

trivial.)

(ii) n = 0 (Q1 = /0).

(iii) m > jBj (Q2 =℘(E)).

The same method that we use in the proof of Proposition 3, can also be used for the
case in which the two quantifiers are MON", which is the case dealt with in Westerst˚ahl
(1986). This result is also mentioned here without proof.

Proposition 6. Let Q1 and Q2 be twoMON" CPI-based quantifiers over a finite domain
E. According to the presentation in (4), assume that for some A;B � E and n;m� 0:
Q1 = fX : jA\Xj � ng and Q2 = fY : jB\Yj �mg. Then Q1 is scopally dominant over
Q2 iff one of the following holds:

(i) n = 1 or n> jAj (Q1 = some0(A) or Q1 = /0).

(ii) m = jBj or m= 0 (Q2 = every0(A) or Q2 =℘(E)).

(iii) n = 0 and m� jBj (Q1 =℘(E) and Q2 6= /0).

(iv) n> 0 and m> jBj (Q2 = /0 and Q1 6=℘(E)).

Examples: Let us consider some examples for scope dominance between CPI-based
quantifiers over a finite domainE. For the representation of each quantifier, refer back to
Table 2.1.

First, note that by Corollary 4, for every non-emptyA� E, every MON# CPI-based
quantifier is scopally dominant oversome0(A) (=(every0(A))d). This accounts for the fact
that the ONS reading of sentence (1), paraphrased in (6a) below, entails its OWS read-
ing, paraphrased in (6b). Both readings are paraphrased with a presupposition about the
existence of abstracts.2

(6) a. jfx : referee0(x)^9y[abstract0(y)^ read0(x;y)]gj< 5 ^9y[abstract0(y)]

b. 9y[abstract0(y)^ jfx : referee0(x)^ read0(x;y)gj< 5] ^9y[abstract0(y)]

Analogously to this scope dominance with existential quantification, Proposition 3 entails
that for every non-emptyA� E, every0(A) is scopally dominant over every MON# CPI-
based quantifier. This accounts for the entailment from the OWS reading of (2), with the
every–less-than-5order of quantifiers, to its ONS reading, with theless-than-5–everyorder
of quantifiers.

2Plausibly, plurality in sentence (1) leads to the presupposition that there are at leasttwoabstracts.
However, we do not use this presupposition here, since the relevant entailment also appears with the
weaker presupposition that is assumed above.
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Such examples with existential and universal quantifiers do not exhaust the cases of
scope dominance with monotone quantifiers. By Proposition 3,
more than half0(A) is scopally dominant overno0(B) for all A;B� E. By Corollary 4,
not every0(A) (=(no0(A))d) is scopally dominant over
at least half0(B) (=(more than half0(B))d), for all A;B� E. Consider for instance the
following sentences.

(7) a. More than half of the referees read no abstract.

b. No abstract was read by more than half of the referees.

Our characterization accounts for the entailment from the ONS interpretation of (7a) to
its OWS interpretation, and for the opposite relation in (7b). However, for many speakers
both sentences are unambiguous, and have only an ONS reading. Under this unambiguous
interpretation, our characterization accounts for the entailment from (the unambiguous)
sentence (7a) to (the unambiguous) sentence (7b). Note that themore than/at least half
of quantifiers that are involved in these examples are not first order definable, so these
entailments cannot be derived by any axiom system of the first order Predicate Calculus.

As an example in which both quantifiers are MON#, note that Proposition 5 entails that
lessthan half0(A) is scopally dominant overnot every0(B), for anyA�E and non-empty
B� E.

2.4 Concluding remarks

In this paper we characterized scope dominance between upward/downward monotone
CPI-based quantifiers over finite domains. This work is part of a wider project that aims to
study ambiguity in natural language by way of characterizing entailments between readings
of ambiguous sentences. This kind of entailments is a promising area for studying infer-
ence in natural language, where high expressibility requires strong restrictions on inferen-
tial structures. Moreover, with Van Deemteer (1998) we believe that a characterization of
“semantically spurious” ambiguity may lead to improved underspecification methods, and
to better techniques for reasoning with underspecified representations. This is of course
a major task, and even the characterization of scope dominance that was presented in this
paper still leaves some obvious questions open. Most notably, the behavior of non-CPI-
based and non-monotone quantifiers, and of quantifiers over infinite domains needs to be
further explored. These problems are currently under research.
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Chapter 3

Variable-free reasoning on finite trees

PATRICK BLACKBURN� , BERTRAND GAIFFE†, MAARTEN MARX‡

ABSTRACT.

In this paper we examine three modal languages that have been proposed in the model theoretic
syntax literature for describing finite ordered trees. We compare their expressive power, and
then examine a key complexity-theoretic issue: how expensive it is to decide — given a theory
specifying a certain class of trees — whether a formula describes a model? Our main result
is that for the languages proposed by Blackburnet al. and Palm this problem is EXPTIME-
complete.

3.1 Introduction

Model theoretic syntax is an uncompromisingly declarative approach to natural language
syntax: grammatical theories are logical theories, and grammatical structures are their
models. Perhaps the best known work in this tradition is that of James Rogers (for ex-
ample Rogers (1998)) in which grammatical theories are stated in monadic second-order
logic. However other authors (in particular Kracht (1995, 1997), Blackburn and Meyer-
Viol (1994) and Palm (1999)) use various kinds ofmodal logic(in essence, variable free
formalisms for describing relational strcutures) to specify grammatical constraints. Palm
(1999) contains some interesting linguistic examples and is a good introduction to (and
motivation for) this approach.

In this paper we examine the modal languages proposed by Kracht, Palm, and Black-
burnet al. for describing models based on finite trees. We compare their expressive power,
and then examine a key complexity-theoretic issue: how expensive it is to decide — given
a theory specifying a certain class of trees — whether a formula describes a model? Our
main result is that for the languages of Blackburnet al. and Palm this problem is complete
for the class of problems solvable in exponential time.

�Langue et Dialogue, LORIA, Nancy, France;patrick@aplog.org.
†Langue et Dialogue, LORIA, Nancy, France;gaiffe@loria.fr
‡ILLC, Universiteit van Amsterdam, The Netherlands;marx@science.uva.nl
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3.2 The LanguagesLB;LP andLK

We first recall the definitions of three modal languages proposed in the model-theoretic
syntax literature for specifying declarative constraints on ordered trees. We start with the
strongest, proposed by Marcus Kracht in Kracht (1995, 1997). The language will be called
LK (K for Kracht).

LK is a propositional modal language identical to Propositional Dynamic Logic (PDL)
Harel et al. (2000) over four basic programs ,!, " and#, which explore the left-sister,
right-sister, mother-of and daughter-of relations. Recall that PDL has two sorts of ex-
pressions: programs and propositions. We suppose we have fixed a non-empty, finite or
countably infinite, set of atomic symbols A whose elements are typically denoted byp.
LK ’s syntax is as follows, writingπ for programs andφ for propositions:

π ::=  j!j " j # j π ;π j π [π j π� j ?φ
φ ::= p j > j :φ j φ ^φ j hπiφ :

We sometimes writeLK(A) to emphasize the dependence on A. We employ the usual
boolean abbreviations and use[π ]φ for :hπi:φ .

We interpretLK(A) on finite ordered treeswhose nodes arelabeledwith symbols
drawn from A. We assume that the reader is familiar with finite trees and such concepts as
‘daughter-of’, ‘mother-of’, ‘sister-of’, ‘root-node’, ‘terminal-node’, and so on. If a node
has no sister to the immediate right we call it a last node, and if it has no sister to the
immediate left we call it a first node. Note that the root node is both first and last. The root
node will always be calledroot. A labeling of a finite tree associates a subset of A with
each tree node.

Formally, we present finite ordered trees as tuplesT = (T;R!;R#). HereT is the set
of tree nodes andR! andR# are the right-sister and daughter-of relations respectively. A
pairM = (T;V), whereT is a finite tree andV : A�! Pow(T), is called amodel, and
we say thatV is a labeling functionor avaluation. Given a modelM, we simultaneously
define a set of relations onT�T and the interpretation of the languageLK(A) onM:

R" = R�1
#

Rπ[π 0 = Rπ [Rπ 0

R = R�1
! Rπ ;π 0 = Rπ ÆRπ 0

Rπ� = R�π R?φ = f(t; t) jM; t j= φg:

M; t j= p iff t 2V(p); for all p2 A

M; t j=> iff t 2 T

M; t j= :φ iff M; t 6j= φ
M; t j= φ ^ψ iff M; t j= φ andM; t j= ψ
M; t j= hπiφ iff 9t 0 (tRπ t 0 andM; t 0 j= φ):

If M; t j= φ , then we sayφ is satisfiedinM at t. For any formulaφ , if there is a model
M such thatM; root j= φ , then we say thatφ is satisfiable. ForΓ a set of formulas, andφ
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a formula, we say thatφ is a consequence ofΓ (denoted byΓ j= φ ) if for every model in
whichΓ is satisfied at every node,φ is also satisfied at every node.

Below are two examples of such formulas: (3.2.1) says that everya node has ab and a
c daughter, in that order, and no other daughters; and (3.2.2) says that everya node has ab
first daughter followed by some number ofc daughters, and no other daughters.

a ! h#i(:h i>^b^h!i(c^:h!i>))(3.2.1)

a ! h#i(:h i>^b^h(!;?c)�i:h!i>):(3.2.2)

A final remark. Note that we could have generated the same language by taking# and
! as primitive programs and closing the set of programs under converses.

Two more languages The two other languages proposed in the literature only differ
fromLK in the programs they allow.

The language proposed by Blackburn, Meyer–Viol and de Rijke (1996), here called
LB, is the weakest. It contains only the four basic programs plus theirtransitiveclosures,
denoted by a superscript(�)+. This language is precisely as expressive as the language
generated by the following programs:

π ::= j!j " j # j π�:

To see this, note that forπ 2 f ;!;";#g, the transitive closure operator is expressible
by, hπ+iφ � hπihπ�iφ . For the other direction, note thath(π�)�iφ � hπ�iφ andhπ�iφ �
φ _hπ+iφ

The language proposed by Palm (1999), here calledLP, lies betweenLB andLK with
respect to expressive power. It is generated by the following programs1:

π ::= j!j " j # j ?φ ;π j π�:

Palm tried to designed his language to have exactly the expressive power required to reason
about syntactical structures. At first glance,LP seems rather weak compared with Kracht’s
language, for it lacks the composition, union and test operator constructors. However note
that when these are applied outside of the scope of the Kleene star they are definable
as follows: hπ ;π 0iφ � hπihπ 0iφ , hπ [π 0iφ � hπiφ _ hπ 0iφ , andh?ψiφ � ψ ^ φ . Palm
claims that “The resulting ‘tense’ fragment of PDL holds sufficient expressivity to handle
the linguistic demands on tree constraints”.

Palm calls his languagePropositional Tense Logic for Finite Trees, making an analogy
with branching time logic. In branching time logic,h#�iφ andh"�iφ are calledsometimes
in the futureφ andsometimes in the pastφ , respectively. But besides these unary operators,
branching time logic standardly makes use of the binaryuntil andsinceconnectives.Until
is defined as:M; t j=U(φ ;ψ) iff there exists a timet 0 in the future oft withM; t 0 j= φ and
for all time pointst 00 in betweent andt 0 it holds thatM; t 00 j= ψ . Sincehas an analogous
definition, but toward the past.

In fact, Palm’s choice of the nameTense Logicis apt, for as we shall now seeLP
is nothing but the simplest languageLB with four additionaluntil operators defined as

1Palm’s conditional pathsπφ are denoted here as ?φ ;π.
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follows. Forπ 2 f ;!;";#g,M; t j= Uπ(φ ;ψ) iff there exists at 0 such thattRπ�t 0 and
M; t 0 j= φ and for allt 00 such thattRπ�t 00Rπ t 0 it holds thatM; t 00 j= ψ . Uπ(φ ;ψ) is a very
natural operation. For instance, the programwhile φ do π is expressed byUπ(:φ ;φ).

Theorem 3.2.1.The languageLP is precisely as expressive as the languageLB with the
additional four until programs.

Proof: For one direction, note that forπ 2 f ;!;";#g, Uπ(φ ;ψ) � h(?ψ ;π)�iφ , and
the right hand side is a Palm formula. For the other direction, we use induction on the
complexity of the programs inLP formulas. Inside this proofLuntil denotes the language
LB with the additional fourUπ programs.

Consider the formulahπiφ . There are three cases. Ifπ is a basic program, then
hπiφ 2Luntil. In the second case,π is of the form ?ψ ;P, for P a program. IfP is a basic
program, thenhπiφ = h?ψ ;Piφ is equivalent toψ ^ hPiφ which is inLuntil. If P itself
is of the form ?θ ;P0, thenhπiφ = h?ψ ;(?θ ;P0)iφ which is equivalent toh?(ψ ^θ );P0iφ .
Now P0 is of smaller complexity thanP, whence by inductive hypothesis, the last formula
is equivalent to a formula inLuntil. Finally if P is of the formQ�, thenhπiφ = h?ψ ;Q�iφ
which is equivalent toψ ^hQ�iφ , which by IH then is equivalent to a formula inLuntil. In
the third and last case,π is of the formP�. If P is a basic program,hπiφ 2 Luntil. If P
itself is of the formQ�, thenhπiφ = h(Q�)�iφ � hQ�iφ which then by IH is equivalent to
a formula inLuntil. If P is of the form ?ψ ;Q, then if Q is atomichπiφ = h(?ψ ;Q)�iφ �
UQ(φ ;ψ), whence inLuntil. If Q is of the form ?θ ;Q0 it reduces as before. IfQ= (Q0)�,
thenhπiφ = h(?ψ ;(Q0)�)�iφ which is equivalent toφ _ (ψ ^ h(Q0)�iφ), which by IH is
equivalent to a formula inLuntil. �

Actually, one can be even more economic in defining this extension ofLB. Let us
redefineLuntil to be the modal language with the following four binary modal operators:
for π 2 f ;!;";#g,M; t j= Untilπ(φ ;ψ) iff there exists at 0 such thattRπ+t 0 andM; t 0 j=
φ and for allt 00 such thattRπ+t 00Rπ+t 0 it holds thatM; t 00 j= ψ . Thenhπiφ andhπ�iφ can
be defined to beUntilπ(φ ;?) andφ _Untilπ(φ ;>), respectively. The previous (non strict)
until constructUπ(φ ;ψ) is equivalent toφ _ (ψ ^Untilπ(φ ;ψ)).

Let us briefly discuss the relationship between the modal languages discussed in this
paper and the first order logic of ordered trees. LetLFO denote the first order language
over the signature with binary predicatesfR#;R ;R#� ;R �g and countably many unary
predicates.LFO is interpreted on ordered trees in the obvious way, withR# being the
daughter relation, and so on. Kracht’s languageLK can express properties beyond the
power ofLFO. For examples, it can express the property of having an odd number of
daughters:

(3.2.3) h#i(:h i>^h(!;!)�i:h!i>):

On the other hand, Theorem 3.2.1 entails that every Palm formula is equivalent to a formula
φ(x) in LFO; we simply use thestandard translationof until intoLFO (see Blackburnet
al (2001). We conjecture that the converse is also true:LP is functionally complete with
respect toLFO. For unordered trees such a result (generalizing Kamp’s famous theorem
to trees) can be found in Schlingloff (1992).
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Theorem 3.2.1 together with (3.2.3) entail thatLP is strictly contained inLK . That
LB is strictly contained inLP follows from the well known fact that until is not expressible
on linear orders from the future and past modalities. For a concrete example of difference
in expressive power, note that the property of having exactly 2p daughters is expressible
inLP:

(3.2.4) h#i(p^:h +ip^h!ih(?:p;!)�i(p^:h!+ip))

However an easybisimulationargument (see Blackburnet al (2001) for the definition of
bisimulation) can be used to show thatLB cannot express this property.

We conclude this section with a summary of the relative expressive power of the lan-
guages we have discussed:

� LB(LP =Luntil (LK .

� LP�LFO andLK 6�LFO.

� Conjecture: Luntil =LFO.

3.3 Complexity

In model theoretic syntax we specify a certain class of trees by stating a theoryΘ in a
tree language (Θ is our grammatical theory). Thus a key question is: given a formulaφ ,
doesφ describe a structure that is grammatical with respect to this theory? More formally:
does there exist a modelM such thatM is a model ofΘ (i.e., every formula inΘ is true
at every node inM) andM satisfiesφ (i.e., φ is true at the root ofM)? This holds iff
Θ 6j= root! :φ . (Here and below we also useroot to denote the formula:h"i>, which
indeed is satisfied at the root of a tree only.) This is the type of problem we will study.
For L a language, theL consequence problem consists of all pairs(Γ;χ) with Γ[fχg a
finite set ofL formulas such thatΓ j= χ . We now study the complexity of this problem for
LB;LP andLK .

Decidability of theLK consequence problem is shown in Kracht (1997), Theorem 5,
via a reduction to theLB consequence problem. Unfortunately the reduction is not correct
(a counterexample is given in the Appendix to this paper). HoweverLK decidability can
be proved by interpreting it inL2

K;P, the monadic second order logic of variably branching
trees of Rogers (1998). (The decidability of the satisfiability problem forL2

K;P follows, in
turn, via an interpretation intoSωS.) The translation ofLK formulas intoL2

K;P is straight-
forward. Note, in particular, that we can use second order quantification to define the
transitive closure of a relation: forR any binary relation,xR�y holds iff

x= y_8X(X(x)^8z;z0(X(z)^zRz0! X(z0))! X(y)):

Note that although this reduction yieldsLK decidability, it only gives us a non elementary
decision procedure.
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What of the complexity of these consequence problems? In Blackburn et al. (1996) the
problem forLB was claimed to be in EXPTIME2, but the proof contains a mistake. Here
we show that the claim is indeed correct, and that the same result holds for the language
LP. Before we go into the proof details we consider the problem in a bit more detail. We
first look at the lower bound:

Theorem 3.3.1.The consequence problem for the language with only# is EXPTIME–hard.

Proof: This is an immediate corollary of Spaan (1993) analysis of the lower bound result
for PDL. She notes that the following fragment of PDL is EXPTIME-hard: formulas of
the formψ ^ [a�]θ , (whereψ andθ contain only the atomic programa and no embedded
modalities) that are satisfiable at the root of a finite binary tree. Identifying the program
a with #, the result follows (because[#�]θ ^ψ is satisfiable at the root of a finite tree iff
θ 6j= root!:ψ). � For full PDL this bound is optimal. There is even a stronger

result: every satisfiable PDL formulaφ can be satisfied on a model with size exponential
in the length ofφ . Unfortunately with tree-based models there is no hope for such a result:

For every natural numbern, there exists a satisfiable formula of size
O(n2) in the language with only# and#� which can only be satisfied on
at least binary branching trees of depth at least 2n.

A formula which forces the deep branch is given in Blackburn et al. (2001): Proposi-
tion 6.51; one only has to add the conjunct[#�](h#ip^h#i:p) for some new variablep to
enforce binary branching. Note that the size of the model is double exponential in the size
of the formula. This means that a decision algorithm which tries to construct a tree model
must run at least in exponential space, as it will need to keep a whole branch in memory.

Fortunately we can do better, taking a cue from the completeness proof for a related
language in Blackburn and Meyer-Viol (1994). Instead of constructing a model we design
an algorithm which searches for a “good” set of labelings of the nodes of a model. Label
sets consist of subformulas of the formulaφ whose satisfiability is to be decided. From
a good set of labels we can construct a labeled tree model which satisfiesφ . The gain in
complexity comes from the fact that the number of labels is bound by an exponential in the
number of subformulas ofφ . As we shall show, the search for a good set of labels among
the possible ones can be implemented in time polynomial in the number of possible labels
using the technique of elimination of Hintikka sets developed by Pratt (1979). Thus we
will be able to prove:

Theorem 3.3.2.TheLP consequence problem is in EXPTIME.

The proof of Theorem 3.3.2 consists of a reduction and a decision algorithm. The
reduction combines ideas from Kracht (1997), Theorem 5 and Rabin’s reduction ofSωSto
S2S.

2EXPTIME is the class of all problems solvable in exponential time. A problem is solvable in
exponential time if there is a deterministic exponentially time bounded Turing machine that solves
it. A deterministic Turing machine is exponentially time bounded if there is a polynomialp(n) such
that the machine always halts after at most 2p(n) steps, wheren is the length of the input.
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Let L2 be the modal language with only the two programsf#1;#2g and the modal
constantroot. L2 is interpreted on finite orderedbinary trees, with#1 and#2 interpreted
by the first and second daughter relation, respectively, androot holds exactly at the root.
We present such trees by triples(T;�1;�2).

Lemma 3.3.3. There is an effective reduction from theLP consequence problem to the
L2 consequence problem.

The proof is provided in the appendix. The theorem now follows from the previous
lemma together with the following one, which we shall prove in the next section:

Lemma 3.3.4. TheL2 consequence problem is in EXPTIME.

3.4 DecidingL2

We will give an EXPTIME algorithm that on inputL2 formulasγ;χ decides whether
there exists a modelM in which γ is true everywhere andχ is true at the root. To this
the consequence problem reduces becauseγ 6j= φ iff there exists a model in whichγ ^
(p$ :φ _ h#1ip_ h#2ip) is true everywhere andp is true at the root. Herep is a new
propositional variable whose intended meaning ish(#1[#2)

�i:φ .

Preliminaries. Recall that a set of formulasΣ is said to be closed under subformulas
iff for all φ 2 Σ, if ψ is a subformula ofφ thenψ 2 Σ. It is closed under single negations
if wheneverφ is in the set andφ is not of the form:ψ then also:φ is in the set. ForΣ a
set of formulas,Cl(Σ) (called theclosureof Σ) is defined to be the smallest set of formulas
containingΣ that is closed under subformulas and single negations and which contains
the constantroot and the formulash#1i> andh#2i>. From now on we fix two arbitrary
formulasγ andχ .

Definition 3.4.1 (Hintikka Set). Let A�Cl(fγ;χg). We call A a Hintikka Set if A satisfies
the following conditions:

1. γ 2 A and>2 A.

2. If φ 2Cl(fγ;χg) thenφ 2 A iff :φ 62 A.

3. If φ ^ψ 2Cl(fγ;χg) thenφ ^ψ 2 A iff φ 2 A andψ 2 A.

4. h#1i> 2 A iff h#2i> 2 A.

Let HS(γ;χ) denote the set of all Hintikka Sets which are a subset ofCl(γ;χ). Note
thatjHS(γ;χ)j � 2jCl(γ;χ)j.

For H a set of Hintikka sets, letl : H �! f0;1; : : : ; jHjg be a function assigning to
eachA2 H a level. We call a structure(H; l) an ordered set of Hintikka sets.

Definition 3.4.2 (Saturation). Let (H; l) be an ordered set of Hintikka sets and let k be
either1 or 2. We call(H; l) saturatedif for all A 2H, h#kiφ 2A only if there exists a B2H
such that l(A)> l(B) and for all h#kiψ 2Cl(γ;χ), h#kiψ 2 A iff ψ 2 B.
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The connection. We are ready to formulate our most important lemma.

Lemma 3.4.1. The following are equivalent:

1. There exists a model over a finite binary branching tree in whichγ is true everywhere
andχ is true at the root;

2. There exists a saturated ordered set of Hintikka Sets(H; l), with H � HS(γ;χ) and
there is anA2 H with froot;χg � A.

Proof: First assumeM is a model over a finite binary branching tree in whichγ is true
everywhere andχ is true at the root. For each noden defineAn = fψ 2Cl(γ;χ) jM;n j=
ψg. Obviously eachAn is a Hintikka set and there is anA with froot;χg � A. Let H be
the set of all suchAn. Let Ân abbreviate the conjunction of all formulas inAn. Inductively
define the level function onH. First define which Hintikka Sets are of level 0:

l(A) = 0 if t 2 A:

Next, suppose thei-th level is defined. First define:Si = fA2 H j l(A)� ig. Next, if HnSi
is non-empty then thei +1-th level is defined as follows:l(A) = i +1 if A 62 Si and

M; root j= h(#1 [ #2)
�i(Â^ [#1 [ #2][(#1 [ #2)

�]
_

B2Si

B̂):

On the other hand, ifHnSi is empty then there is noi +1-th level. It is not hard to show
that(H; l) is saturated.

Now assume(H; l) is saturated and there is anA0 2 H with froot;χg � A0.
We inductively construct a finite binary tree and a functionh from the nodes toH in

such a way that we can turn the tree into a modelM for which we can prove the truth
lemma,

for all ψ 2Cl(γ;χ),M;n j= ψ if and only if ψ 2 h(n):

By the first condition on Hintikka sets and the existence ofA0 2 H, this yields a model in
which γ is true everywhere andχ at the root. LetT be some denumerably infinite set; we
shall use (finitely many) of its elements as the tree nodes.

Stage 0. DefineT0 to beft0g; �
0
1 to be /0;�0

2 to be /0; andh0 to befhw0;A0ig.

Stage n+1. Supposen stages of the inductive construction have been performed. We
call a pairht;ki (wheret 2 Tn andk 2 f1;2g) anunsatisfied demandiff h#kiφ 2 h(t) but
there is not 0 2 Tn such thatt �k t 0. If there are no unsatisfied demands the construction
is complete. Otherwise, choose an unsatisfied demandht;ki. As (H; l) is saturated there
exists aB2H such thatl(hn(t))> l(B) and for allh#kiψ 2Cl(Σ), h#kiψ 2 hn(t) iff ψ 2B.
Let t 0 2T nTn. Define:
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Tn+1 = Tn[ft 0g

�n+1
k = �n

k [fht; t
0ig

�n+1
j = �n

j

hn+1 = hn[fht 0;Big:

While adjoining a new nodet 0 to t as described in the inductive step may result in new
unsatisfied demandsht 0;ki, wherek2 f1;2g, we were careful to chooseh(t 0) from a strictly
lower level thanh(t). This means that in the course of the construction we will be forced
to map the newly adjoined nodet 0 to a Hintikka set of level zero; but doing so cannot give
rise to an unsatisfied demand. Thus the construction process terminates.

Let hT;�1;�2i be the result of the final stage. Note that by the last condition on
Hintikka Sets and the fact that there are no unsatisfied demands every non leaf node has
two daughters. TurnhW;�1;�2i into a modelM= hW;�1;�2;Vi by settingn2V(p) iff
p2 h(n).

Prove the truth lemma by an induction on the complexity of the formulas. The base
case is by definition ofV. The boolean cases are by conditions 2 and 3 on Hintikka sets.
The cases forh#ki follow from the fact that all demands are satisfied.

�

The algorithm. The decision algorithm forL2 satisfiability is presented in Figure 3.1.
Its most important properties are presented in the next lemma.

Lemma 3.4.2. 1. Elimination of HS(γ;χ) terminates after at mostjHS(γ;χ)j rounds
of the do loop.

2. The statement “hS,l i is a saturated ordered set of Hintikka sets” holds after the do
loop ofElimination of HS(γ;χ).

Proof: (1) The bound function of the do loop is the size ofPool which is being reduced
in every round, or the loop terminates becauseL= /0. The initial size ofPool is bounded
by jHS(γ;χ)j= 2jCl(γ;χ)j.
(2) Because the statement “HS(γ;χ) = Pool ] S andhS,l i is a saturated ordered set of
Hintikka sets” holds before the do loop and is an invariant of the do loop.� This lemma

immediately yields our desired result:

PROOF OFLEMMA 3.3.4. In order to decide whether there exists a model is whichγ is
true everywhere andχ is true at the root we runElimination of HS(γ;χ). The algorithm
is correct by Lemma 3.4.1 and part 2 of Lemma 3.4.2. By part 1 the algorithm terminates
after at mostjHS(γ;χ)j� 2jCl(γ;χ)j rounds of the do loop. As in Pratt (1979), the tests inside
the do loop take time bounded byp(jHS(γ;χ)j) for some polynomialp. SincejCl(γ;χ)j
is linear in the number of subformulas ofγ;χ , the algorithm is in EXPTIME. QED
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begin
L := fA2 HS(γ ;χ) j :h#1i> 2 Ag;
Pool:= HS(γ ;χ)n L;
S := L;
i := 0;
l := f(A; i) j A2 Lg;
do L 6= /0 !

L := fA2 Pool j (S[fAg;l[ (A;i+1))
is a saturated ordered set of
Hintikka Sets g;

Pool:= Pool n L;
S := S [ L;
i := i+1;
l := l [ f(A; i) j A2 Lg

od;
if 9A2 S: fχ ; rootg � A

then true
else fail

fi
end

Figure 3.1: The algorithmelimination of HS(γ ;χ).
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3.5 Conclusions

We discussed the relative expressivity of three modal languages proposed for specifying
grammatical constraints on finite ordered trees. We added a fourth language,Luntil, and
conjectured it to be precisely as expressive as the first order language of ordered trees. We
showed that the consequence problems forLB, LP andLuntil are EXPTIME-complete.
We conjecture that the same bound holds forLK as well (note that if Kracht’s polynomial
reduction ofLK satisfiability toLB satisfiability can be repaired, this follows immediately
from the results in this paper).

Palm argued that writing grammatical constraints in the languageLP is straightfor-
ward and yields formulas which are simpler and easier to understand than first order for-
mulas. We think this is due to the lack of variables and the direct use of the “tree-axis” in
LP formulas. It is interesting to note that the language XPath contains exactly these two
features. XPath was designed to extract elements from XML documents, and the natural
models of XML documents are finite ordered trees.
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Appendix

Counterexample to Kracht’s reduction. We present a counterexample to the reduc-
tion fromLK toLB given in the proof of Theorem 5 in Kracht (1997). Take the following
non satisfiable formulah(#�)�i?. Then∇(ψ) is

q? $ ?
q
h(#�)�i?

$ q?_q
h#�ih(#�)�i?

q
h#�ih(#�)�i?

$ q
h(#�)�i?

_q
h#ih#�ih(#�)�i?

q
h#ih#�ih(#�)�i?

$ h#iq
h#�ih(#�)�i?

:

q
h(#�)�i?

can be made true in the tree with domainf0;00g, with 0 the root and 00 her
daughter and the following valuation:

V(0) = fq
h#ih#�ih(#�)�i?

;q
h#�ih(#�)�i?

;q
h(#�)�i?

g

V(00) = fq
h#�ih(#�)�i?

;q
h(#�)�i?

g

This model makes∇(ψ) true. But clearly we do not have 0j= h(";#)�i?, contrary to
Kracht’s claim that for every noden, and for every formulaχ in the Fisher Ladner closure
it holds thatn j= χ $ qχ .

Proof of Lemma 3.3.3 Although Kracht’s reduction ofLK to LB is flawed, his ap-
proach can used to give a reduction ofLP to L2, and we shall do so here. Note that
γ1; : : : ;γn j= χ iff j= [#�](γ1^ : : :^ γn)! χ . Thus we need only reduce the consequence
problem for emptyΓ. The proof of Theorem 3.2.1 gives an effective reduction fromLP to
Luntil formulas.

Let χ 2Luntil. Let Cl(χ) be the smallest set of formulas containing all subformulas
of χ and which is closed under taking single negations and under the rule:Untilπ(φ ;ψ) 2
Cl(χ)) ψ ^Untilπ(φ ;ψ) 2Cl(χ).
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We associate a formula∇(χ) with χ as follows. We create for eachφ 2Cl(χ), a new
propositional variableqφ . Now ∇(χ) “axiomatizes” these new variables as follows:

qp $ p
q:φ $ :qφ
qφ^ψ $ qφ ^qψ
qUntilπ (φ ;ψ) $ hπiqφ _hπiq(ψ^Untilπ (φ ;ψ)):

We claim that for every modelM which validates∇(χ), for every noden and for every
subformulaφ 2Cl(χ),M;n j= qφ iff M;n j= φ .

The proof is by induction on the structure of the formula, and for the left to right
direction of the until case by induction on the depth of direction ofπ . We do that case
for Until#. Let n be a leaf. By the axiom in∇(χ),M;n 6j= qUntil

#
(φ ;ψ). But alsoM;n 6j=

Until#(φ ;ψ). Now let n be a node withk+ 1 descendants, and let the claim hold for
nodes withk descendants. LetM;n j= qUntil

#
(φ ;ψ). Then by the axiomM;n j= h#iqφ or

M;n j= h#iq(ψ^Until
#
(φ ;ψ)). In the first case, there exists a daughtermof n andM;m j= qφ .

By inductive hypothesis,M;m j= φ , whenceM;n j= Until#(φ ;ψ). In the second case,
there exists a daughterm of n andM;m j= qψ andM;m j= qUntil

#
(φ ;ψ). Whence, by first

inductive hypothesis,M;mj=ψ and the second inductive hypothesisM;mj=Until#(φ ;ψ).
But then alsoM;n j= Until#(φ ;ψ). Hence the following holds for eachχ 2Luntil,

j= χ , ∇(χ) j= qχ :

Note that the only modalities occurring in∇(χ) are hπi for π one of the four compass
arrows. We can further reduce the number of arrows to only#;! when we add two modal
constantsroot andfirst for the root and first elements, respectively.

Let χ be a formula in this fragment. As before create a new variableqφ for each (single
negation of a) subformulaφ of χ . Create∇(χ) as follows:

qp $ p
q:φ $ :qφ
qφ^ψ $ qφ ^qψ
qhπiφ $ hπiqφ for π 2 f#;!g:

And for each subformulah"iφ andh iφ we add to∇χ the axioms

qφ ! [#]qh"iφ ; h#iqh"iφ ! qφ ; qh"iφ ! :root;

qφ ! [!]qh iφ ; h!iqh iφ ! qφ ; qh iφ ! :first:

We claim that for every modelM which validates∇(χ), for every noden and for every
subformulaφ 2Cl(χ),M;n j= qφ iff M;n j= φ . An easy induction shows this. We do the
case forh"iφ . If n j= h"iφ , then the parent ofn modelsφ , whence by inductive hypothesis,
it modelsqφ , so by the axiomqφ ! [#]qh"iφ , n
 qh"iφ . Conversely, ifn j= qh"iφ , then by

axiomqh"iφ ! :root, n is not the root. So the parent ofn exists and it modelsh#iqh"iφ .
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Then it modelsqφ by axiomh#iqh"iφ ! qφ , and by inductive hypothesis it modelsφ . Thus

n j= h"iφ . Hence, the following holds

γ j= χ , ∇(γ ^ χ);qγ j= qχ :

Note that the formulas on the right hand side only contain the modalitiesh#i and h!i.
Finally we reduce the consequence problem to that of binary branching trees. Letχ be a

formula, letd andqfirst be new variables. Let(�)0 be the following translation:

p0 = p
(:φ)0 = :φ 0
(φ ^ψ)0 = φ 0^ψ 0
(h#iφ)0 = h#1ih(?d;#2)

�i(d^φ 0)
(h!iφ)0 = h#2i(d^φ 0)
root0 = root
first0 = qfirst:

Note that this translation goes to the Palm language generated from the programs#1 and
#2. Thenχ is satisfiable on a tree in whichγ is true in every node iffd^ χ 0 is satisfiable
on a binary branching tree in whichd! γ 0 and [#1]qfirst^ [#2]:qfirst^ (root! qfirst) is
true everywhere. This is shown using the main idea from the reduction fromSωS to S2S
explained in Weyer (2002). Whence we have that

γ j= χ , d! γ 0^ [#1]qfirst^ [#2]:qfirst^ (root! qfirst) j= d! χ 0:

Now we can use the first reduction again to reduce this problem to the consequence prob-
lem of the language with just the modalitiesh#1i andh#2i, interpreted on binary trees.

Chaining these reductions together, we obtain the reduction stated in the lemma.
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Chapter 5

Global Index Grammars and Descriptive Power

JOSÉ M. CASTAÑO�

ABSTRACT. We review the properties of Global Index Grammars (GIGs), a grammar formal-
ism that uses a stack of indices associated with productions and has restricted context-sensitive
power. We show how thecontrol of the derivation is performed and how this impacts in the
descriptive power of this formalism both in the string languages and the structural descriptions
that GIGs can generate.

5.1 Introduction

The notion ofmild context-sensitivitywas introduced in Joshi (1985) as a possible model
to express the required properties of formalisms that might describe Natural Language
(NL) phenomena. It requires four properties:1 a)constant growthproperty (or the stronger
semilinearityproperty); b) polynomial parsability; c)limited cross-serialdependencies,
i.e. some limited context-sensitivity d) proper inclusion of context free languages. The
canonical NL problems which exceed context free power are:multiple agreements, redu-
plication, crossing dependencies.2

Many formalisms have been proposed to extend the power of context-free grammars
usingcontrol devices, where the control device is a context-free grammar (see Dassow
et al. (1997) regarding control languages). The appeal of this approach is that many of the
attractive properties of context-free languages may be inherited (e.g. polynomial parsabil-
ity, semilinearity, closure properties). Those models can be generalized such that additional
control levels3 can be added. They form hierarchies of levels of languages, where a lan-
guage of levelk properly includes a language of levelk�1. For example in Weir (1992),

�Computer Science, Brandeis University, Waltham, MA, U.S.A.;jcastano@cs.brandeis.
edu .

1See for example, Joshi et al. (1991), Weir (1988).
2However other phenomena (e.g.scrambling, Georgian Case and Chinese numbers) might be

considered to be beyond certainmildly context-sensitiveformalisms.
3The corresponding automaton models use embedded or an additional constrained stack. In such

case, the generalization and hierarchy of levels is obtained using additional levels of embeddedness,
or additional stacks (cf. Weir (1988), Cherubini et al. (1996)).
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Mildly Context-sensitive Languages(MCSLs) are characterized by such a geometric hier-
archy of control grammar levels (see also, Khabbaz (1974), Seki et al. (1991), Cherubini
et al. (1996)). Those generalizations provide more expressive power but at a computational
cost: the complexity of the recognition problem is dependent on the language level: for a
MCSL level-k it is in O(n3�2k�1

).

In Casta˜no (2003), we introduced Global Index Grammars (GIGs) and the correspond-
ing languages, GILs. We presented a Chomsky-Sch¨utzenberger representation theorem for
GILs. We showed that GIGs have enough descriptive power to capture the three phenom-
ena mentioned above (reduplication, multiple agreements, andcrossed agreements) in their
generalized forms. GILs include such languages asfww+ jw2 Σ�g, fanbm(cndm)+ j n m�
1g andf an(bncn)+ j n� 1gwhich are beyond the power of Tree Adjoining Languages and
beyond the power of any level-k control language. Recognition of the language generated
by a GIG is inbounded polynomial time: O(n6), however for bounded state grammars
with unambiguous indexing it isO(n).

The equivalent model of automata was presented in Casta˜no (2003b). Also an al-
gorithm to construct an LR parsing table for GILs was presented there. The automaton
model and the grammar can be used to prove that the family of GILs is an Abstract Family
of Languages using the same techniques to prove it for CFLs (cf. Casta˜no (2003b)). GILs
have also the semilinear property, a proof can be easily built following the proof presented
in Harju et al. (2001) for counter automata. Therefore GILs have at least three of the four
properties required for Mildly context sensitivity: a) semi-linearity b) polynomial parsabil-
ity c) proper inclusion of context free languages. The fourth property,limited cross-serial
dependenciesdoes not hold of GILs given they contain the MIX (or Bach) language.

The goal of this paper is to show how the properties of GILs are related to the pecu-
liarities of thecontrol device that regulates the derivation. Though this mechanism looks
similar to the control device in Linear Indexed Grammars (LIGs, cf. Gazdar (1988)), its
behavior differs relative to the trees generated by both formalisms.

GIGs offer additional descriptive power as compared to LIGs (and weakly equivalent
formalisms) regarding the canonical NL problems mentioned above, and the same com-
putational cost in terms of asymptotic complexity. They also offer additional descriptive
power in terms of the structural descriptions they can generate for the same set of string
languages, being able to producedependent paths.4 However those dependent paths are
not obtained by encoding the dependency in the path itself.

This paper is organized as follows: Section 2 reviews Global Index Grammars and their
properties, we give examples of its weak descriptive power and we discuss howcontrolof
the derivation is performed in GIGs. Section 3 discusses the strong descriptive power of
GIGs.

4For the notion of dependent paths see for instance Vijay-Shanker et al. (1987) or Joshi (2000).
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5.2 Global Index Grammars

5.2.1 Linear Indexed Grammars

Indexed grammars (IGs, Aho (1968)), and Linear Index Grammars, (LIGs; LILs) Gazdar
(1988), have the capability to associate stacks of indices with symbols in the grammar
rules. IGs are not semilinear. LIGs are Indexed Grammars with an additional constraint
in the form of the productions: the stack of indices can be “transmitted” only to one non-
terminal. As a consequence they are semilinear and belong to the class of MCSGs.

A Linear Indexed Grammar is a 5-tuple(V;T; I ;P;S), whereV is the set of variables,
T the set of terminals,I the set ofindices, S in V is the start symbol, andP is a finite set of
productions of the form, whereA;B2V, α;γ 2 (V [T)�, i 2 I :

a. A[::]! α B[::] γ b. A[i::]! α B[::] γ c. A[::]! αB[i::] γ

Example 1. L(Gwcw) = fwcwjw2 fa;bg�g,
Gww = (fS;Rg;fa;bg;fi; jg;S;P) and P is:

1.S[::]! aS[i::] 2.S[::]! bS[ j::] 3.S[::]! cR[::] 4.R[i::]! R[::]a
5.R[ j::]! R[::]b 5. R[]! ε

5.2.2 Global Indexed Grammars

GIGs use the stack of indices as a global control structure. This formalism provides
a global but restricted context that can be updated at any local point in the deriva-
tion. GIGs are a kind ofregulated rewritingmechanism (cf. Dassow and P˘aun
(1989)) with global context and history of the derivation (or ordered derivation)
as the main characteristics of its regulating device. The introduction of indices in
the derivation is restricted to productions that are in Greibach normal form (i.e. in
which the right hand side starts with a terminal). An additional constraint that is
imposed on GIGs is strict leftmost derivation whenever indices are introduced or
removed in the derivation.

Definition 1. A GIG is a 6-tuple G= (N;T; I ;S;#;P) where N;T; I are finite pair-
wise disjoint sets and 1) N are nonterminals 2) T are terminals 3) I a set of stack
indices 4) S2N is the start symbol 5)# is the start stack symbol (not in I,N,T) and
6) P is a finite set of productions, having the following form:

a.1 A!
ε

α (epsilon rules) or the equivalent A! α
a.2 A!

[y]
α (epsilon with constraints) or in LIG format: [y::]A! [y::]α

b. A!
x

a β (push) [::]A! [x::]a β
c. A!

x̄
α (pop) [x::]A! [::]α

Note the difference betweenpush(type b) andpop rules (type c):pushrules
require the right-hand side of the rule to contain a terminal in the first position.
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Poprules do not require a terminal at all. That constraint onpush rules is a crucial
property of GIGs. Derivations in a GIG are similar to those in a CFG except that
it is possible to modify a string of indices. We define thederivesrelation) on
sentential forms, which are strings inI�#(N[T)� as follows. Letβ andγ be in
(N[T)�, δ be inI�, x in I , w be inT� andXi in (N[T).

1. If A!
µ

X1:::Xn is a production of type (a.) (i.e.µ = ε or µ = [x], x2 I ) then:

δ#βAγ)
µ

δ#βX1:::Xnγ or xδ#βAγ)
µ

xδ#βX1:::Xnγ

2. If A!
µ

aX1:::Xn is a production of type (b.) orpush: µ = x;x2 I , then:

δ#wAγ )
µ

xδ#waX1:::Xnγ

3. If A!
µ

X1:::Xn is a production of type (c.) orpop: µ = x̄;x2 I , then:

xδ#wAγ )
µ

δ#wX1::::::Xnγ

The reflexive and transitive closure of) is denoted, as usual by
�
). We define the

language of a GIG, G,L(G) to be:fwj#S
�
) #w andw is in T�g

The main difference between IGs, LIGs and GIGs, corresponds to the interpre-
tation of thederivesrelation relative to the behavior of the stack of indices. In IGs
the stacks of indices are distributed over the non-terminals of the right-hand side
of the rule. In this way the samecontrol words can be associated with multiple
paths. This allows dependent paths. In LIGs, indices are associated with only one
non-terminal at right-hand side of the rule. Thus there is only one stack affected at
each derivation step, with the consequence that LILs are semi-linear. GIGs share
this uniquenessof the stack with LIGs: there is only one stack to be considered
per derivation. Unlike LIGs and IGs, the stack of indices is independent of non-
terminals in the GIG case.Pushrules (type b) are constrained to start the right-hand
side with a terminal as specified in (6.b) in the GIG definition. Thederivesdefini-
tion requires aleftmostderivation for those productions (pushandpop rules) that
affect the stack of indices.

The following example shows that GILs contain a language not contained in
LILs, nor in the family of MCSLs. This language is relevant for modeling coordi-
nation in Natural Language as observed, for example, in Gazdar (1988).

Example 2 (Multiple Copies). .L(Gwwn) = fww+ j w2 fa;bg�g
Gwwn= (fS;R;A;B;C;Lg;fa;bg;fi; jg;S;#;P) and whereP is:
S! ASj BSjC C! RCj L R!

ī
RA R!

j̄
RB R!

[#]
ε

A!
i

a B!
j

b L!
ī

La j a L!
j̄

Lb j b

The derivation ofababab:
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#S)#AS) i#aS) i#aBS) ji#abS) ji#abC) ji#abRC) i#abRBC)#abRABC)
#abABC) i#abaBC) ji#ababC) ji#ababL) i#ababLb) #ababab

The next example shows the MIX (or Bach) language. Gazdar (1988) conjec-
tured the MIX language is not an IL. GILs are semilinear, therefore ILs and GILs
are incomparable under set inclusion.

Example 3 (MIX language). .
L(Gmix) = fwjw2 fa;b;cg

� and jajw = jbjw = jcjw � 1g
Gmix = (fS;D;F;Lg;fa;b;cg;fi; j;k; l ;m;ng;S;#;P) whereP is:
S! FSj DSj LSj ε F !

i
c F!

j
b F!

k
a

D!
ī

aSbj bSa D!
j̄

aScj cSa D!
k̄

bScj cSb D!
l

aSbj bSa

D!
m

aScj cSa D!
n

bScj cSb L!
l̄

c L!
m̄

b L!
n̄

a

The following language cannot be generated by LIGs. It is mentioned in
Vijay-Shanker et al. (1987) in relation to the definition of composition in Steed-
man (1985) Categorial Grammars, which permits composition of functions with
unbounded number of arguments and generates tree sets with dependent paths.

Example 4 (Dependent branches)..
L(Gsum) = f anbmcmdl el f n j n= m+ l � 1g,

Gsum= (fS;R;F;Lg;fa;b;c;d;e; fg;fig;S;#;P) whereP is:

S!
i

aS f jR R! F L j F j L F !
ī

b F c jb c L!
ī

d L ejd e

The derivation ofaabcde f f:
#S) i#aS f) ii#aaS f f) ii#aaR f f) ii#aaFL f f) i#aabcL f f)#aabcde f f

5.2.3 Control of the derivation in LIGs and GIGs

Every LIL can be characterized by a languageL(G;C), where G is a labelled gram-
mar (cf. Weir (1992)),G= (N;T;L;S;P), andC is a control set defined by a CFG
(a Dyck language):
fa1:::anj< S;ε >

�
)< a1;w1 > ::: < an;wn >;ai 2 T [fεg;w1; :::;wn 2Cg.

In other words,control stringswi are not necessarilyconnectedto each other.
Those control strings are encoded in the derivation of eachspineas depicted in
figure 5.1 at the left, but every substring encoded in aspinehas to belong to the
control set language. Those control words describe the properties of a path (aspine)
in the tree generated by the grammar G, and every possiblespineis independent.

We defined the language of a GIGG, L(G) to be:fwj#S
�
) #w andw is in T�g.

We can obtain an explicit control language modifying the derivation as follows.
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First modify the derives relations such thatpopproductions rewrite the complement
of the index:xδ#wAγ )

µ
x̄xδ#wX1::::::Xnγ

Then, define the language of a GIGG, to be the control languageL(G;C):
fwj#S

�
) δ#w andw is in T�, δ is inC g, andC is defined to be the Dyck language

over the alphabetI [ Ī (the set of stack indices and their complements).
It is easy to see that no control substring obtained in a derivation subtree is

necessarily in the control language, as is depicted in the figure 5.1 at the right. In
other words, the control of the derivation can be distributed over different paths,
however those paths are connected transversally by the leftmost derivation order.

A
C

B

B

[..]

[..i][]
[]

push

A

pop

push

B

B

C

pop

Figure 5.1: LIGs: multiple spines (left) and GIGs: leftmost derivation

5.3 GIGs and structural descriptions

Gazdar (1988) introduces Linear Indexed Grammars and discusses their applica-
bility to Natural Language problems. This discussion is addressed not in terms of
weak generative capacity but in terms of strong-generative capacity. Similar ap-
proaches are also presented in Vijay-Shanker et al. (1987) and Joshi (2000) (see
Miller (1999) concerning weak and strong generative capacity). In this section we
review some of the abstract configurations that are argued for in Gazdar (1988).

5.3.1 The palindrome language

CFGs can recognize the languagefwwRjw2Σ�g but they cannot generate the struc-
tural description depicted in figure 5.2 (we follow Gazdar’s notation: the leftmost
element within the brackets corresponds to the top of the stack):

Gazdar suggests that the configuration at the left would be necessary to rep-
resent Scandinavian unbounded dependencies. Such an structure can be obtained
using a GIG (and of course a LIG). But the exact mirror image of that structure,
(i.e. the structure at the right) cannot be generated by a GIG because it would re-
quire pushproductions with a non terminal in the first position of the right-hand
side.
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a

[..]
[a]

[b,a]
[c,b,a]

b
c

d

[d,c,b,a]

d
c

[b,a]

b
a

[a]

[..]

[c,b,a] d

[..]

a

b
c

d

c
b

a

[..]
[a]

[b,a]
[c,b,a]

[d,c,b,a]
[c,b,a]

[b,a]

[a]

Figure 5.2: Non context-free structural descriptions for the languagefwwRjw2 Σg
Gazdar (1988)

However GIGs generate a similar structural description as depicted in figure 5.3
at the left. In such structure the dependencies are introduced in the leftmost deriva-
tion order. The English adjective constructions that Gazdar argues can motivate the
LIG derivation, are generated by the following GIG grammar. The corresponding
structural description is shown in figure 5.3.

Example 5 (Comparative Construction). .
Gad j = (fAP;NP; Ā;Ag;fa;b;cg;fi; jg;AP;#;P) where P is:

AP! AP NP AP! Ā Ā! Ā A
A!

i
a A!

j
b A!

k
c NP!

ī
a NP

NP!
j̄

b NP NP!
k̄

c NP

[a] [b,a]

b

[..]

[c,b,a]

[d,c,b,a] [c,b,a]

[b,a]

[a]

[..]

[..]

a

d

c

a

d

c

b

NP

NP

A

AA

A A

AP

AP

AP

AP

NP

A b

a

[a,b,c]

a NP

b NP

NPc

c

[..]

[b,c]

[b,c]

[c]

[..]

[c]

[..]

Figure 5.3: GIG structural descriptions for the languagewwR
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It should be noted that the operations on indices are reversed as compared to
the LIG case shown in right figure of 5.2. On the other hand, it can be noticed also
that the introduction of indices is dependent on the presence of lexical information
and itstransmissionis not carried through a top-downspine, as in the LIG case.
The arrows show the leftmost derivation order that is required by the operations on
the stack.

5.3.2 The Copy Language

Gazdar presents the two possible LIG structural descriptions for the copy language
depicted in figure 5.4.

[b,c,d]

[c,d]

[d]

[a,b,c,d]

[b,c,d]

[c,d]

[d]

a

b

c
d

d

c

b

a

[..]
[a]

[b,a]
[c,b,a]

[d,c,b,a]

[c,b,a]

[..]

[a]

[b,a]

d

c

b

a

a

b
c

d

[..]

[..]

Figure 5.4: LIG structural descriptions of the copy language Gazdar (1988)

The structural description at the left in figure 5.4 can be obtained using GIGs,
but not the one at the right. However Gazdar argues that the tree structure shown
in figure 5.5 at the left, could be more appropriate for some Natural Language
phenomenon that might be modeled with a copy language. Such structure cannot
be generated by a LIG, but can be generated by an IG.

GIGs cannot produce this structural description either, but they can generate
the one presented in the figure 5.5 at the right, where the arrows depict the left-
most derivation order. GIGs can also produce similar structural descriptions for
the language of multiple copies (the languagefww+j w 2 Σ�g as shown in figure
5.6, corresponding to a grammar like the one shown in example 2.

5.3.3 Multiple dependencies

There is no discussion of the applicability of multiple dependency structures in
Gazdar (1988). The relevant structures that can be produced by a LIG are depicted
in figures 5.7 and 5.8 (left). GIGs can generate the same structures as in 5.7 and
the somewhat equivalent in 5.8 at the right.
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Figure 5.5: An IG structural description of the copy language Gazdar (1988) (left)
and a GIG structural description (right)

Also, GIGs can produce other structures that cannot be produced by a LIG, as
we show in figure 5.9, including those corresponding toGsumdiscussed above.

5.3.4 Conclusions

We have reviewed GIGs and GILs and their most important properties. We showed
that the descriptive power of GIGs is beyond CFGs. CFLs are properly included
in GILs by definition. We showed also that GIGs include some languages that are
not in the LIL/TAL family nor in the MCSLs as characterized in Weir (1992). The
similarity between GIGs and LIGs, strongly suggests that LILs might be included
in GILs. We presented a comparison of the structural descriptions that LIGs and
GIGs can be generate. We have shown that GIGs generate structural descriptions
for the copy and multiple dependency languages which can not be generated by
LIGs. Finally, we have shown also that the extra power that characterizes GIGs,
corresponds to the ability of GIGs to generate dependent paths withoutcopyingthe
stack butdistributing the control in different paths.
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Chapter 6

Bounded and Ordered Satisfiability: Connecting
Recognition with Lambek-style Calculi to
Classical Satisfiability Testing

MICHAIL FLOURIS� , LAP CHI LAU�, TSUYOSHI MORIOKA� , PERIKLIS A.
PAPAKONSTANTINOU� , GERALD PENN�

6.1 Introduction

It is well known that the Lambek Grammars are weakly equivalent to the Context-
Free Grammars (CFGs, Pentus 1993, 1997), and that testing string membership
with a CFG is inP (Earley 1970). Nevertheless, Pentus (2003) has recently proven
that sequent derivability in the Lambek Calculus with product is NP-complete. The
complexity of the corresponding problem for the product-free fragment remains
unknown. This fragment is significant, given the at best limited apparent motiva-
tion for products in linguistic applications of the calculus. In this paper, when we
mention the Lambek Calculus (LC) or Lambek Grammars (LG), we are referring
to the product-free fragment.

Pentus (1997) has presented an algorithm that transforms a product-free Lam-
bek Grammar to a weakly equivalent CFG, but the transformed grammar is expo-
nentially larger in the worst case. Since the grammar is considered a part of the
instance for the decision problem of string membership, this does not resolve the
open complexity problem for the product-free calculus.

This paper studies the connection between the LG string membership problem
and theSAT problem, which was the first problem shown to be NP-complete (Cook
1971). Much of the previous work on parsing with Lambek grammars has derived
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its inspiration from recognition algorithms for rewriting systems (Hepple 1992),
string algebras (Morrill 1996) or graph theory (Moot and Puite 1999; Penn 2002),
but fundamentally, LC is a logical framework, like the classical propositional logic
upon whichSAT is based. The crucial difference is the sensitivity to resources and
order that LC incorporates. What we argue here is:(1) that a sense of order can
be imposed on classicalSAT using the polarity that propositional variables already
possess (unlike LC),(2) that the correspondingorderedSAT problem is still NP-
complete,(3) that this new version ofSAT leads to a new and simpler proof of the
NP-completeness of the product-free Lambek Calculus with permutation (LP) by
an implementation of “locks” and “keys” somewhat reminiscent of the proposed
modal extensions of categorial logics (Kurtonina and Moortgat 1996),(4) that the
problem can be further restrictedbounded-distanceSAT in order to fit into LC, but
(5) that bounded-distanceSAT can be solved in polynomial time. In addition,(6)we
also prove the first non-trivial hardness result for LC that we are aware of, namely
that it is LOGCFL-hard. LOGCFL consists of all languages log-space reducible
to a context-free language. We shall use LC and LP to refer both to the respective
calculi and to the respective decision problems that determine membership in the
set of encodings of pairs(G;x), whereG is a Lambek Grammar over an alphabet
Σ, andx2 Σ� is a string.

6.2 An NP-complete variation of SAT

Our ordered variation of 3-SAT can be stated as follows:
NFPO-SAT

INSTANCE:Let U be a set of variables andS= hC1;C2; :::Cni a sequence of
clauses, wherejCij � 3, such that(1) each variablex 2 U occurs at most once
as a negative literal,(2) if :x2Ci there exist noj < i wherex2Cj , and(3) every
clause which contains a negative literal cannot contain any positive literal. Let a
formulaΦ =

S
i=1:::nCi .

QUESTION:Is Φ satisfiable ?
NFPO stands for “Negative First Positive the Others”, that is: (a) the clauses

are ordered such that the first occurrence of a variable is either negative or positive
and all the subsequent occurrences are positive, and (b) every clause contains either
all positive or all negative variables. Hence, in this variation we can refer topositive
andnegativeclauses, with the obvious meaning.

Theorem 6.2.1.NFPO-SAT is NP-complete.

Proof: The problem is inNP for the same reason thatSAT is in NP. We reduce
3-SAT to NFPO-SAT:
Let Φ =Ci ; :::Cn be a 3-SAT instance. For each variablex:
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1. Letx occur negatively in one or more clauses.

2. Introducey such that:

Φ0 = Φ^ (y$:x); i.e.,

Φ0 = Φ^ (:y_:x)^ (y_x)

3. Rename the negative occurrences ofx by y.

4. Iteratively change each variable, usingΦ0 instead ofΦ, apart from the newly
introduced variable.

Finally, order the clauses ofΦ0 by placing all clauses with negative literals before
all clauses with only positive literals.

Given a fixed truth assignment,τ , for which τ(Φ) = T, let τ 0 be an extended
truth assignment forΦ0 such thatτ 0(y) = :τ(x). Thenτ 0(Φ0) = T. Hence,Φ0 is
satisfiable iffΦ is satisfiable. It is also obvious that the reduction works in quadratic
time w.r.t. the input length. Note that the reduction works also in logarithmic space.
�

It will also be useful for us to consider a version ofNFPO-SAT with an addi-
tional condition:
BD-NFPO-SAT (Bounded-DistanceNFPO-SAT)
INSTANCE:Let U be a set ofn variables andS= hC1;C2; :::Cmi a sequence of
clauses wherejCi j � 3 such that(1) each variablex2U occurs at most once as a
negative literal,(2) if :x 2Ci there exist noj < i wherex 2Cj , (3) every clause
which contains a negative literal cannot contain any positive literal, and(4) there
existsk= dlogne such that, for each variablex2U , if i is minimum with respect to
the occurrence ofx in Ci, and j is the maximumj such thatx2Cj , then j� i � k.
Let a formulaΦ =

S
i=1:::nCi.

QUESTION:Is Φ satisfiable ?

This version is not NP-complete. In fact, we can prove that theBD-SAT 2
NL� P, where NL stands for the class of languages decided by nondeterministic
log-space Turing Machines.
Non-deterministic log space algorithm forBD-NFPO-SAT

(i) Guess values for the variables of thek clauses.
(ii) If the subformula is not satisfied reject
(iii) Keep thek last assignments and make a guess for the next clause
(iv) If the clause cannot be satisfied, or if consistency is lost with the previous as-
signment reject, otherwise add the new guessed values and repeat (iii) (intuitively:
slide thek window by one clause to the right).



Bounded and Ordered Satisfiability: Flouris, Lau, Morioka, Papakonstantinou, Penn/48

Bounded distance satisfiability problems are also of independent interest. We
state the following theorem without any proof. In Section 6.6, we prove a stronger
result for the hardness of LC.

Theorem 6.2.2.BD-NFPO-SAT is complete for NL.

The reduction ofBD-NFPO-SAT to LC trivially implies:

Corollary 6.2.3. BD-NFPO-SAT is hard for NL.

6.3 Reducing SAT to LP

We will follow the Natural Deduction presentation of the Lambek Calculus. We
will use the following deduction quite often, which is valid with or without the rule
of permutation:

Lemma 6.3.1. Let A;B and C categories of the Lambek Calculus. The following
deductions can be derived using only elimination and introduction rules:

A=B B=C
A=C

;
A=A A=A

A=A
;

A=A A=A: : :A=A
A=A

(6.3.1)

That LP is NP-complete is already known, both as a corollary of a more gen-
eral result for multiplicative Linear Logic (Kanovitch 1991, 1992; Lincoln et al.
1990), or directly (Doerre 1996; Florencio 2002). In addition, not allLP gram-
mars are weakly equivalent to CFGs. We sketch two different proofs for the NP-
completeness of LP, both by reducingNFPO-SAT to LP. The order of presentation
of the proofs is such that we successively make more use of the ordering constraints
imposed byNFPO-SAT.
Proof 1. It is well known (Lincoln et al. 1990) thatLP 2 NP. Assume that we
have a formulaΦ in NFPO-CNF form. For each variablexi occurring positively
in Φ we introduce a basic categoryXi, and for each variable occurring negatively,
we introduce a new categorȳXi. We also have a special basic categoryA. Assume
that we havemclausesCi ; i = 1; : : : ;mandn variablesxi ; i = 1; : : : ;n. We construct
the following stringw= c1c2 : : :cmx1x01x2x02 : : :xnx0n, whereci ;xi andx0i are distinct
symbols of an alphabetΣ. We construct the mappingf (Lexicon) for each symbol
of the alphabet as follows: for each variablexi occurring positively in the clause
Cj we add to the setf (cj) the elements((A=A)=Xi)=Xi andXi=Xi , and for eachxi
occurring negatively inCj we add the elements((A=A)=X̄i)=X̄i andX̄i=X̄i. Also, for
all 1� i � n, f (xi) = f (x0i) = fXi ; X̄ig. This algorithm is trivially polynomial time.

The substringw1 = c1 : : :cm of w, corresponds to the selection of a single lit-
eral from each clause that witnesses that clause’s truth. In the first clauseCj for



49n Mathematics of Language 8

which a variablexi is selected, this corresponds to choosing forcj the category
((A=A)=Xi)=Xi , and every other selection for the same variable in a later clause cor-
responds to choosingXi=Xi. For anyk, if a variable is selected ink clauses then, by
lemma 6.3.1, we can still derive two categories for this substring:((A=A)=Xi)=Xi
and (after some deductions)Xi=Xi which altogether result in((A=A)=Xi)=Xi.

The substringw2 = x1x01 : : :xnx0n enforces the consistency of the selected vari-
ables. If a variablexi has been selected together with its negation:xi then after
doing several deductions we have both((A=A)=Xi)=Xi and((A=A)=X̄i)=X̄i , but the
xix

0
i component of the substringw2 can only deduce either((A=A)=Xi)=Xi or (ex-

clusively) ((A=A)=X̄i)=X̄i to A=A. So to deriveA=A, we can select eitherxi or its
negation but not both. Thus, the LP grammar constructed hasA=A as its distin-
guished category. Hence, if there is a deduction toA=A the formula is satisfiable.

It is easy to see that if the formula is satisfied, then we can select the categories
to deriveA=A in a fairly simple way: choose the((A=A)=Xi)=Xi or Xi=Xi if xi is
true and((A=A)=X̄i)=X̄i or X̄i=X̄i if :xi is true from the corresponding clauses.

Remark6.3.1. In this reduction, we did not take into account the constraints im-
posed by theNFPO-SAT and hence the same reduction holds for the unconstrained
version ofSAT.

Remark6.3.2. Notice that we could have also ordered the literals in each clause,
and replace eachci by a substringci;1ci;2 : : :ci;k where k is the number of vari-
ables inCi. Then we need extra basic categoriesAi;l because now eachci;l cor-
responds to a literal in clauseCi. If x is the first literal, we would have:f (ci;1) =
fAi;1;X=X=Ai;k=Ai;k�1=: : : =Ai;2; A=A=X=X=Ai;k=Ai;k�1=: : : =Ai;2g, and f (ci;2) =
fAi;2;Ai;1nX=X=Ai;k=Ai;k�1=: : : =Ai;3;Ai;1nA=A=X=X=Ai;k=Ai;k�1=: : : =Ai;3g, and so
on. From among the variables of each clause, one emerges as functor in this part
of any successful derivation. This variable is the witness selected to attest to the
clause’s truth. The same procedure takes place to select one literal from every
clause, and the rest of the proof can proceed as previously described.

In the next section, we present a proof that takes into account the sense of
ordering inherent toNFPO-SAT. Note that there is no need to do this when reducing
to LP, since LP does not have any ordering constraints. It will be useful, however,
when it comes to considering LC.

6.4 Enforcing restrictions with locks

We now employ the familiar notion oflocksandkeys. The notion oflockswill be
especially useful in LC deductions, where permutation is missing. We introduce
the idea only by an example here:(:x1_x2_x3)^ (x1_x2_x3).
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The notion of a lock prevents us from selecting both a variable and its negation.
Thus, if :x1 is selected from the first clause then it imposes alock, L1, which
is a special basic category. In the next clause, the only literals that canunlock
this lock should be every other variable apart fromx1. For this example and the
corresponding stringc1;x1

c1;x2
c1;x3

c2;:x1
c2;x2

c2;x3
we have that

f (c1;x1
) = fA1;(A=A)=L1=A2=A3g;

f (c1;x2
) = fA2;A1n(A=A)=A3g;

f (c1;x3
) = fA3;A2nA1n(A=A)g;

f (c2;:x1
) = fB1;(A=A)=B2=B3g;

f (c2;x2
) = fB2;B1nL1=B3;B1n(A=A)=B3g;

and f (c3;x3
) = fB3;B2nB1nL1;B2nB1n(A=A)g:

Notice, that if we had another negative variable in the first clause then we could
have easily added keys to the other two variables in the second clause. This task
is performed by just adding new elements to the corresponding sets and thus it
does not change the time needed to compute these sets to something more than
polynomial. Furthermore, inNFPO-SAT, all negative literals occur first, so aci
with locks comes before anycj with matching keys. The difficult part is to see
what happens if the two above clauses are far enough apart. This means that we
have to propagate the locks correspondingly. Notice that we could have only one
symbol in the string corresponding to each clause (instead of one symbol for each
variable), as in our earlier proof. But now, we will combine the idea of locks and
keys with our observation in Remark 6.3.2.
Proof 2. Assume that we have an instance ofNFPO-SAT with n variables andm
clauses. Construct

w= w11w12w13w
0
11w

0
12w

0
13w21w22w23w

0
21w

0
22w

0
23 : : : wm1wm2wm3w0

m1w0
m2w0

m3:

Intuitively, wik andw0
ik correspond to thek-th literal of thei-th clause. We know that

in NFPO-SAT every clause contains either only negative or only positive literals. In
addition, we know that all the negative clauses precede the positive clauses in the
sequence. Assume thatC is a negative clause. Then each literal:x2C sets a lock
A=A=Lx=Lx=: : : =Lx=Lx (Lx appears as many times as the positive occurrences of
x). The keys for this variable occur in categories assigned to the other variables in
the (positive) clauses wherex occurs positively. For some positiveC = (x_y_z),
then f (wx) = fB1;Ly=B2=B3;A=A=B2=B3g; f (w0

x) = fB
0
1;Lz=B0

2=B0
3;A=A=B0

2=B0
3g,

whereBi;B
0
i are used as described in Remark 6.3.2. That is, literalx holds the keys

for the other two literalsy andz. f (wy); f (wy)
0; f (wz) and f (wz)

0 are constructed
analogously.
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6.5 Restricting to LC

This second proof is conceptually less dependent on permutation in the sense that
it is only used to combine locks and keys. Also, observe that our constructions
involve only first-order categories, where the recognition problem is known to be in
P. The main task of adapting the previous reductions to LC (with no permutation)
is that we need a way of propagating the locks with no permutation at all. If we
have a tuple of clauses we can easily compute the sequence in which the literals
appear. The problem is that when we put a lock in some clause we may need to
change the order of the previously placed locks. So, we need a sufficient number
of rewritings. But we do not know the exact number of locks previously placed,

which in the worst case could be∑n
i

�
n
i

�
= 2n�1, wheren is the number of

variables with locks placed in a negative clause to the left.
BD-NFPO-SAT places exactly the bound we need to avoid an exponential ex-

plosion in this case. The resulting reduction, of course, says nothing about whether
recognition in LC is NP-hard. Intuitively, NP-complete problems involve a sig-
nificant amount of communication among their parts. For example, if we flip
the value of a variablex then this has an effect to the whole formula. When we
bound this communication in this way, then we fall in the complexity hierarchy
from NP-complete to membership inNL. What is needed is a reduction that uses
higher-order categories in order to avoid this.

6.5.1 Example of the LC-embedding of BD-NFPO-SAT

For simplicity, assume that the distance bound suffices to cover all of the following
portion of a formula:

(:x1_:x2_:x3)^(x5_x1_x2)^(:x6_:x7_:x8)^(x6_x1_x3)^(x1_x7_x8)^ : : :

In the clause(x_y_z) the literalsy andzare calledneighboursof x. Only variables
in the first and the third clause can place locks. If some:x has placed a lock, then
with respect to every other occurrence ofx except the last one, the neighbours of
x should propagate the lock placed byx. In the clause with the last occurrence
of x, the neighbours ofx unlock the lock previously imposed by:x. Below, by
“propagate” we refer to the fact that if a positive literal is selected to be true then it
should rewrite all locks concerning all variables occurring negatively before itself
with the following two constraints: (a) it does not propagate locks placed by its
own negation, and (b) it does not propagate locks from variables with instances
only before, i.e., to the left of, its clause.
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A simple form of this reduction follows: recall from Remark 6.3.2 that we can
have a single symbol corresponding to a clause. For the above formula we have the
stringw1w2w3w4w5, wherew1;w2;w3;w4;w5 are all different symbols of an alpha-
bet. The target category we want to deduce isA=A. We construct the lexicon as fol-
lows: f (w1) = fA=A=L1;A=A=L2;A=A=L3g, whereA=A=L1;A=A=L2;A=A=L3 cor-
respond to the locks placed by:x1;:x2;:x3 respectively.f (w2)= fL1=L1;L2;L3=L3g,
becausex5 andx1 can unlockx2 (L2) which occurs for the last time in the second
clause,x5 andx2 can propagate the lock forx1 (L1=L1), andx5 can propagate the
lock for x3 (L3=L3). In the same fashion, we construct the rest of the lexicon, where
Li1i2:::ik

denotes a composite lock, corresponding to thek locks placed byxi1
; : : : ;xik

:

f (w3) = fL1=L16;L2=L26;L3=L36;A=A=L6;L1=L17;L2=L27;L3=L37;A=A=L7;L1=L18;
L2=L28;L3=L38;A=A=L8g;

f (w4) = fL3;L36=L6;L37=L7;L38=L8;L6;L16=L1;L26=L2;L36=L3;L3;L36=L6;L37=L7;
L38=L8g;

f (w5) = fL7;L8g:
Notice that the above formula is satisfiable, e.g., byx1 = 1;x5 = 1;x6 = 0;x3 =
1;x7 = 1, corresponding toA=A=L1 L1=L1 L1=L16 L16=L1 L1, from whichA=A can
be derived.

6.6 LOGCFL-Hardness of LC

In the previous sections we developed some machinery, based on ordered satisfia-
bility, in order to show hardness results for LC and LP. A restriction of this machin-
ery, in which the parameter of the longest distance between two appearances of a
variable is bounded, exhausts its limits for a logarithm in the number of variables.
The reason is that if the distance is more than a logarithm then the reduction is no
longer polytime (or log-space). We also saw in Section 6.2 that LC is NL-hard.

In this section we use another approach, which proves a stronger hardness re-
sult for LC, namely that it is LOGCFL-hard. All of our reductions belong toL,
which is the class of languages characterized by their decidability with determinis-
tic logarithmic space Turing Machines. One characterization of LOGCFL is as the
class of all languages log-space reducible to a Context-Free Language (CFL). It
contains NL (Sudborough 1978) and is contained in P. Cook (1985) contains more
information on LOGCFL. All told, we have the following containments relative to
our problem of interest:

L� NL� LOGCFL� P� NP

None of these containments is known to be proper, although it is widely conjec-
tured that every one of these containments is proper.
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Theorem 6.6.1.LC is hard for LOGCFL.

Note that this is not a proof of LOGCFL-completeness. If we knew that LC be-
longed to LOGCFL, we would know that LC is in polytime.Proof: Fix an arbi-
trary languageA2 LOGCFL. By the definition of LOGCFL, there exists a context-
free languageL and a log-space computable functionf such that, for allx, x2 A
iff f (x) 2 L. We prove that there exists a log-space computable functiong(x) such
thatx2 A if and only if g(x) 2 LC. We require the following well-known lemma:

Lemma 6.6.2. If L is a CFL then Lnfεg is also context-free, whereε is the empty
string.

SinceLnε is context-free, there exists a CFGG in Greibach normal form such that
Lnε = L(G). Two cases arise:

1. If ε 2 L, theng(x) is computed as follows. Iff (x) = ε then letg(x) be some
fixed accepting instance for LC. Otherwise, fromG and f (x), we construct
asg(x) an instance of LC with stringf (x) and a Lambek Grammar defined
as follows: for every Greibach-normal rule,N0 �! t N1 : : : Nn, wheret is
terminal and theNi are non-terminals, add to the categories assigned tot in
the Lambek Grammar the categoryN0=Nn=: : : =N1.

2. ε 62 L. This case is handled similarly to the above except that, iff (x) = ε ,
then letg(x) be some fixed non-accepting instance ofLC.

�
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Chapter 7

Discovering a new class of languages

SEAN A. FULOP�

ABSTRACT. This paper outlines a new approach to specifying formal constraints on grammars
and their languages, in pursuit of more far-reaching statements about possible human languages
than, e.g., “they are context-free.” We propose that possible human languages, conceived as
term-labeled tree languages consisting of syntactic word trees annotated by semantic lambda
terms, can be said to besyntactically homogeneousand finitely illustratable. These are new
properties of term-labeled tree languages which, when used to specify a subset of all languages
generated by a large class of multimodal type-logical grammars, yield a new class of languages
which cross-cuts the traditional Chomsky hierarchy. A discovery procedure for type-logical
lexicons is then outlined, whose range is proven to generate precisely these languages. Our new
approach is actually quite old, having roots in ideas of the American Structuralist school.

7.1 Introduction

We set out to motivate and define a new class of formal languages that is not di-
rectly related to the Chomsky hierarchy, and which in fact completely cross-cuts it.
This effort answers to a complaint that resonates through modern theoretical syn-
tax, to the effect that the linguistic interest of the Chomsky hierarchy has long ago
expired because the formal constraints on languages that it provides are not very
useful for considering what possible human languages might be like. So when
we consider, e.g., whether “human languages are context-free,” we really mean
the upper bound on the language complexity. We never ask “are all context-free
languages possibly human,” since we all know the answer: “of course not.”

�Linguistics & Computer Science, The University of Chicago, Chicago, IL, U.S.A;sfulop@
uchicago.edu
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Our new class consists not of string languages, but ofterm-labeled treelan-
guages, where a term-labeled tree is an unlabeled syntactic structure paired with a
compositional semantic term (a lambda term). The class is defined with reference
to a new formalization of the ideas of the American Structuralist school which per-
mits the rigorous statement of conditions on the syntactic (and semantic) distribu-
tion of linguistic elements in a term-labeled tree (TLT) language. We call our new
class of such languagessyntactically homogeneous,and give a strict definition in
terms of the structural conditions that must be met. Some of these languages have
the further property of beingfinitely illustratable,forming an important subclass.

We next discuss a new algorithm which can discover lexicons for type-logical
grammar (i.e. assignments of sets of syntactic types/categories to words) given a
type logic (drawn from a broad but strictly defined class of “permitted” logics) and
a sample of TLTs (or strings, increasing the computational complexity immensely)
which do not show their types.The method is based on earlier work in this vein (Fu-
lop, 2003) which discovered so-calledoptimally unifiedlexicons under the same
learning conditions. Upon realizing that the class of optimally unified grammars
that resulted from that work automatically adhered to certain Structuralist-style
conditions on the distribution of linguistic elements, efforts were undertaken to im-
prove the distributional analysis performed by the procedure beyond the naive one
produced by optimally unifying the lexicon. The end product is a new, but similar,
discovery procedure that outputs type-logical lexicons which we dubstructurally
unified. The TLT languages of such grammars, it turns out, are always syntacti-
cally homogeneous, and finitely illustratable. In fact, we demonstrate that the total
range of the procedure, over all permitted type logics, is precisely a class of type-
logical grammars which generate all and only the finitely illustratable syntactically
homogeneous term-labeled tree languages generated by the permitted logics.

The mathematical interest of the preceding is, we hope, self-evident, but what
about linguistics? It is conjectured that the condition of a TLT language’s being at
once syntactically homogeneous and finitely illustratable is sufficiently strong to
characterize possible human languages fairly tightly. That is to say, given a reason-
able vocabulary of human language words and/or morphemes, any such language
meeting a couple of other simple conditions “could reasonably be” human. Syn-
tactic homogeneity of a language is thus offered as a precise property capturing the
primary essence of a language’s “being human,” which is surely more than could
ever be said of context-freeness and the like.



59n Mathematics of Language 8

7.2 Term-labeled tree languages

A type-logical grammarG = hVG; IG;RGi consists of a vocabularyVG, a lexical
function IG assigning sets of categories/types to words, and a type logicRG which
treats the categories as formulae. Owing to space constraints, we forego the de-
tails of type logic (v. Fulop 2002b; Moortgat 1997). The type logics and grammars
that concern us are all based upon the nonassociative system of Lambek (1961)
called ‘NL,’ whose formulae involve the two logical operators=,n which we call
“slashes.” The logics may be enriched with the addition of multiple indexed fam-
ilies of slashes, as well as unary modalities (Morrill, 1994) that license structural
rules for rearranging the syntactic elements. We work with the logics in Gentzen’s
sequent formulation (Gentzen, 1934).

Given such a general landscape, we do have to limit ourselves to certain re-
gions. It is not possible to prove anything worthwhile about a class of “all modally
enriched type logics,” and it is not even clear what this would mean because it
imposes no restrictions at all on the nature of structural rules. It is clear that unre-
stricted logics of this kind can be created which imbue grammars based upon them
with Turing-complete generating capacity (Carpenter, 1999), and this is not only
undesirable, it makes the enterprise of proving a single sentence undecidable! On
the other hand, many type logics have pleasant properties for sentence deduction;
NL, for instance, enjoys Cut-elimination and has the subformula property, and its
decidability is guaranteed as well.

We accordingly limit our further considerations to those classesLk of type
logics RG adhering to the following restrictions, which have been introduced and
motivated elsewhere (Fulop, 2002b): 1.RG possesses just a finite number of
families of slashes, a finite number of families of unary modalities, and a finite
number of structural rules which together preserve Cut-elimination and the subfor-
mula property of the base logic NL. 2. All structural rules are applicable only in
the presence of certain unary modalities. 3. Each classLk of type logics consists
of all logics satisfying the above, and whose well-formed formulae are restricted
to those in which each subformula has at mostk unary modal operators on its left
edge.

Suffice it to say that a classLk with k “sufficiently large” (e.g.k = 2) includes
logics with sufficient generating capacity to handle the kind of context-sensitivity
occasionally demanded by natural languages, but any logic in the class remains
decidable. Our results in this paper will generally be about the union of all such
classes, denoted

S
kLk; this large class comprises all of the candidates for the Uni-

versal Type Logic in this setting, and we presume that some such logic could gen-
erate every possible human language, with only the lexicons varying. The precise
weak generating capacity of grammars based on these logics in terms of the Chom-
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sky hierarchy is in general not particularly well-understood. It has been established
that the base logic NL yields grammars of context-free languages exactly, while the
addition of modals together with certain sets of modally licensed structural rules
(frequently called “interaction postulates”) yields some context-sensitivity. For
current results along these lines, see J¨ager (2003, 2002).

A key aspect of our learning algorithm is the connection between the syntactic
structure of sentences, expressed as a tree of Lambek formulae, and the semantic
structure, expressed as a lambda term. Any type logicRG 2

S
kLk can be shown

to induce a fragmentΛNL of the simply typed lambda calculus such that for every
sequentΓ) s in RG provable by some proofΠ there will be a termNs2ΛNL such
thatN is ahomomorphic constructionof the sequent proofΠ. Let ΛNL denote the
largest sublanguage of the simply typed lambda language each of whose termsN
conforms to the following constraints: 1. TermN may not contain vacuous ab-
straction; 2. No subterms ofN are without free variables or constants; 3. No
subterm ofN contains more than one free occurrence of the same variable; 4.
Every prefixλx in N binds exactly one free variable occurrence, and that occur-
rence is either leftmost or rightmost in the subterm abstracted over by the prefix.

The facts mentioned above are proven elsewhere (Fulop, 2002a,b), and the idea
of a homomorphic construction has been formalized in those references. Roughly,
a lambda term is a homomorphic construction of a sequent proof just when the
term can be used as a construction of the proof in the sense of Howard (1980), by
invoking a generalized (homomorphic) version of the Curry-Howard formulae-as-
types correspondence between lambda terms and proofs (see also Wansing 1992).
The usual correspondence is generalized by interpreting any slash of the type logic
as the functional type arrow ‘ ’, and any modal operator is not interpreted at all.

A grammarG generates a language of word trees (from the antecedents of
provable sentence sequents) labeled by these terms, calledterm-labeled trees.The
lambda calculus is used in a standard fashion to model the compositional meaning
structures of natural language; an example of a term-labeled tree that isunsubtyped
(i.e. not showing subterm types) is:

(7.2.1) ((loves(Mary ))(John))s: s

John

loves Mary

We will in the sequel use a standard compact representation of syntax trees with the
aid of square brackets. The bold faced items are constants of the lambda language,
and the bolding of e.g.Mary is usually taken to be the meaning of ‘Mary.’
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Let us say that a grammarG generatesa subtyped term-labeled tree

Ns: Struc

if and only if: 1. The treeStruc is generated byG with some proofΠ in RG; this
meansΠ must be a proof of some particular sequent

Γ : Struc) s:

2. Ns is a homomorphic construction ofΠ. Now let us say that a grammarG gen-
erates an unsubtyped term-labeled sentence treeNs

ust: Struc iff there is some sub-
typed term-labeled treeNs: Struc generated byG such thatNs

ust is justNs stripped
of the type labels on its subterms. The set of (subtyped) term-labeled sentence
trees generated byG is called the(subtyped) term-labeled tree languageof G, and
is denotedΛTL(G).

We will be most interested in the languages of unsubtyped term-labeled trees
generated by various classes of type-logical grammars. We maintain that such
TLT languages are the most relevant for representing natural languages, which we
can all recognize as consisting of syntactically structured sentences with intended
compositional meaning recipes. We assume here that meaning composition, at
least in its skeletal form, is representable as a lambda term of the fragment defined
above. It is important to note that this fragment is not in general sufficient for
representing realistic semantic readings in many cases because of the strict limits
placed on the locations of bound variables, but the composition of meaning from
subterms can nonetheless be shown.

7.3 Distribution and syntactic homogeneity

We formalize the notions of syntactic distribution that were proposed by linguists
of the American Structuralist tradition, in particular Bloomfield (1933) and Wells
(1947). By the termusageit is meant a term-labeled treeM[x] : Struc[x] having
a placeholder variablex in place of a subterm in the lambda termM and a cor-
responding placeholderx in place of the subtree in the treeStruc whose mean-
ing occurs at the position occupied byx in the lambda term. The two place-
holder positions as a pair will be termed thefocus of a usage. For example,
(x(John))s : [John;x] is a usage. This definition makes a usage a modernization
of Bloomfield’s notion of the function of a linguistic form. Anyhmeaning, treei
pair which can fill the slots in the usage to make a term-labeled sentence tree in
the TLT language at hand is a Bloomfieldianform which is said tohave the usage,
and toinstantiate the focus.All the forms in a language which have a particular
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usage constitute aform classdetermined by that usage. Under our definitions, a
form is then a pair consisting of a tree of words and a lambda term representing the
meaning of the word tree.

Let us consider how usages can be considered equivalent in a term-labeled lan-
guage. We begin by defining what it means for respective subterms of lambda
termsM andN to function equivalently in their terms. The notion of two lambda-
termsM[x] andN[y] having respective subtermsx andy which function equiva-
lently is defined inductively: 1. Any lambda termsM andN are subterms of
themselves, and they function equivalently as such. 2. Two application terms
(M1(M2))[x] and (N1(N2))[y] have respective subtermsx and y which function
equivalently just when eitherM1[x] andN1[y] havex;y functioning equivalently,
or M2[x] andN2[y] havex;y functioning equivalently. 3. Two abstraction terms
(λz:M)[x] and(λz:N)[y] have subtermsx;y which function equivalently just when
M[x] andN[y] havex;y functioning equivalently.

We now consider a similar notion for syntax trees, and define inductively when
two subtrees arepositioned equivalentlywithin their parent trees. 1. Any two
syntax treesS andT are subtrees of themselves, and are positioned equivalently
as such. 2. Any two binary-branching syntax trees(S1;S2) and (T1;T2) have
respective subtreesγ andδ positioned equivalently if and only if for eitheri = 1
or i = 2 the two treesSi andTi have the respective subtreesγ and δ positioned
equivalently.

We can put these two together to define when two usages are equivalent in
shape. Two usagesM1[x] : Struc1[x] andM2[y] : Struc2[y] are said to beshape-
equivalentjust when: 1. The lambda termsM1[x] and M2[y] have respective
subtermsx andy which function equivalently. 2. The syntactic treesStruc1[x]
andStruc2[y] have respective subtreesx andy positioned equivalently. These defi-
nitions clearly make shape-equivalence of usages reflexive, symmetric, and transi-
tive, and thus the relation is a formal equivalence.

Any set of shape-equivalent usages will be called ausage class; a usage class
which contains all possible usages that can be formed from a sampleD of TLTs is
termed acompleteusage classrelative toD . The members of a usage class are each
said toillustrate the class. When all the usages in a class determine the same form
class, the usage class itself is held to also determine that form class; otherwise, the
usage class does not determine a form class.

Example 1. Here is a term-labeled tree language with four elements:

(7.3.1) (sings(John))s: [John;sings]

(sings(Mary))s: [Mary;sings]

(laughs(Susan))s: [Susan; laughs]

(laughs(Tom))s: [Tom; laughs]

(x(John))s: [John;x]

(x(Mary))s: [Mary;x]

(x(Susan))s: [Susan;x]

(x(Tom))s: [Tom;x]
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The four usages on the right can be formed from the respective term-labeled trees
in the sample on the left. They are all shape-equivalent, and they comprise acom-
pleteshape-equivalent set of usages which can be formed from the sample.

Any form class determined by a complete usage class relative to a particular
language will be termed apart of speechin that language, in the spirit of Bloom-
field. In other words, a part of speech in a term-labeled tree languageL is an
equivalence class of trees of words (in fact, word occurrences) which is the form
class determined by each of the usages in a usage class which is complete rela-
tive to L. The parts of speech of a term-labeled language are thus well-defined if
and only if the members of each complete usage class are guaranteed to determine
the same form class, throughout the language. In the example above, for instance,
the four usages are a complete class relative to the four-sentence sample taken as
a language. However, the first two usages form a usage class whose form class
is different from that of the last two usages, as mentioned above. There is thus
not a properly defined system of parts of speech in this four-sentence language. A
term-labeled languageL will be termedsyntactically homogeneousif and only if it
has well-defined parts of speech, meaning every complete usage class that can be
formed from its trees determines a form class.

There is a second important property of TLT languages to be defined, which
is entwined with the ways they are generated by their grammars. Let us say that a
TLT N1 : Γ1 is arecursively redundant extensionof a second TLTN2 : Γ2 just when:
1. they are shape-equivalent (i.e. instantiations of shape-equivalent usages); 2.
there are corresponding foci within the two TLTs which are instantiated by respec-
tive subtreesν1 : γ1 andν2 : γ2 where the first is larger than the second; 3. the
subtreeν1 : γ1 in turn contains a subtreeν 0

1 : γ 01 which is shape-equivalent toν2 : γ2;
4. if a third TLT N3 : Γ3 is created fromN2 : Γ2 by replacingν2 : γ2 with the result
of removingν 0

1 : γ 01 from ν1 : γ1 (i.e. their difference), thenN3 : Γ3 is generated by
a grammar for the other two by means of a proof precisely equivalent to one which
generatesN2 : Γ2.

Example 2. The first TLT below is a recursively redundant extension of the second
TLT, as can by seen by instantiating the subtrees of the definition as shown.

(7.3.2) died(the((from(the(((by(the(sea)))town))))man)) :

[[ The [ man [ from [ the [ town [ by [ the sea ]]]]]]] died ]

(7.3.3) died(the((from(the(town)))man)) :

[[ The [ man [ from [ the town ]]]] died ]
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ν1 : γ1 = from(the((by(the(sea)))town) :

[ from [ the [ town [ by [ the sea ]]]]]

ν2 : γ2 = from(the(town)) : [ from [ the town ]]

ν 0
1 : γ 01 = by(the(sea)) : [ by [ the sea ]]

Now, a (possibly infinite) TLT languageL is said to befinitely illustratableif,
and only if, some (nonempty) finite setC of usages together illustrate the maximal
set of usage classes which can be formed from trees ofL so that no usage inC is a
recursively redundant extension of any other usage inC. Such a setC is called an
illustration setfor the language. IfL is infinite, then the remaining infinite number
of its usage classes not illustrated inCmust all consist of usages that are recursively
redundant extensions of members of usage classes illustrated byC.

7.4 Discovering structurally unified lexicons

Since we are willing to provide our human language learning model with a Uni-
versal Type Logic, what remains to be learned of a particular language is precisely
its lexicon. This includes learning the syntactic and semantic categories that are at
work in the language. We would like to induce this information from an American
Structuralist-style analysis of the language sample to determine which items are
distributionally equivalent, or intersubstitutable in some sense.

An algorithm is presented below, dubbed SUTL, which induces a set of lexi-
cons from a sample of term-labeled trees. It is based on the GFTL procedure out-
lined in Fulop (2003, 2002b), which learns general form type-logical lexicons from
such a sample, and also employs the optimal unification procedure of Buszkowski
and Penn (1990).

A general formlexicon Ig f for a TLT sample is defined to be one in which dis-
tinct variable primitive types (drawn from a denumerable setVar) each occur only
once as an atomic type (though they may occur additionally as subtypes of complex
types), and which generates exactly the sample as its TLT language when used to-
gether withRG. The notion of a general form lexicon and its role as an intermediate
step in grammar discovery was elucidated by Buszkowski and Penn (1990) in their
work on the discovery of classical categorial grammars from syntactic skeletons.

Lemma 3. For any two shape-equivalent term-labeled trees T1 = M[x] : Struc[x]
and T2 = M0[y] : Struc0[y] in the sample data, in which form occurrenceshx;xi and
hy;yi occur equivalently (they may be occurrences of any possibly distinct trees
of words), at least one general form lexicon I will be discovered by GFTL which
assigns unifiable types to the syntactic word occurrences x and y if indeed they are



65n Mathematics of Language 8

words. More generally if x or y or both are not words, the respective proofsΠ and
Π0 of T1 and T2 using some such I will nonetheless be such that the word trees x in
Π and y inΠ0 have types which are unifiable. Moreover, there will be some general
form lexicon Igf discovered by GFTL which has these properties for every such pair
x;y of forms positioned equivalently in shape-equivalent trees.

Proof. This lemma follows from the definition of the GFTL algorithm of Fulop
(2003), which is guaranteed to find all possible proofsΠ and Π0 which can be
obtained by using the lambda termsM;M0 as proof-building recipes, in whatever
type logicR is being used, of the respective term-labeled trees. It is a property of
the principal typing carried out in GFTL thatx andy are assigned to semantic types
which are alphabetic variants. Since the lambda termsM andM0 are homomorphic
constructions of the respective proofsΠ andΠ0 of the syntax trees which they label,
it must then be possible (though not necessary) to prove each of them in such a way
that the types ofx andy are the same in the two proofs, up to alphabetic variation,
and are thus unifiable.

Turning to the final statement in the lemma, because GFTL is defined to output
a lexicon from every possible combination of ways of proving each term-labeled
tree in the sample, at least one such set of proofs for the sample will be such that
every set of shape-equivalent trees will have unifiable types assigned to every set
of respective subtrees which are positioned equivalently.

We now present the SUTL algorithm:

1. The input is a sample of term-labeled trees; some permitted type logic must
also be chosen. Use GFTL to obtain the setGF = fI1; : : : ; Img of m general
form lexicons for the sample. These have the property that every occurrence
of a primitive type other thans in their categories is a new variable—they are
totally ununified.

2. Create a setU of all usages which can be formed from the term-labeled
sentence trees in the sample by replacing single lexical items (words, in the
simplest view) with placeholdershx;xi.

3. Create a setUC of all the complete usage classes inU . Let n= jUCj.

4. For each usage classCi in UC, form a setPi of word instances which is
the union of all the word instances in the form classes determined by the
members ofCi .

5. Select the first general form lexiconI1.
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6. Do for all 1� i � n: Each of the wordsp in Pi will have a setTp of syntactic
types that are assigned toits instances in proofs of those sample trees that
are shape-equivalent to the usage classCi , usingI1. Create the setTPi

which
is the union

S
pTp.

7. Find all the optimal unifiers of the familyT = fTP1; : : : ;TPng using the op-
timal unification procedure of Buszkowski and Penn (1990).

8. Discard any unifiers of the family which are incomplete, i.e. that fail to com-
pletely unify each setTPi. For a given general form lexiconI this may leave
no unifiers, but we are guaranteed by Lemma 3 to have at least one lexicon
that will produce a complete unifier, for any finite sample of TLTs.

9. A unifier of a lexicon formed in the above fashion relative to a set of term-
labeled trees will be termed astructural unifier. Find all the unifications of
the general form lexicon that result from applying each structural unifier in
turn, if there are any. Add these unified lexicons to the set of lexicons to be
output.

10. Select the next general form lexicon in the setGF and repeat from step 6,
until there are no more lexicons inGF.

11. At last, output the complete set ofstructurally unifiedlexicons that has been
built up through the iteration.

Structurally unified grammars have the interesting property that they generate
their TLT languages so that distinct syntactic categories are assigned to syntacti-
cally distinct positions, while syntactically equivalent positions all have the same
category. This property turns out to be equivalent to syntactic homogeneity of TLT
languages.

Consider the class
S

RΛTL(R)homfin of finitely illustratable homogeneous TLT
languages generated by permitted logics, obviously a proper subset of all the TLT
languages of permitted logics. How does it relate to the class

S
RΛTL(R)sutl of all

TLT languages of SUTL-range grammars under permitted logics?

Proposition 4.
[

R

ΛTL(R)sutl�
[

R

ΛTL(R)homfin:

Lemma 5. Any SUTL grammar G generates a TLT language whose usage classes
are either illustrated in the learning sample or are recursively redundant extensions
of those which are.
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Lemma 6. For any SUTL grammar G, all lexical items in equivalently positioned
foci in generated shape-equivalent TLTs will have the same type there.

This lemma follows immediately from steps 6–8 of the SUTL algorithm to-
gether with the preceding lemma, whose proof we leave to the reader. Proposition 4
follows from these lemmas using an induction on the structure of the lambda term
labels to establish the extension of the second lemma to all syntactically equivalent
positions, no matter whether they are occupied by lexical items or larger trees.

Proposition 7.

[

R

ΛTLhomfin�
[

R

ΛTL(R)sutl:

Let us sketch a proof. Suppose a languageL 2
S

RΛTL(R)homfin. There is a
finite setD of trees drawn fromL from which every usage in an illustration setC
can be formed, and containing every syntactically distinct word use inL at least
once. There will then be some general form lexiconIg f discovered by applying
GFTL toD using some logicR (viz. a logic suitable to generateL), such thatIg f
can be structurally unified using SUTL to obtain a lexiconIsu that generatesL.

Corollary 8.

[

R

ΛTL(R)homfin=
[

R

ΛTL(R)sutl:

It remains an empirical question, as Chomsky might put it, whether the class
of possible human languages can in reality be construed to be either finitely illus-
tratable or syntactically homogeneous. They are, at least, clear conditions which
together substantially limit the class of languages, and we invite serious argument
on the conjecture from an empirical linguistic perspective. Let us provisionally
claim that no recognized syntactic phenomenon requires languages to be otherwise
in any obvious way—suggesting that any human language can be generated by an
SUTL grammar.
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Chapter 8

m-Linear Context-Free Rewriting Systems as
Abstract Categorial Grammars

PHILIPPE DE GROOTE� AND SYLVAIN POGODALLA�

ABSTRACT. This paper presents a coding ofm-linear context-free rewriting systems (m-
LCFRS) into abstract categorial grammars (ACG). Thus, it shows the latter formalism, which
offers a powerful grammatical framework based on a small set of computational primitives, is
able to reach some interesting classes of languages w.r.t. natural language modeling.

Introduction

Abstract categorial grammars (ACG) (de Groote 2001) have the property of explic-
itly generating two languages: an abstract one and an object one. The former may
appear as a set of abstract grammatical structures and the latter as the set of the cor-
responding concrete forms. It then offers a framework in which other grammatical
models can be encoded, both in the structures and in the expressions they allow.

This encoding has been done for anyG in the class of CFGs (de Groote 2001)
or in the classe of TAGs (de Groote 2002). This paper shows such an encoding for
m-linear context-free rewriting systems (m-LCFRS). This enables ACGs to cover
important (w.r.t. natural language modeling) classes of languages such as the ones
generated by, because of the weak equivalence between them, multicomponent
tree adjoining grammars (MCTAGs) (Weir 1988), multiple context-free grammars
(MCFG) (Seki et al. 1991) or minimal grammars (MG) (Michaelis 2001).

�INRIA, LORIA, Nancy, France; {Philippe.deGroote,Sylvain.Pogodalla}@
loria.fr
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8.1 Abstract Categorial Grammars

This section defines the notion of an abstract categorial grammar. We first introduce
the notions oflinear implicative types, higher-order linear signature, linear λ -
termsbuilt upon a higher-order linear signature, andlexicon.

Definition. Let A be a set of atomic types. The setT (A) of linear implicative types
built upon A is inductively defined as follows:

1. if a2 A, then a2 T (A);

2. if α ;β 2 T (A), then(α�Æβ ) 2 T (A).

Definition. A higher-order linear signatureconsists of a tripleΣ= hA;C;τi, where:

1. A is a finite set of atomic types;

2. C is a finite set of constants;

3. τ : C! T (A) is a function that assigns to each constant in C a linear im-
plicative type inT (A).

Definition. Let X be a infinite countable set ofλ -variables. The setΛ(Σ) of lin-
earλ -termsbuilt upon a higher-order linear signatureΣ = hA;C;τi is inductively
defined as follows:

1. if c2C, then c2 Λ(Σ);

2. if x2 X, then x2 Λ(Σ);

3. if x2 X, t2 Λ(Σ), and x occurs free in t exactly once, then(λx: t) 2 Λ(Σ);

4. if t;u 2 Λ(Σ), and the sets of free variables of t and u are disjoint, then
(t u) 2 Λ(Σ).

As usual,Λ(Σ) is provided with notion of capture avoidingα-conversion, substitu-
tion andβ -reduction (Barendregt 1984).

Given a higher-order linear signatureΣ = hA;C;τi, each linearλ -term inΛ(Σ)
may be assigned a linear implicative type inT (A). This type assignment obeys an
inference system whose judgements are sequents of the following form:

Γ �Σ t : α

where:
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1. Γ is a finite set ofλ -variable typing declarations of the form ‘x : β ’ (with
x2 X andβ 2 T (A)), such that anyλ -variable is declared at most once;

2. t 2 Λ(Σ);

3. α 2 T (A).

The axioms and inference rules are the following:

�Σ c : τ(c) (cons)

Γ;x : α �Σ t : β
Γ �Σ (λx: t) : (α�Æβ )

(abs)

x : α �Σ x : α (var)

Γ �Σ t : (α�Æβ )

Γ;∆ �Σ (t u) : β
(app)

Let Σ1 = hA1;C1;τ1i and Σ2 = hA2;C2;τ2i be two higher-order linear signa-
tures, a lexiconL : Σ1! Σ2 is a realization ofΣ1 into Σ2, i.e., an interpretation of
the atomic types ofΣ1 as types built uponA2 together with an interpretation of the
constants ofΣ1 as linearλ -terms built uponΣ2. These two interpretations must be
such that their homomorphic extensions commute with the typing relations. More
formally:

Definition. a lexiconL from Σ1 = hA1;C1;τ1i to Σ2 = hA2;C2;τ2i is defined to be
a pairL= hF;Gi such that:

1. F : A1!T (A2) is a function that interprets the atomic types ofΣ1 as linear
implicative types built upon A2;

2. G : C1! Λ(Σ2) is a function that interprets the constants ofΣ1 as linear
λ -terms built uponΣ2;

3. the interpretation functions are compatible with the typing relation, i.e., for
any c2C1, the following typing judgement is derivable:

�Σ2
G(c) : F̂(τ1(c));

where F̂ is the unique homomorphic extension of F. Similarly,Ĝ is the
uniqueλ -term homomorphism fromΛ(Σ1) to Λ(Σ2) that extends G.

In the sequel, when ‘L’ will denote a lexicon, it will also denote the homomor-
phismsF̂ andĜ (the intended meaning will be clear from the context).

We are now in a position of defining the notion of abstract categorial grammar.

Definition. Anabstract categorial grammaris a quadrupleG= hΣ1;Σ2;L;siwhere:
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1. Σ1 andΣ2 are two higher-order linear signatures; they are called theabstract
vocabularyand theobject vocabulary, respectively ;

2. L : Σ1! Σ2 is a lexicon from the abstract vocabulary to the object vocabu-
lary;

3. s is an atomic type of the abstract vocabulary; it is called thedistinguished
typeof the grammar.

Theabstract languageA (G) generated byG is defined as follows:

A (G) = ft 2 Λ(Σ1) j �Σ1
t : s is derivableg

In words, the abstract language generated byG is the set of closed linearλ -terms,
built upon the abstract vocabularyΣ1, whose type is the distinguished type s. On
the other hand, theobject languageO(G) generated byG is defined to be the image
of the abstract language by the term homomorphism induced by the lexiconL:

O(G) = ft 2 Λ(Σ2) j9u2A (G): t = L(u)g

8.2 m-Linear Context-Free Rewriting Systems

In this section, we directly define the class ofm-linear context-free rewriting sys-
tems(Vijay-Shanker et al. 1987; Weir 1988), even if it can be defined as a proper
subclass of the class ofmultiple context-free grammars(Seki et al. 1991; Michaelis
2001), the latter themselves being a subclass of thegeneralized context-free gram-
marsintroduced by Pollard (1984).

Definition. A five-tuple G= hN;O;F;R;Si is a m-linear context-free rewriting sys-
tem (m-LCFRS)if:

1. N is a finite non-empty set of nonterminal symbols;

2. O=
Sm

i=1hΣ�ii for some finite non-empty setΣ of terminal symbols withΣ\
N = /0. O is thet set of all non-empty finite tuples of finite strings inΣ such
that each tuple has at most m components;

3. F is a finite subset of
S

n�mFnnf /0g where Fn is the set of partial functions
from hOin into O. Moreover, for each f2 F, there exist n( f ) 2 N, d( f ) 2 N
and d1( f ); : : : ;dn( f )( f ) 2 N such that:

f : hhΣ�id1( f ); : : : ;hΣ�idn( f )( f )i 7! hΣ�id( f ) and
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f (hhx11; : : :x1d1( f )i; : : : ;hxn( f )1; : : :xn( f )dn( f )( f )ii=

h f1(hy11; : : :y1n( f1)
i); : : : ; fd( f )(hyd( f )1; : : :yd( f )n( fd( f ))

i)i

with
Sd( f )

i=1

Sn( fi)
j=1
fyi j g=

Sn( f )
i=1

Sdi ( f )
j=1
fxi j g and every fi is linear in each of the

yjk, i.e.: 8 f 2 F;8i 2 [1;d( f )];9ξi0; : : : ;ξin( fi)
2 Σ� such that

fi(hyi1; : : :yin( fi)
i) = ξi0 yiσi (1)

ξi1yiσi (2)
� � �yiσi (n( fi))

ξin( fi )

with σi permutation on[1;n( fi)]. We callΞ the (finite) set of all theξi j that
are defined in that way.

4. R�
S

n�m(F \Fn)�Nn+1 is a finite set ofrewriting rules.

We usually write a rule r= h f ;X0;X1; : : : ;Xni 2 (F\Fn)�Nn+1 for some n2
N as X0! f (hX1; : : : ;Xni), and X0! f () if n = 0. If n= 0, r is terminating,
else it isnonterminating;

5. S2 N is thedistinguished start symbol;

6. there is a function dG from N toN such that if X0! f (hX1; : : : ;Xni)2R, then
d( f ) = dG(X0) and di( f ) = dG(Xi) where d( f ) and di( f ) are as in 3;

7. dG(S) = 1.

We can now define the languages these grammars generate:

Definition. For each X2N and k2 N, the set LkG(X)�O is defined as follows:

� L0
G(X) = fθ jX! f () 2 R and f() = θg

� let Fn
X = f f 2 Fj9X! f (hX1; : : : ;Xni) 2 Rg. Then Lk+1

G (X) =
Lk

G(X)
S

n�m
S

f2Fn
X

f (hLk
G(X1); : : : ;L

k
G(Xn)i)

X derivesθ in G if there exist X2 N and k2 N such thatθ 2 Lk
G(X). θ is

called an X-phrase inG. For each X2 N, thelanguage derivable fromX by G is
LG(X) =

S
k2NLk

G(X), and LG(S) is thelanguage derivable byG.

In addition, we need the definition of the associated parse trees.

Definition. T = (Dγ ;V) is a tree overV iff γ is a function from Dγ into V where
the domain Dγ is a finite subset ofN? such that:

1. if q2 Dγ ; p< q; then p2 Dγ ;

2. if p� j 2 Dγ ; j 2 N; then p�1; p�2; : : : ; p� ( j�1) 2 Dγ
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whereN? is the free monoid generated byN, � is the binary operation,0 is the iden-
tity and for q2 N? ; p� q iff there is a r2 N? such that q= p� r, and p< q iff p�
q and p6=q.

We say that Dγ = Dom(T) andγ = Label(T).

Definition. For each X2 N and k2 N, the set PTkG(X) of theparse trees derived
from X is defined as follows:

� PT0
G(X) = f(f0g;f0 7! (X; f )g)jX! f () 2 Rg

� let rn
X = fh f ;X;X1; : : : ;Xni 2Rg. Then PTk+1

G (X) =
S

n�m
S

r2rn
X

Tr with Tr =

f(f0g
S
[ifi �Dig;f0 7! (X; f )g

S
[ifi �ω 7! γi(ω))j(Di ;γi) 2 PTk

G(Xi)g

X derivesT in G if there exists X2 N and k2 N such that T2 PTk
G(X). T is

called a X-parse tree inG. For each X2 N, theparse trees derivable fromX by G
is PTG(X) =

S
k2NPTk

G(X), and PTG =
S

X2N PTG(X) is theset of parse trees ofG.

Note that fromPTG, we can obviously recoverLG(X) with a linearization func-
tion Lin, for all X 2N. Indeed, by induction, ifT 2PT0

G(X), it existsX! f () 2R,
and with Lin(T) = f () = θ , θ 2 L0

G(X) � LG(X). If T 2 PTk+1
G (X) there ex-

ists h f ;X;X1; : : : ;Xni 2 R and Ti 2 PTk
G(Xi). By induction hypothesis, for each

i � n, Lin(Ti) 2 Lk
G(Xi), then Lin(T) = f (hLin(T1); : : : ;Lin(Tn)i) = θ is such that

θ 2 Lk+1
G (X)� LG(X).

8.3 Building an ACG Equivalent to an m-LCFRS

In this section, we present the main result of this paper.

Theorem. For every m-LCFRS G= hN;O;F;R;Si, there exists an ACGGG such
that:

� the abstract languageA (GG) of normal terms is isomorphic to the set of
parse-trees of G;

� the language generated by G coincides with the object language ofGG, i.e.
O(GG) = LG(S).

Proof. First, we add toGa new symbolS0 and a new ruleS0! fS0(S) with fS0(hxi)=
x. This is because we model tuples with higher-order functions, and we need to
come back to strings at the end. Nevertheless, the generated language is unchanged
(we could avoid this by garanteeing thatG is not recursive inS).

Then, we defineGG= hΣ1;Σ2;L ;S0iwith the abstract vocabularyΣ1 = hA1;C1;τ1i
such that:
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� A1 = N[fS0g

� the set of constantsC1 is a set of symbols in one-to-one correspondance with
R

� for c 2C1 and h f ;X0; : : : ;Xni the corresponding rule,τ1(c) = X1�Æ � � � �Æ
Xn�ÆX0

Using the usual encoding of the typeσ of strings from an arbitrary atomic type
� with σ = ��Æ�, the empty string beingλx:x, the string made from one character
a beingλx:xaand the concatenation operation+ being defined asλ f :λg:λx: f (gx)
(which is an associative operator that admits the identity function as a unit), we can
define the object vocabulary as follows (consideringσ as an atomic type):

� A2 = fσg;

� C2 = f f1(); : : : ; fd( f )()j9X! f () 2 R; f () = h f1(); : : : ; fd( f )()ig[Ξ;

� τ2 is defined as assigning the typeσ to eachc2C2.

Then we define the lexiconL with:

� L(S0) = σ , then for everyX 2 N, L(X) = (σ �Æ : : :�Æσ| {z }
dG(X)times

�Æσ)�Æσ (note

thatL(S) = (σ �Æσ)�Æσ );

� for everyc2C1 that corresponds to a ruleh f ;X0;X1; : : : ;Xni with X0 6=S0 and

f (hhx11; : : :x1d1( f )i; : : : ;hxn( f )1; : : :xn( f )dn( f )( f )ii) =

h f1(hy11; : : :y1n( f1)
i); : : : ; fd( f )(hyd( f )1; : : :yd( f )n( fd( f ))

i)i

with fi(hyi1; : : :yin( fi )
i) = ξi0 yiσi (1)

ξi1 yiσi (2)
� � �yiσi(n( fi))

ξin( fi)

Let ui = ξi0+ yiσi(1)
+ ξi1+ yiσi(2)

� � �yiσi (n( fi))
+ ξin( fi)

for eachi 2 [1;d( f )],

then, with~xi = xi1 � � �xidi ( f ), we have:

L(c) = λT1 � � �Tng:T1(λ~x1:T2(λ~x2:T3(� � �Tn(λ~xn( f ):gu1 � � �ud( f )) � � � )))

Indeed, this is a term ofΛ(Σ2) because of the linearity condition onf and
the fi .

Note that ifc : X andX is an atomic type, thenf comes from a terminating
rule, f () = h f1(); : : : ; fd( f )()i andL(c) = λg:g f1() � � � fd( f )().

If c correspond to the ruleh fS0 ;S
0;Si, thenL(c) = λ t:t(λx:x).
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Then we buildI a mapping from the normal terms ofΛ(Σ1) that are ofatomic
typesonto the derivation trees ofG by induction as follows:

� if c 2 C1, c of type α 2 N and correspond to the ruleα ! f (), I(c) =
(f0g;f0 7! (α ; f )g)

� if t = cu1 � � �un (in head normal form) is of typeα 2 N with c 2 C1 cor-
responding to the ruleh f ;α ;α1; � � � ;αmi whereui is of type αi 2 N, then
m= n (becauset is of atomic type) andI(t) = (f0g

Sn
i=1 i �Dom(I(ui));f0 7!

(α ; f ); and for alli � n; i �w 7! Label(I(ui))(w))

� no other case has to be considered since we consider only terms with atomic
type.

By induction on the parse trees ofG, is it easy to prove thatI is an isomorphism.
Induction hypothesisH(n): 8k� n, 8X 2 N, T 2 PTk

G(X) iff there exists a unique
t 2 Λ(Σ1), in normal form and of atomic type, such thatT = I(t).

� n = 0: 8X 2 N, T 2 PT0
G(X) iff there existsX! f () 2 R, iff there exists a

uniquec 2C1 corresponding toX ! f () andc of atomic typeX, iff there
exists a uniquet = c2C1 such thatT = I(t) (by definition ofT andI(t));

� n > 1: if k < n, its trivial by induction hypothesis. Ifk = n, 8X 2 N, T 2
PTk

G(X) iff there existsh f ;X;X1; : : : ;Xni 2 R andTi 2 PTk�1
G (Xi), iff there

exists a uniquec 2 C1 corresponding toh f ;α ;α1; � � � ;αni and (induction
hypothesis) for alli � n, 9!ui 2 Λ(Σ1) such thatTi = I(ui), iff there exists a
uniquet = cu1 � � �un such thatT = I(t) (by definition ofT andI(t)).

We proveO(GG) = LG(S) in two steps:

� any tuplehx1; : : : ;xni is modeled inΛ(Σ2) by λ f : f x1 � � �xn

� by induction, we prove that for everyt 2Λ(Σ1) that is of atomic type,L(t) =
λg:gx1 � � �xn wherehx1; : : : ;xni= Lin(I(t)).

It is clear if t = c 2 C1. If t = ct1 : : : tn, with c 2 C1 corresponding to the
rule h f ;X0;X1; � � � ;Xni, and by induction hypothesis, for eachi � n, L(ti) =
λg:gxi1 � � �xidi ( f ) with Lin(I(ti)) = hxi1 � � �xidi ( f )i.

So, using the same notations as in the definition ofL, we have

L(t) = L(c)L(t1) � � �L(tn)
= (λT1 � � �Tng:T1(λ~x1:T2(� � � )))(λh:h~x1) � � �L(tn)
= (λT2 � � �Tng:T2(λ~x2:T3(� � � )))L(t2) � � �L(tn)
...
= λg:gu1 � � �ud( f )
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Since Lin(I(t)) = hu1; : : : ;uni when identifying strings and their coding in
Λ(Σ2), this ends the proof (by definition of theui).

ut

8.4 Example

This section provides an example fromG= hN;O;F;R;Si the 5-LCFRS defined as
follows:

� N = fA;Sg

� we have the following rules:

r0 : S0! S f0(hxi) = x
r1 : S! A f1(hx1; : : : ;x5i) = hx1+ � � �+x5i
r2 : A! A f2(hx1; : : : ;x5i) = hx1+a; : : : ;x5+ei
r3 : A f3() = ha;b;c;d;ei

G generates the languageLG(S
0) = fanbncndnenjn> 0g.

Following the rules given in the previous section to build the ACGGG, we have:

A1 = fA;S;S
0g A2 = fσg

C1 = fr0; r1; r2; r3g C2 = fa;b;c;d;eg

τ1 is such that

τ1(r0) = S�ÆS0

τ1(r1) = A�ÆS
τ1(r2) = A�ÆA
τ1(r3) = A

τ2 is the constant functionσ

L(S0) = σ
L(S) = (σ �Æσ)�Æσ
L(A) = (σ �Æσ �Æσ �Æσ �Æσ �Æσ)�Æσ
L(r0) = λ t:t(λx:x)
L(r1) = λT:λg:T(λx1x2x3x4x5:g(x1+x2+x3+x4+x5))
L(r2) = λT:λg:T(λx1x2x3x4x5:g(x1+a)(x2+b)(x3+c)(x4+d)(x5+e))
L(r3) = λg:gabcde

For in-

stance, we can compute:

L(r0(r1(r2(r3)))) = L(r0)(L(r1)(L(r2)(L(r3))))
= L(r0)(L(r1)(λg:g(a+a)(b+b)(c+c)(d+d)(e+e)))
= L(r0)(λg:g(a+a+b+b+c+c+d+d+e+e))
= a+a+b+b+c+c+d+d+e+e
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Conclusion

This paper gives a coding ofm-linear context-free rewriting systems into abstract
categorial grammars. After the coding of CFGs and TAGs, it shows ACGs to cover
still a larger class of languages. Identifying their exact expressive power remains
an open problem.

Importantly, it also outlines the ability of ACGs to appear as the kernel of a
grammatical framework in which other existing grammatical models may be en-
coded.
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Chapter 9

Learning local transductions is hard

MARTIN JANSCHE�

ABSTRACT. Local deterministic string-to-string transductions are generalizations of mor-
phisms on free monoids. Learning local transductions reduces to inference of monoid mor-
phisms. However, learning a restricted class of morphisms, the so-called fine morphisms, is an
intractable problem, because the decision version of the empirical risk minimization problem
contains anNP-complete subproblem.

9.1 Introduction

Symbolic approaches to natural language processing (NLP) based on finite au-
tomata (Roche and Schabes, 1997) suffer from a shortage of robust, practical in-
ference procedures. If inductive inference is understood as ‘identification in the
limit’ (Gold, 1967), then regular languages cannot be inferred on the basis of posi-
tive data alone. Most learning algorithms proposed forNLP tasks therefore employ
different notions of inference, or aim at more restricted classes of languages, and
they generally have to work with imperfect data.

This paper is about the problem of learning local transducers, a restricted sub-
class of the generalized sequential machines (Eilenberg, 1974), and inference is
understood as empirical risk minimization. The general problem is illustrated by a
specificNLP task, namely learning letter-to-sound rules (see for example van den
Bosch, 1997) from a pronunciation dictionary. In this task, the training samples are
pairs of strings, consisting of a string of letters – for examplehshoesi – and a string
of phonemes – for example /Suz/. Note that no relation between individual letters
and phonemes is specified, which is to say one doesnot know whether the second
symbol in /Suz/, the phoneme /u/, corresponds to the second symbol inhshoesi,

�Linguistics, The Ohio State University, Columbus, OH, U.S.A.;jansche@ling.
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the letterhhi. In this sense the present task is markedly different from other com-
monNLP tasks – such as learning part-of-speech assignment rules – where explicit
correspondences between input and output symbols exist.

In general, a letter string may correspond to a longer phoneme string, for ex-
ample1

hmutualismi (9 letters) /mjuÙ@w@lIz@m/ (12 phonemes),

or to a shorter phoneme string, such as

hfeatherweighti (13 letters) /fEDÄwet/ (7 phonemes);

and even if the two strings happen to have the same length, as in

hparliamentarianismi (18 letters) /paôl@m@ntEôi@nIz@m/ (18 phonemes),

no alignment is implied. One usually assumes that letter strings are of equal length
or longer than their corresponding phoneme strings. While clearly false in an ab-
solute sense, this assumption is true for most English words (more than 98% of
the entries in theCMU pronouncing dictionary), and workarounds for cases where
it seems to break down have been suggested, for example the transcription system
used byNETtalk (Sejnowski and Rosenberg, 1987).

Learning letter-to-sound rules can be conceptualized as grammatical inference
of specific subclasses of rational transductions. For the class of subsequential trans-
ductions, limit-identification is possible (Oncina et al., 1993) and has been applied
to the closely related problem of phonemic modeling (Gildea and Jurafsky, 1996),
but only after modifications and incorporation of domain-specific knowledge. It
can be shown that the algorithm proposed by Oncina et al. (1993) has poor out-
of-class behavior and is brittle in the presence of imperfect data; furthermore its
hypothesis space, the class of subsequential transductions, is arguably too general
for the present task. Almost all approaches to learning letter-to-sound rules as-
sume, justifiably, that the hypothesis space is restricted to the analog of the locally
testable languages in the strict sense (McNaughton and Papert, 1972), which are
limit-identifiable (Garc´ıa and Vidal, 1990). We call the analogous class of trans-
ductionslocal transductions.

Local transductions are computed by scanner transducers, which move a slid-
ing window of fixed size across the input string and produce a string of output
symbols for each window position; concatenating these output strings yields the
overall output of the transducer. Since the size of the sliding window is fixed,
one can assume without loss of generality that it is 1. If a larger window sizen is

1The following examples are taken from theCMU pronouncing dictionary (Weide, 1998). Phone-
mic transcriptions have been changed to useIPA (International Phonetic Association, 1999).
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needed, one can simply change the input alphabet to consist ofn-tuples of symbols,
and such a modified alphabet is obviously still finite; alternatively, one can think of
this modification as a preprocessing step that applies a simple subsequential trans-
ducer to each input string. Functional transductions that examine individual input
symbols (letters, orn-tuples of letters) without taking any context into account (a
finite amount of history or lookahead can be incorporated into the modified sym-
bols created by the preprocessing step) can be realized by generalized sequential
machines with a trivial one-state topology and correspond exactly to morphisms
on free monoids (Eilenberg, 1974, p. 299).

The subsequent discussion will refer to a finite setΣ of input symbols and a
finite setΓ of output symbols. The free monoid generated byΣ is calledΣ� and
has the property that every element (string)x 2 Σ� has a unique factorization in
terms of elements ofΣ. This means that a morphismg : Σ�! Γ� on free monoids
is completely characterized bygjΣ, its restriction toΣ. Conversely, this allows us
to define the following notion:

Definition 1 (Free monoid morphism). Given a functionf : Σ! Γ� define f � to
be the unique monoid morphismf � : Σ�! Γ� such thatf �(x) = f (x) for all x2 Σ;
f �(ε) = ε ; and f �(yz) = f �(y) f �(z) for all y;z2 Σ�.

At the core of the learning task is then the problem of finding a suitable func-
tion f : Σ! Γ� mapping from individual input symbols to output strings. In this
paper we focus on two classes of functions. The first class restricts the codomain
to strings of length one. Iff : Σ! Γ is such a function – an alphabetic substitu-
tion – then f � is a very fine morphism, according to Eilenberg (1974, p. 6). The
second class is a superset of the first and allows the empty string in the codomain.
Eilenberg (1974) calls the morphismf � a fine morphismif its underlying function
f is of typeΣ!fεg[Γ. For the specific problem of learning letter to sound rules
we can restrict our attention to fine morphisms, since by our previous assumption
letter strings are never shorter than their corresponding phoneme strings, so a fine
morphism is formally adequate. In general we may want to consider other kinds
of morphisms, for example those arising from functions of typeΣ!fεg[Γ[Γ2.
However, most practically relevant classes of morphisms will probably contain the
class of fine morphisms, and therefore many of their properties will carry over to
more general settings. By restricting our attention to fine morphisms we have nar-
rowed down the initial learning task considerably, as the hypothesis spaceH is now
the set of functions of typeΣ!fεg[Γ, which is always finite (though usually very
large) for fixed finite alphabetsΣ andΓ. Moreover, since lnjHj = jΣj ln(1+ jΓj)
the sample complexity of this hypothesis space is polynomial.

Our conceptualization of learning is not limit-identification, but empirical risk
minimization. Although empirical risk minimization is somewhat problematic
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(Minka, 2000), particularly if the training data are not representative of the dis-
tribution of future data, it underlies most symbolic approaches to learning letter-to-
sound rules, as well as many otherNLP tasks. The empirical riskRof a hypothesis
h : Σ�! Γ� is its average loss on a set of training samplesD� Σ��Γ�, namely

R=
1
jDj ∑

hx;yi2D

L(h(x);y)

whereL : Γ��Γ�! R�0 is the loss function. The most commonly used generally
applicable loss functions for comparing strings are the zero-one loss

Lidentity(y
0;y) =

(
0 if y0 = y

1 otherwise

andLevenshtein, the string edit distance (see for example Kruskal, 1983). Both kinds
of loss play a role in the evaluation of letter-to-sound rules: for example, Damper
et al. (1999, p. 164) use zero-one loss, and Fisher (1999) uses string edit distance.
One generally requires thatL(y;y) = 0, which is obviously the case forLidentity, and
also holds forLevenshteinprovided the cost for matching symbols is zero.

Empirical risk minimization under zero-one loss can mean one of two things:
minimizing the total number of mistakes a hypothesis makes on the training data,
or maximizing the number of correct predictions. These two notions are equivalent
if optimal solutions can be found exactly, but differ for approximate solutions.2

9.2 Exact optimization

The problem of finding a functionf : Σ!fεg[Γ such that the empirical risk off �

is minimal is fundamentally a combinatorial optimization problem. Like all such
problems it can be stated formally in different ways (Papadimitriou and Steiglitz,
1998, p. 345f.): the optimization version asks for the optimalf for a given set of
samplesD�Σ��Γ�; the evaluation version asks for the total loss incurred onD by
the optimal f �; and the decision version asks whether there exists anf � such that
the total loss incurred by it onD is less than or equal to a given budgetk. A solution
to the optimization version could be used to construct an answer to the evaluation
version, which in turn could be used to solve the decision version. Contrapositively,
if the decision version is hard to solve, so are the other two versions.

2Suppose the true global optimum among 100 samples is 10 mistakes, and the optimum can
be approximated within a ratio of 1.2. Approximate maximization would find a solution with at
most 100� 90=1:2 = 25 mistakes, but approximate minimization yields a solution with at most
10�1:2= 12 mistakes.
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BecauseL(y;y) = 0 for the loss functionsL considered here, there is a common
subproblem of the decision version which is independent of the loss function used:
the restricted decision version asks whether there exists anf � such that the total
loss incurred by it onD is exactly zero. We call this the consistency problem.
Obviously, if the decision version can be solved efficiently, so can the consistency
problem.

Before we can formally state this key problem underlying the learning task, we
need another auxiliary definition:

Definition 2 (Graph of a relation). Given a relationR : A! B on sets, define #R,
thegraph of R, to be the setfha;bi 2 (A�B) jaRbg.

The consistency problems for the two classes of morphisms are stated in a
format similar to the one used by Garey and Johnson (1979). An answer to the
questions asked by these problem would tell us whether a suitable morphism exists
that perfectly fits the training dataD.

Problem 9.1 (Very Fine Morphism Consistency – VFMC)
Instance:A finite (multi)setD� Σ��Γ� of training samples.

Question:Does there exist a very fine morphism consistent with all elements ofD,
i. e., is there a functionf : Σ! Γ such thatD� #( f �)?

Problem 9.2 (Fine Morphism Consistency – FMC)
Instance:A finite (multi)setD� Σ��Γ� of training samples.

Question:Does there exist a fine morphism consistent with all elements ofD, i. e.,
is there a functionf : Σ!fεg[Γ such thatD� #( f �)?

The size of an instance of one of these problems is the total length of all strings
in the training dictionaryD:

Definition 3 (Dictionary size). Define the sizekDk of a dictionaryD � Σ��Γ�

as

kDk= ∑
hx;yi2D

jxj+ jyj

wherejxj is the length of stringx.

Of the two problems formulated here,FMC is intuitively more difficult than
VFMC, since one has to decide which input symbols are mapped to the empty string,
or equivalently, how the output strings should be aligned relative to the inputs.
This issue does not arise withVFMC, since only strings of equal length need to
be considered (ifD contained a pair of strings with different lengths, then no very



Learning local transductions is hard: M. Jansche /86

1: fInput: instanceD, certificatefg
2: for all hx;yi 2 D do
3: a1 � � �an x
4: b1 � � �bm y
5: j 1
6: for i 1 to n do
7: if f (ai) 6= ε then
8: if j > m then
9: return false

10: else if f (ai) 6= bj then
11: return false
12: elsef f (ai) matchesbjg
13: j  j +1
14: if j 6= m+1 then
15: return false
16: return true

Figure 9.1: Certificate verification algorithm forFMC.

fine morphism can be consistent withD). It will be shown thatFMC is a complete
problem for the complexity classNP (see for example Garey and Johnson, 1979).
Membership ofFMC in NP can be established straightforwardly:

Theorem 1. ProblemFMC has succinct certificates that can be verified in polyno-
mial time.

Proof: A certificate forFMC is a partial functionf : Σ! Γ[fεg, which can be
represented in space linear inkDk (becausef only needs to mention elements of
Σ that occur inD). Verification amounts to applyingf � to each input string inD
and comparing the results to the corresponding reference output. The verification
procedure, shown in Figure 9.1, runs in linear time and logarithmic space.�

As an aside, note that problemVFMC for very fine morphisms can be solved
efficiently in linear time and space by the following procedure: iterate overD, and
for each input symbolσ set f (σ) γ , whereγ is the output symbol aligned3 with
σ ; then run the verification algorithm from Figure 9.1 onD and f , and return its
answer.

NP-hardness ofFMC is established by a reduction from 3SAT, the decision
problem asking whether there is a satisfying truth assignment for a set of disjunc-

3A consistent very fine morphism can only exist ifjxj= jyj for all hx;yi 2 D, which means thatx
andy are aligned, in the sense that thenth symbol ofx corresponds to thenth symbol ofy.
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tive clauses with at most three literals each. We first define the construction and
then prove that it correctly preserves the structure of 3SAT.

Definition 4 (Boolean variable gadget).For any Boolean variablev, the setV (v)
contains the following pairs (av andbv are two new symbols dependent onv):

havvvbv;FTFi;

havbv;Fi:

Definition 5 (3SAT clause gadget).For any 3SAT clauseCi of the form (li1_
li2_ li3) (where eachli j is a literal of the formv or v) the setC (Ci) contains the
following pairs (ci j , di j , ei and fi for 1� j � 3 are eight new symbols dependent
on i):

hci1li1di1;FTi;

hci2li2di2;FTi;

hci3li3di3;FTi;

hdi1di2di3ei fi ;TTi:

Definition 6 (Reduction from 3SAT). Given an instanceϕ =
Vn

i=1Ci of 3SAT,
defineD(ϕ) as the collection

Sn
i=1C (Ci) [

S
fV (v) jvariablev occurs inϕg.

Theorem 2. The reduction from3SAT to FMC can be computed in logarithmic
space and creates an instance whose size is polynomial in the size of the original
instance.

Proof: The reductionD , which can be made to run in linear time, builds a collec-
tionD(ϕ) with the following properties: letm be the number of distinct variables
of ϕ (som� 3n); thenkD(ϕ)k = 10m+22n� 52n, jD(ϕ)j = 2m+4n� 10n,
jΣj= 4m+8n� 20n, andjΓj= 2. Only counters need to be stored for computing
the reduction (in order to keep track of clauses and variables represented by inte-
gers), which requires logarithmic space. �

Theorem 3. ProblemFMC is NP-hard.

Proof: We show thatϕ =
Vn

i=1Ci is satisfiable iff there exists a fine morphism
f � consistent withD(ϕ). It will be convenient to letV denote the set of distinct
variables ofϕ .

()) Assume thatϕ is satisfiable, i. e., there exists a satisfying assignment
τ : V ! fT;Fg. Incrementally define a fine morphismf � consistent withD(ϕ) as
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follows: for all v2V, let f (v) = τ(v) and f (v) = τ(v). If τ(v) = T, let f (av) = F
and f (bv) = ε , which makesf � consistent withV (v); otherwise, ifτ(v) = F, let
f (av) = ε and f (bv) = F to makef � consistent withV (v). In either casef � can be
made consistent withV (v), and becauseav andbv do not occur outside the gadget
for v, f � can be made consistent with all variable gadgets.

The fact thatτ is a satisfying assignment means that in each clauseCi at least
one literal is made true byτ . So f will map at most twodi j in C (Ci) to T, and
therefore the definition off � can always be extended to make it consistent with
the fourth pair inC (Ci) and hence consistent with the entire clause gadget forCi.
Since all symbols in a clause gadget other than literals ofϕ occur only in that
gadget, the definition off � can be extended to make it consistent with all gadgets
and therefore consistent withD(ϕ). Hence there exists a consistent fine morphism
f � constructible fromτ .

(() Conversely, assume that a fine morphismg consistent withD(ϕ) exists.
Show thatgjV , i. e.g restricted to the variables ofϕ , is a satisfying truth assignment
for ϕ . The morphismg being consistent withD(ϕ) means thatg is consistent with
all variable gadgets and all clause gadgets.

Pick any variable gadgetV (v). Then, because of the second pair inV (v), g
must map exactly one ofav andbv to F: if g(av) = F theng(bv) = ε , and for the
first pairg(v) = T andg(v) = F; otherwise ifg(bv) = F theng(av) = ε , g(v) = F,
andg(v) = T. Note in particular that(gjV)(v) 2 fT;Fg, sogjV is formally a truth
assignment.

Now pick any clause gadgetC (Ci) and suppose thatgmaps noli j inC (Ci) toT.
Then alldi j in C (Ci) are mapped toT because of the first three pairs in that clause
gadget. But this would makeg inconsistent with the fourth pair, contradicting the
assumption thatg is consistent with all clause gadgets. Sog must map at least one
li j in C (Ci) to T, which means thatgjV makes the clauseCi true, and is therefore a
satisfying truth assignment forϕ . �

The preceding three theorems together imply that the consistency problemFMC

is NP-complete. The existence of efficient algorithms for solvingFMC is therefore
unlikely. SinceFMC is a subproblem of empirical risk minimization, the decision
version of this optimization problem is alsoNP-complete.4

The evaluation and optimization version of empirical risk minimization do not

4Strictly speaking, the previous discussion only establishesNP-hardness of the decision version.
Showing membership inNP is straightforward, but requires separate proofs depending on which
loss function is used. For zero-one loss only a few minor modifications to the certificate verification
algorithm in Figure 9.1 are required, which now has to aggregate the number of mistakes and compare
it to the budgetk. For loss based on edit distance, using the standard dynamic programming algorithm
(Kruskal, 1983) ensures that certificates can be verified in polynomial time.
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seem to fall within the analogous classFNP of function problems. The reason for
this is that an optimal solutionf only certifies the existence of a feasible solution
(namely f ) within a certain budgetk (namely the aggregate loss off � on the train-
ing data), but does not seem to provide enough information to verify in polynomial
time that no better solution within a budget ofk�1 can exist. It is doubtful whether
there are any polynomial-length certificates of optimality. We conjecture that these
problems are in factFPNP-complete, just likeTSP (Papadimitriou, 1994).

9.3 Approximations and heuristics

Since the existence of exact efficient algorithms for solving the overall optimization
problem is unlikely, one should consider the alternatives: approximate, heuristic,
and/or inefficient algorithms.

Even for highly restricted problems the prospects are rather bleak. The opti-
mization problem that maximizes empirical string-level classification accuracy (the
dual of empirical zero-one loss, i. e. string-level classification error) for very fine
morphisms will be calledMAX -VFMC. It is far from clear whetherMAX -VFMC is
an easy or a hard problem, as we had shown earlier thatVFMC can be solved very
efficiently. We define the decision version ofMAX -VFMC as follows:

Problem 9.3 (Very Fine Morphism Maximization – MAX-VFMC)
Instance:A finite sequenceD = hs1; : : : ;sni where eachsi 2

S
j2NΣ j �Γ j for 1�

i � n; and a natural numberk with k� n.

Question:Does there exist a very fine morphism consistent with at leastk elements
of D, i. e., is there a functionf : Σ! Γ and a lengthk unordered subsequence
ht1; : : : ; tki of D such thatti 2 #( f �) for all 1� i � k?

We show thatMAX -VFMC has probably (unlessP = NP) no polynomial time
approximation schemes (PTAS, which would allow us to find arbitrarily good ap-
proximations efficiently). In the best case, there may be an approximation algo-
rithm for MAX -VFMC with a fixed approximation ratio, which would makeMAX -
VFMC a member of the classAPX (Ausiello et al., 1999); whether or not this is the
case is an open question.

Theorem 4. ProblemMAX -VFMC is APX-hard.

Proof: Show this by exhibiting anAP-reduction from anAPX-complete problem.
It suffices to show thatMAX -k-CSPis L-reducible (Papadimitriou, 1994, 309ff.) to
MAX -VFMC. MAX -k-CSPis a constraint satisfaction problem (Khanna et al., 1997)
with conjunctive constraints containing at mostk literals (see also Ausiello et al.,
1999).
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Given an instanceϕ = h(l11^ �� � ^ l1k); : : : ;(ln1 ^ �� � ^ lnk)i of MAX -k-CSP,
construct an instance ofMAX -VFMC by mapping theith constraint(li1^ �� � ^ lik)
to the pairhli1li1 : : : liklik;TF : : :TFi to form D (if a literal l is negative, i. e. of the
form v, then l is simply v). SoΣ consist of the negated and unnegated variables
of ϕ , andΓ = fT;Fg. This construction ensures that there is a truth assignmentτ
that makes exactlym constraints ofϕ true iff there exists a very fine morphismf �

which is consistent with exactlymelements ofD. One can constructf from τ (and
vice versa) viaf (v) = τ(v) and f (v) = τ(v) wherev is a variable occurring inϕ .
�

Exact global optimization ofMAX -VFMC is theoretically possible via branch-
and-bound search. While this inefficient algorithm can be used for very small prob-
lem instances (learning English letter-to-sound rules with no conditioning context,
for which only a few trillion morphisms have to be explored), it becomes intractable
for even slightly larger problems (for English letter-to-sound rules conditioned on
one letter of context there are more than one trequadragintillion feasible solutions).
Heuristic algorithms, especially those based on local search (Papadimitriou and
Steiglitz, 1998), are efficient and do in practice improve on greedily constructed
initial solutions, but offer no performance guarantees.

9.4 Conclusions

We have reduced the problem of learning local transductions to the problem of
learning morphisms on free monoids (the reduction may involve deterministic pre-
processing of the training data). The restricted problem of deciding whether there
exists a fine morphism consistent with a set of training samples was shown to be
NP-complete. Since this problem is a specialization of the decision version of em-
pirical risk minimization under any loss functionL for whichL(y;y) = 0, the larger
optimization problems which generalize the consistency problem are generally in-
tractable.
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Chapter 10

Querying Linguistic Treebanks with Monadic
Second-Order Logic in Linear Time

STEPHAN KEPSER�

10.1 Introduction

In recent years large amounts of electronic texts have become available providing
a new base for empirical studies in linguistics and offering a chance to linguists
to compare their theories with large amounts of utterances from “the real world”.
While tagging with morphosyntactic categories has become a standard for almost
all corpora, more and more of them are nowadays annotated with refined syntactic
information. Examples are the Penn Treebank (Marcus et al., 1993) for American
English annotated at the University of Pennsylvania, the French treebank (Abeill´e
and Clément, 1999) developed in Paris, the NEGRA Corpus (Brants et al., 1999)
for German annotated at the University of Saarbr¨ucken, the T¨ubingen Treebanks
(Hinrichs et al., 2000) for Japanese, German and English from the University of
Tübingen, and the German newspaper corpus TIGER (Brants et al., 2002). To
make these rich syntactic annotations accessible for linguists the development of
powerful query tools is an obvious need and has become an important task in com-
putational linguistics.

Consequently, a number of query tools for syntactically annotated corpora
have been developed in recent times. Amongst the most important ones are Cor-
pusSearch (Randall, 2000),fsq (Kepser, 2003), ICECUP III (Wallis and Nelson,
2000), TGrep2 (Rohde, 2001), TIGERsearch (K¨onig and Lezius, 2000), and VIQ-
TORYA (Kallmeyer and Steiner, 2002). All of them face a fundamental problem
in the design of a query system namely the definition of the expressive power of
the query language. The problem lies in balancing out user demands for a high
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expressive power on the one hand and complexity problems on the other that may
arise when query languages become quite powerful. The difficulty of this prob-
lem grows with the fact that the so-called treebanks to be queried are very often
not just collections of proper trees. Demands of linguists have introduced addi-
tional features such as crossing branches and secondary relations. In consequence,
some treebanks have more or less become collections of finite structures. Most of
the above mentioned query tools (namely CorpusSearch, ICECUP III, TGrep2, and
VIQTORYA) ignore this additional challenge completely, they are designed to query
trees only. Still, they typically offer query languages of limited expressive power
with the existential fragment of first-order logic being a kind of upper bound. A
notable exception isfsq, which was particularly developed to query arbitrary finite
first-order structures with full first-order logic. The disadvantage offsq is the com-
plexity of the implemented algorithm: Evaluation time of a query is polynomial in
the size of the treebank. The size of the lead polynome is the quantifier depth of
the query. Hence the evaluation of complex queries can take quite a long time.

Building on insights from theoretical informatics we show here that it is pos-
sible to query linguistic treebanks with a monadic second-order logic, powerful
query language, in time linear in the size of the treebank.

It is known that the evaluation of a first-order sentence on a finite structure
with a carrier of just two elements is already PSPACE-complete. To differenti-
ate between the contribution of the logic or query language on the one hand and
the contribution of the size of the finite structure on the other, Vardi (1982) intro-
duced the notions ofquery complexityanddata complexity. The general situation
in querying linguistic treebanks is such that treebanks are large and still growing
huger while most queries are relatively small. This justifies the concentration on
data complexity, as we do it here.

10.2 The Query Language

The query language we propose is monadic second-order logic (MSO). It is the ex-
tension of first-order logic by set variables. As stated above, “trees” in a treebank
may contain unconnected subparts and directed as well as undirected secondary
edges. We therefore see a tree in a treebank as a finite relational structure. Tech-
nically, we follow the exposition by Arnborg, Lagergren, and Seese (1991). The
signature of a tree consists of the unary predicate symbolsV;E;D;P1; : : : ;Pp for
somep2 N and of the three binary predicatesR1;R2;R3 with the intended mean-
ing that

� V designates the set of vertices,

� E designates the set of undirected edges,
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� D designates the set of directed edges,

� R1(a;b) holds if and only ifa is a vertex incident with the edgeb,

� R2(a;b) holds if and only ifa is the source or origin of the directed edgeb,

� R3(a;b) holds if and only ifa is the target or end point of the directed edge
b,

� P1; : : : ;Pp are (linguistic) labels of vertices and edges.

Let V1 = fx;y;z;x1;x2;x3; : : :g andV2 = fX;Y;Z;X1;X2;X3; : : :g be two dis-
joint denumerable sets of individual variables (vertices or edges) and set variables.
We use lower case letters for individual variables and upper case letters for set
variables. The syntax of MSO contains two binary logical relations, namely=
(equality) and2 (membership). Formulae are defined as follows. For allx;y 2
V1;X 2 V2;1� j � p: V(x);E(x);D(x);Pj (x);R1(x;y);R2(x;y);R3(x;y);x = y;x2
X are atomic formulae. Letϕ andψ be formulae. Then:ϕ ;ϕ ^ψ ;ϕ _ψ ;ϕ !
ψ ;9xϕ ;8xϕ ;9Xϕ ;8Xϕ are formulae.

A tree is a a finite relational structureT = (U;V;E;D;R1;R2;R3;P1; : : : ;Pp)
whereU is a finite nonempty set of vertices and edges,V;E;D are unary predicates
of vertices and (undirected and directed) edges,P1; : : :Pp are unary predicates, and
R1;R2;R3 are binary predicates. We call such a structure also a graph. The size of
the graph isjU j, the number of vertices and edges of the graph.

The semantics of MSO over theses structures is an extension of the classical
first-order logic semantics. A variable assignmenta now consists of two functions
a1 : V1!U anda2 : V2!℘(U). Formulae not involving set variables have the
same semantics as in the first-order case. The formulax2X is true iff a(x) 2 a(X).
For set quantification,9Xϕ is true in(T ;a) iff there is aW�U such thatϕ is true
in (T ;a[X=W]) wherea[X=W] is a variable assignment that is equal toa except
that it assignsW to X. The formula8Xϕ is true in(T ;a) iff for all W �U the
formulaϕ is true in(T ;a[X=W]).

Not every finite structure of the given signature is suitable to designate a tree.
To ensure the intended meaning of the predicates some axioms have to be added
that all structures should respect.

8x V(x)_E(x)_D(x), 8x:(V(x)^E(x)),
8x:(E(x)^D(x)), 8x:(V(x)^D(x)),
8x;y R1(x;y)! (V(x)^E(y)), 8x;y R2(x;y)! (V(x)^D(y)),
8x;y R3(x;y)! (V(x)^D(y)).

The axioms state that the relationsV;E andD partition the domainU and that
the left hand side argument of a relationR1;2;3 is always a vertex while the right
hand side is an undirected edge forR1 and a directed edge forR2;3.
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A linguistic treebank in our sense is a finite set of finite structures defined as
above. Restricting ourselves to finite treebanks is justified on two grounds. Firstly,
any now or in the future existing treebank is finite. Secondly, querying an infinite
treebank makes no sense since a person posing a query expects an answer at least
in finite time.

10.3 Linear Time Complexity of MSO Queries

In the general case, the data complexity of MSO queries on arbitrary classes of
finite structures is PSPACE (see, e.g., Ebbinghaus and Flum (1995)). Thus there
is little hope to find efficient algorithms for MSO queries on arbitrary classes of
finite structures. But there is a class of structures for which a linear-time algorithm
exists. As was shown independently by Arnborg, Lagergren, and Seese (1991) and
by Courcelle (1990a,b, 1992), the class of graphswith bounded treewidthpossesses
such an algorithm.

The notion oftreewidthwas introduced by Robertson and Seymour (1986) as
a way to measure how close to a tree a graph is. Bodlaender (1993) provided a
general introduction that the interested reader is referred to.

Definition 1. A tree decompositionof a graph(A;V;E;D;R1;R2;R3;P1; : : : ;Pp) is
a pair (T,S), whereT is a tree andS is a family of sets indexed by the vertices ofT
such that

1.
S

Xt2SXt = A.

2. For allc2 A such thatE(c) there is a uniqueXt 2 Ssuch thatc2 Xt , and if
a2 A satisfiesR1(a;c) thena2 Xt.

3. For allc2 A such thatD(c) there is a uniqueXt 2 Ssuch thatc2 Xt , and if
a2 A satisfiesR2(a;c) or R3(a;c) thena2 Xt .

4. For alla2 A the subgraph ofT induced byft j a2 Xtg is connected.

The width of such a decomposition is maxXt2Sjfa j a 2 Xt ;V(a)gj � 1, i.e., the
largest number of vertices in a single set of the decomposition minus 1.
A graphG is of treewidth kif and only if the smallest width of a tree decomposition
of G is k.

There are different ways in which a graph can divert from a tree. A clique, for
example, is a structure which is kind of an opposite of a tree. Hence it is simple to
see that the size of the largest clique is a lower bound of the treewidth of a graph.
An important property of a tree is that every pair of vertices of a tree is connected
by auniquepath. A graph in which many pairs of vertices are connected by many
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different independent paths is therefore also kind of an opposite of a tree. The
largest number of independent paths between two vertices gives an upper bound
for the treewidth.

Proposition 1. Arnborg et al. (1991); Courcelle (1990a,b, 1992)For every class K
of graphs of universally bounded treewidth, every MSO sentence can be decided in
time linear in the size of G for G2 K.

A fortiori, every finite set of graphs has a bounded treewidth.

Corollary 2. Therefore MSO queries on linguistic treebank can be evaluated in
linear time in the size of the treebank.

The above results were enhanced by several authors showing that MSO can be
extended by cardinality predicates or simple counting. The perhaps most general
result is given by Courcelle and Mosbah (1993) who add a certain type of evalua-
tion functions to MSO.

The core of these results is achieved by a reduction to classical formal language
theory. Using a method of semantic interpretation of one structure in another pro-
posed by Rabin (1977), Arnborg et al. (1991), and Courcelle (1990a,b, 1992) pro-
vide a method for interpreting finite graphs of bounded treewidth by finite trees.
MSO sentences can then be evaluated over these trees using tree automata tech-
niques proposed by Doner (1970) and Thatcher and Wright (1968).

A bit more detailed, Arnborg, Lagergren, and Seese (1991) provide a general
construction by which an MSO sentenceS on graphs is translated into an MSO
sentenceτ(S) on binary trees. This construction also transforms a general labelled
graphG with a suitable tree decomposition into a labelled binary treeT(G) in time
linear in the number of vertices ofG in such a way thatSholds inG if and only if
τ(S) holds inT(G). The step of the computation of a suitable tree decomposition
can be done also in linear time on graphs with bounded treewidth, as was shown
by Bodlaender (1996).1 After the application of this transformation, classical tree
automata techniques (Doner, 1970; Thatcher and Wright, 1968) can be applied.

The computation of a tree decomposition, although possible in time linear in
the size of graph, is an expensive step. In a recent analysis of the original algorithm
by Bodlaender (1996), Hagerup (2002) presents a variant which works three orders
of magnitude faster. Still the algorithm is exponential in the square of the treewidth.
This seems to indicate that it can hardly be used in practice. But there are two
important facts to keep in mind that make this approach feasible. Firstly, most
trees in current treebanks have a small treewidth. The capabilities of secondary

1Remarkably, Bodlaender found his result after the publication of the works by Arnborg et al.
(1991) and Courcelle (1990a,b).
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relations are only sparsely used by annotators. To give an extreme example of
how rarely secondary edges are used, consider the German T¨ubingen Treebank
(Hinrichs et al., 2000), in which more than 99.9% of the trees have treewidth 1, the
small rest having treewidth 2. Secondly, and more importantly, the computation
of a tree decomposition has to be done only once. It is a part of the preprocessing
step that transforms tree-like graphs of the input treebank into proper trees suitable
for the application of tree automata techniques. Obviously, such a preprocessing is
performed once and off-line. As such, it is not a relevant factor in the actual query
response time, i.e., the time from the posing of a query till the presentation of the
answer. Therefore, longer preprocessing times are indeed tolerable.

10.4 On the Expressive Power of MSO Queries

As stated in the introduction, the development of query systems that employ pow-
erful query languages is a relatively new one. An important reason therefore is
certainly the fact that corpora with rich syntactic annotations came to exist only
recently. And only if there is a rich structure to query it makes sense to provide
powerful query languages.

On the other hand, there is now a growing need for powerful query languages
for the following reasons. Suppose a linguist is interested in finding a particular
syntactic phenomenon in a large treebank. In most query languages it is a trivial
task to write a query the answer set to which will contain all instances of the phe-
nomenon that can be found in the corpus. Just write a query which is rather general.
The answer set will be big and certainly contain what the linguist is looking for.
But it will mainly consists of undesirable “garbage”, trees that do not exhibit the
phenomenon sought. Hence, the real task in querying is not so much to produce
an answer set that contains instances of what you are searching for. The task is
rather to weed out the garbage, to keep answer sets as small as possible. Looking
at things this way, a query is a kind of a filter for the corpus. And in order to retain
small answer sets it is necessary to make that filter strong. A linguist should be
able to spell out as exactly as possible the phenomenon he is looking for. And that
requires powerful query languages. Treebanks have already gained quite a size,
e.g., the German T¨ubingen Treebank contains more than 38.000 trees. There is
hardly any chance to manually check big answer sets any more.

Let us illustrate these arguments by linguistically motivated examples. Suppose
we are looking for trees in a German or English treebank where a clause lacks the
subject. It is known that Germanic languages require the subject to be lexically
realised under normal circumstances. It is therefore interesting to see whether
there are any exceptions from this rule, and if, what they look like. An example of
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Figure 10.1: A subject-free clause from the German T¨ubingen Treebank

a clause where the subject is missing can be seen in Figure 10.1, which displays
a tree from the German T¨ubingen Treebank. It readsis the twenty fourth of July.
Without going into details of the annotation we note that the grey shaded ellipses
represent part-of-speech tags or syntactic categories and the grey shaded rectangles
represent grammatical functions or edge labels.

In order to find trees that lack the subject, we have to find a clause node, which
is a node of category (POS tag)SIMPX below which there is no subject. In this
treebank, a subject is a node of grammatical functionONwhich stands forObject in
the Nominative. The treebank contains a parent relation to indicate the tree struc-
ture. In our queries, we will use the dominance relation, the reflexive transitive
closure of the parent relation, and designate it by the relation symbol>>. A dis-
cussion of transitive closures in queries follows the present illustration of searching
for subject-free clause.

We can now pose the following query:

9xSIMPX(x)^8y((x>> y)!:ON(y))

The formula reads “There is a clause node (node of categorySIMPX) such that no
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node below it is a subject node (node of functionON (Object in the Nominative)).”
An example result is the tree in Figure 10.1. Another result from the same cor-

pus would be “aber gut, wir k̈onnen ja mal fragen, was gegeben wird.” (All right,
we can ask, what’s on play.) where there is no subject in the German subordinate
clause. If one is interested in finding only those trees where the subject is lacking
in a subordinate clause, the above query has to be extended to
9x9y SIMPX(x)^SIMPX(y)^ (x>> y)^ (x 6= y)^ (8z:((y>> z)^ON(z)))
“There are two different clause nodes, one dominating the other, and no node

below the lower clause node is a subject node.”
This is a query of quantifier depth 3 (number of deepest nestings of quanti-

fiers). On second thought one can see that this query is still too simple to find all
subordinate clauses without subject. It does not reflect the possibility of having
a subordinate clause with subject as a subclause of a subordinate clause without
subject. Here is a query that does:
9x9y SIMPX(x)^SIMPX(y)^ (x>> y)^ (x 6= y)^

(8zON(z)! (:(y>> z) _
9w SIMPX(w)^ (y>> w)^ (y 6= w)^ (w>> z)))

“There are two different clause nodes, one dominating the other, and every
subject node is either not dominated by the lower clause node or there is a further
clause node intervening.”

This query is even of quantifier depth 4. Another complicated query must be
used if we want to find all trees in which the main clause lacks the subject, but
subordinate clauses may have one. The query looks like this:
9x SIMPX(x)^ (8ySIMPX(y)! (x>> y^x 6= y))^

(8y ((x>> y)^ON(y))!
9z(SIMPX(z)^ (x>> z)^ (x 6= y)^ (z>> y)))

“There is a highest clause node such that for every subject node dominated by
it there is a second clause node intervening.”

These examples show that once a linguist is interested in more advanced phe-
nomena a powerful query language is necessary to specify as closely as possible
what it is that the linguist seeks.

One of the advantages of MSO as a query languages is the fact, shown by
Courcelle (1990a), that the transitive closure of any MSO-definable relation is also
MSO-definable. Transitive closures play an important role in formal definitions of
linguistic structures. Although the term is rarely literally used, many definitions
contain it tacitly. One such example is the definition of dominance as given in the
above discussion. Another example is the lexical head of a phrase. Here we look
at the transitive closure of the head-daughter relation. Any notion of government,
c-command or barriers contains indirectly a transitive closure, as well as notions of
maximal or minimal categories. Since it is unforeseeable which particular variant
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of these notions a user querying a corpus has in mind, it is not a feasible approach to
try to precompile these transitive closures during the preprocessing of the corpus.
To provide a query language that allows the definition of transitive closures seems
to be the more promising way.

There is a second field of applications of powerful queries, namely in thede-
velopmentof treebanks. As was pointed out by Dickinson and Meurers (2003),
even treebanks that are annotated by hand and not automatically can contain quite
a number of misannotations and inconsistencies. To enhance the quality of the
treebank an annotator can check wether his annotations are consistant by defin-
ing the environment of an annotation, querying the treebank with this definition,
and inspecting if the annotations in the answer set are the way they should be.
The expressive power of the query language is important for an annotator because
fine-grained annotations are typically very sensitive to environments, and thus en-
vironments should be definable rather precisely.

10.5 Conclusion

In this paper we showed that linguistic treebanks can be queried with a very pow-
erful query language, namely monadic second-order logic, in time linear in the size
of the treebanks. We thus give an argument for that at least on a theoretical level the
question of a choice of a query language for treebanks can be settled. We hardly
expect the arise of a need of an even more powerful query language. And the fact
that a large part of costly computations can be done in an offline preprocessing step
to be performed only once lets us believe that the described approach is practically
feasible.

It would certainly be nice, if one would be able to show that the types of finite
structures one can find in linguistic treebanks are such that they have a bounded
treewidth by their nature. But at least some of the corpus formats currently being
used do not as such warrant a bound for the treewidth of its instances. A simple ex-
ample is the addition of free indexation to syntax trees in GB theory such as coin-
dexing anaphora and antecedent or moved constituents and their traces. If there
is no bound on the number of coindexations, the structures have an unbounded
treewidth. An inspection of some of the available treebanks reveals on the other
hand, that typically only a subset of the capabilities provided by the corpus formal-
ism is actually in use. We thus think it is an intersting research goal to see if one
can find an abstract characterisation of linguistic trees as found in treebanks that is
general enough to cover most existing corpora but also that specific that it provides
boundedness of the treewidth of its instance structures.
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Chapter 11

Some remarks on arbitrary multiple pattern
interpretations

C. MARTÍN-VIDE� AND V. M ITRANA �

ABSTRACT. A word w is obtained by an arbitraryn-pattern interpretation of a wordx if there
aren homomorphismsh1;h2; : : : ;hn and a positive integerk such thatw= hi1

(x)hi2
(x) � � �hik

(x)

with 1 � i j � n for all 1 � j � k. This arbitrary multiple pattern interpretation of words is
naturally extended to languages. We investigate some closure properties of the families of lan-
guages obtained by arbitrary multiple pattern interpretations of finite, regular, and context-free
languages, respectively. We show that the first of these families forms an infinite hierarchy and
give a characterization of the arbitrary multiple pattern interpretation of finite languages. Two
concepts of ambiguity and inherent ambiguity of multiple pattern interpretation are defined. It
is shown that both properties are decidable for multiple pattern interpretations on finite lan-
guages but strong ambiguity is not decidable for multiple pattern interpretations on the class of
context-free languages. The paper also contains a series of open problems.

11.1 Introduction

In Angluin (1980), a new way for defining a language is considered. Instead of
identifying completely a language by generative devices as formal grammars or
by recognition devices as automata, sometimes it is useful to consider less strict
definitions. In the aforementioned work, the notion ofpatternis defined as a word
containing variables and constants, and then the language defined by a patternα
consists of all words obtained fromα by substituting a string of constants for each
variable. The substitution has to be uniform in the sense that the multiple occur-
rences of a variable must be replaced with the same string.

In the seminal work of Angluin 1980 the variables have to be replaced with
nonempty strings, while in Jiang et al. (1994) substitutions by empty strings are
allowed, which makes an essential difference. In Restivo and Salemi (2002), one
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proposes a generalization of this definition: the distinction between variables and
constants is discarded. Given two stringsx andw, possibly over the same alphabet,
x is apattern descriptionof a stringw (w is obtained by apattern interpretationof
x) if w is the homomorphic image ofx: in other words, there exists a homomor-
phismh such thatw= h(x).

Programming languages can be viewed as pattern interpretations of some lan-
guages. For instance, the main non-context-free features of programming lan-
guages are the necessity to define labels and the necessity to declare identifiers.
The necessity of defining labels can be expressed by pattern interpretation in the
following way. A correct program containing labels should be the pattern interpre-
tation of the following general description:

(part pro)1(label) : (statement) (partpro)2 goto (label) (partpro)3,

where (label), (statement)and (part pro)i , i = 1;2;3, are variables representing
labels, statements or other parts of a program, respectively. By interpreting this
pattern, we have to substitute the two occurrences of the variable(label) by the
same string of constants, hence observing the semantic restriction regarding labels
definition.

In Kudlek et al. (2003) we propose a new pattern interpretation, namelymul-
tiple pattern interpretation. A word w is obtained by an arbitraryn-pattern inter-
pretation of a wordx if there are some homomorphismsh1;h2; : : : ;hn, andk� 1,
such thatw = hi1

(x)hi2
(x) � � �hik

(x), 1� i j � n for all 1� j � k. This arbitrary
multiple pattern interpretation of words is naturally extended to languages, namely
a languageL is the arbitrary multiple pattern interpretation of another languageE
if L contains all words which are obtained by the same arbitrary multiple pattern
interpretation of the words inE.

Multiple pattern interpretations seem to be of basic concern for linguists. In-
deed, one may say that each sentence follows a pattern which is an element of a
finite or infinite set, that is a language.

Let us first consider the following aspect of language acquisition: two-word
utterances in the speech of a two-year old child, in accordance with Owens (2001).
To understand them, linguists proposed several strategies actually based on ordered
or arbitrary multiple pattern interpretations. First, some words are used without
any positional consistency (agent+action, action+object, agent+object): the so-called
grouping patternin Brown and Leonard (1986). For example, the child may say
“Eat cookie” or “ Cookie eat”. Secondly, the utterance is characterized by a con-
sistent word order which reflects patterns heard in adult speech: the so-calledpo-
sitional associative pattern, see Braine (1976). A third strategy, calledpositional
productive pattern(Braine (1976)), is characterized by consistent word order and
creative combinations. That is, children hypothesize a mini-language of patterns
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(attribute+entity, possessor+possession, demonstrative+entity, agent+action, etc.) and
then interpret these patterns by words repeatedly heard in specific locations in adult
speech. It has been suggested that positional rules rather than semantic rules are
the basis for early multiword utterances (Pine and Lieven (1993)). This strategy
applies to adult speech as well, especially for nonnative speakers. For instance, a
part of a speech can be constructed by an ordered interpretation of the word:

article+adjective+noun+verb+pronoun+noun+adverb.

By interpreting this word through a two-pattern interpretation, one gets the sen-
tences:

The young man ate his hamburger quickly.
A mad racer drove his car recklessly.

On the other hand, syntactic theory is concerned, unlike traditional grammar,
not with just describing specific languages but also with developing a general, uni-
versal theory. According to Borsley (1999), this means that other languages are
always potentially relevant when one is describing a particular language. Thus,
following Chomsky (1965, 1975); Kolb and M¨onnich (1999), there exists a non-
trivial set of axioms and a learnable extension of it that specify a possible natural
language, and every natural language has a theory which is a learnable extension of
the initial set. One has to determine a set of primitive blocks, operations which act
on these blocks, an initial set and a learning procedure which maps the (primitive
blocks of the) initial set onto the (utterances of the) steady state.

Furthermore, theprinciples-and-parameters-modeldiscussed in Vogler (1999)
has been established as a grammar formalism, based on the GB theory (Chomsky
(1981, 1986)), aimed at describing the syntactical knowledge in a way that gives
answers to questions concerning language acquisition and universal properties of
languages. Thus, one may assume that the kernel of GB theory consists of a set
of principles (= wellformedness conditions) and a way of interpreting them. In
this respect, our multiple pattern interpretation of a language may be viewed as a
particular case of such a general model.

11.2 Basic definitions

Let V andU be two alphabets. For a given integern� 1, we denote byΩn;V;U an
n-tuple (h1;h2; : : : ;hn) of homomorphisms fromV� to U�, and call it ann-pattern
interpretation. The subscripts indicating the alphabets will be omitted when the
two alphabets are self-understood. A multiple pattern interpretation is said to be
non-erasingif all its components are non-erasing homomorphisms. For the rest
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of this paper, if not otherwise stated, all multiple pattern interpretations are non-
erasing ones.

The arbitrary multiple pattern interpretationof L �V� throughΩn;V;U is the
language:

Ω�
n;V;U(L) = fhi1

(w)hi2
(w) � � �hir

(w) j w2 L; r � 1;1� i j � n;

for all 1� j � rg:

If n = 1, henceΩ consists of a single homomorphismh from V� to U�, we
write h�V;U(L), or h�(L) provided that the alphabetsV andU are self-understood
from the context.

A homomorphismh : V� �!U� is termed aletter-to-letter homomorphismif
h(a) 2U for any a 2V. A multiple pattern interpretation whose all components
are letter-to letter homomorphism is called a multiple pattern letter-to-letter inter-
pretation. The following families of languages are defined:

HOM �
n(X) = fΩ�

n;V;U(L) j for somen-pattern interpretationΩn;V;U

andL 2 Xg;

LHOM �
n(X) = fΩ�

n;V;U(L) j for somen-pattern letter-to-letter

interpretationΩn;V;U andL 2 Xg;

whereX 2 fFIN ;REG;CFg: HereFIN , REG, CF, stand for the families of finite,
regular, and context-free languages, respectively.

The above definition of a multiple pattern interpretation remembers the def-
inition of a DT0L scheme, a very well-known type of Lindenmayer system. A
DT0L scheme may be viewed as a multiple pattern interpretationΩn;V;V , hence
the n homomorphisms are actually endomorphisms onV�. However, the way of
interpreting a word through a DT0L scheme is different. A wordw is obtained
by a the DT0L schemeΩn;V;V interpretation of a wordx if there exists a posi-
tive integerk such thatw = hi1

Æhi2
Æ � � � Æhik

(x), 1� i j � n, 1� j � k. Note the
main difference: an arbitrary multiple pattern interpretation of a word is defined
by a concatenation of the homomorphic images of that word while the interpre-
tation through a DT0L scheme is a composition of the homomorphic images of
that word. For more details about Lindenmayer systems the reader is referred to
Rozenberg and Salomaa (1980). This makes an essential difference with respect to
the families of languages obtained by these interpretation, namely the two families
are incomparable. Indeed, the languagefa3n

j n� 0g can be obtained by interpret-
ing the singleton setfag through the DT0L scheme formed by the homomorphism
h(a) = aaa, but it cannot be the arbitrary multiple pattern interpretation of any lan-
guage since 2�3n cannot be written as a power of 3. On the other hand, the regular
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languageR= fa2n j n� 1g is the arbitrary 1-pattern interpretation of the same sin-
gleton setfag but it cannot be obtained by interpreting any finite language through
a DT0L scheme. Assume the contrary, namelyR is obtained by interpreting a finite
language through the DT0L schemeΩn = (h1;h2; : : : ;hn). Sincea2p with p an ar-
bitrarily large prime number is inR, it follows thata2p = hi(a

2k) for some 1� i � n
andk� 1. This implies thatk= 1 andhi(a) = ap. The contradiction follows from
the fact that there are many prime numbers.

11.3 Some properties of the languages obtained by arbi-
trary multiple pattern interpretations

Clearly, for any alphabetV = fa1;a2; : : : ;ang we haveV� = Ω�
n;fag;V(fag), where

Ωn;fag;V = (h1;h2; : : : ;hn), eachhi being defined byhi(a) = ai . It is worth men-
tioning here a similar fact observed for pattern descriptions (Restivo and Salemi
(2002)), namely the “worst” description of any wordw (in the sense that this de-
scription gives the least information about the structure ofw) is the worda. On
the other hand, it is easy to note that any language inHOM �

n(FIN) is eitherfεg or
infinite.

Note that ifL is a finite language, then any language obtained by an arbitrary
multiple pattern interpretation ofL is a regular language. Indeed, for anyΩn =
(h1;h2; : : : ;hn)

Ω�
n(L) =

[

w2L

fh1(w);h2(w); : : : ;hn(w)g+ (�)

holds. However, there are regular languages that are not the arbitrary multiple
pattern interpretation of any language, finite or not. Such a language isa+b+. This
follows immediately from a simple observation: if a wordw lies in a languageL
defined by a multiple pattern interpretation of an arbitrary language, thenwwmust
lie in L, too. Therefore, the following problem naturally arises: Is it decidable
whether or not a given a context-free (regular) language is the arbitrary multiple
pattern interpretation of a finite language?

First, we give a characterization of regular languages that can be obtained by
an arbitrary multiple pattern interpretation of a finite language.

Proposition 11.3.1.A regular language is the arbitrary multiple pattern interpre-
tation of a finite language if and only if it is a finite union of finitely generated
semigroups w.r.t. concatenation.

Proof : Clearly, if any arbitrary multiple pattern interpretation of a finite lan-
guage is a finite union of finitely generated semigroups w.r.t. concatenation, see
(*) above.
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Assume now thatL=
Sk

i=1F+
i �U� for somek�1 and finite setsF1;F2; : : : ;Fk.

Let p= maxfcard(Fi) j 1� i � kg. It is plain that for each 1� i � k, one can find
F 0

i such that card(F 0
i ) = p and(F 0

i )
+ = F+

i . Suppose thatF 0
i = fx(i)

1
;x(i)

2
; : : : ;x(i)p g,

1� i � k. We define the alphabetV = fa1;a2; : : : ;akg and the homomorphisms
hj : V� �!U�, 1� j � p, hj(ai) = x(i)

j
. The equalityΩ�

p(V) = L, whereΩp =

(h1;h2; : : : ;hp), concludes the proof. 2

Now the aforementioned problem can be reformulated as follows: Is it decid-
able whether or not a given regular language can be written as a finite union of
finitely generated semigroups w.r.t. concatenation? Despite the problem seems to
be “classic”, we were not able to find any result regarding this matter either to solve
it. The problem is likely decidable for subclasses of regular languages, like slender
regular languages (P˘aun and Salomaa (1995)) but the general case remainsopen.

For the class of context-free languages the problem was solved in Kudlek et al.
(2003) by a usual reduction to the Post Correspondence Problem:

Theorem 11.3.1.Is it undecidable whether or not a given a context-free language
is the arbitrary multiple pattern interpretation of a finite language.

It is worth mentioning that there are non-context-free languages inLHOM �
n(REG),

for anyn� 1. However, for eachk� 1, the familyHOM k(CF) contains context-
sensitive languages only.

Proposition 11.3.2.For any k� 1, HOM n(CF)� NSPACE(n).

Proof : GivenL �V� (by a context-free grammar or a pushdown automaton)
andΩk;V;U = (h1;h2; : : : ;hk) for some alphabetU , it is easy to construct an on-line
Turing machineM with one storage tape which works as follows:

- The read-only input tape contains the stringw of length n which is to be
analyzed. M guesses a pair(x; i), wherex 2 V� is written on the storage tape,
jxj � n, and 1� i � k such thathi(x) is a prefix ofw.

- Then,M checks whether or notx 2 L. If x 2 L, thenM chooses nondeter-
ministically 1� j � k and checks whether or nothj(x) is the next factor ofw, and
continues in this way until the input string is completely read. When the input
string is completely read,M acceptsw.

- If there is no pair(x; i) as above, thenM rejectsw. Clearly,M acceptsw iff
w2Ω�

n(L) and the total space used on the storage tape is bounded byjwj. 2

It is easy to note that the familyCF in the above proof can be replaced by the
family of context-sensitive languages.

As far as the possibility of having infinite hierarchies of families of languages
defined by arbitrary multiple pattern interpretations of finite, regular, or context-
free languages is concerned, we state the following partial result:
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Theorem 11.3.2.Both hierarchiesHOM �
n(FIN)�HOM �

n+1(FIN) andLHOM �
n(FIN)�

LHOM �
n+1(FIN) are infinite.

Proof : For a givenn we consider the alphabetVn = fa1;a2; : : : ;ang. It is ob-
vious thatV+

n 2 LHOM �
n(FIN). Assume now thatV+

n = Ω�
n�1(L), whereΩn�1 =

(h1;h2; : : : ;hn�1) andL is a finite language. We takez= ap1
1

ap2
2
: : :apn

n 2V+
n for ar-

bitrarily largep1; p2; : : : ; pn. Assume thatz= h(i;1)(x)h(i;2)(x) : : :h(i;k)(x) for some
k� 1. SinceL is finite andp1; p2; : : : ; pn are arbitrarily large, it follows that there
are 1� j1; j2; : : : ; jn� k such thath(i; jt )(x) 2 a+t for all 1� t � n, which is contra-
dictory. 2

We do not know whether any of the hierarchiesHOM �
n(X) � HOM �

n+1(X),
LHOM �

n(X)� LHOM �
n+1(X), X 2 fREG;CFg, is infinite.

11.3.1 Closure properties

Theorem 11.3.3.1. For each n�1, andX 2fFIN ;REG;CFg the familyHOM �
n(X)

is closed under union and homomorphisms but fails to be closed under concatena-
tion, intersection with regular sets, complement, and set difference.

Proof : Union: Let

U�
1 � L1 = Ω�

n(X1);X1�V�
1 ;X1 2 FIN ;

U�
2 � L2 =

eΩ�
n(X2);X2�V�

2 ;X2 2 FIN ;

wheren� 1;

Ωn = (h1;h2; : : : ;hn) andeΩn = (g1;g2; : : : ;gn):

Without loss of generality we may assume thatV1 andV2 are disjoint. We define
Ωn = (s1;s2; : : : ;sn), where each homomorphismsi : (V1[V2)

� �! (U1[U2)
�,

1� i � n, is defined by

si(a) =

�
hi(a); if a2V1
gi(a); if a2V2

Obviously,L1[L2 = Ω�
n+m(X1[X2):

Homomorphisms:Let Ωn = (h1;h2; : : : ;hn) be ann-pattern interpretation,hi :
V� �!U� for all 1� i � n, andg : U� �!W� be an arbitrary homomorphism. It
is plain thatΩ�

n(L) = Ω̄�
n(L) holds for any languageL �V� andΩ̄n = (gÆh1;gÆ

h2; : : : ;gÆhn).
Concatenation:Both languagesa+ andb+ are multiple pattern interpretation

of finite languages, buta+b+ cannot be the multiple pattern interpretation of any
language.
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Intersection with regular sets:It follows immediate from the fact thatV� is a
multiple pattern interpretation of a finite language whereas there are regular lan-
guages which cannot be obtained by a multiple pattern interpretation of any lan-
guage.

Complement and set difference:We take the languageL = fa2n j n� 1g =
h�(fag), whereh(a) = aa. ButL= fag� nL cannot be the arbitrary multiple pattern
interpretation of any language since ifw2 L, thenww is also inL, hence bothjwj
andjwwj must be odd, which is contradictory. 2

We do not know whether or not a familyHOM n(X) as above is closed un-
der Kleene closure, but the next result may be interpreted as follows: The Kleene
closure of an arbitrary multiple pattern interpretation looses, in some cases, infor-
mation about the structure imposed by the pattern interpretation. Formally,

Theorem 11.3.4.LetF be a family of languages closed under homomorphisms and
union. Then, the Kleene closure of any arbitrary multiple pattern interpretation of
a language inF is in F.

Proof : Let L�V� be a language inF andΩn = (h1;h2; : : : ;hn) be ann-pattern
interpretation, for somen� 1 andhi : V� �! U�, 1� i � n. We construct the
new alphabetsVi = fai j a2Vg and define the letter-to-letter homomorphismsci :
V� �!V�

i , ci(a) = ai , 1� i � n. We now consider the language

R= (
n[

i=1

ci(L))
�;

which is still inF, and the homomorphismg : ([n
i=1Vi)

��!U�, defined byg(ai) =
hi(a) for all 1� i � n, anda2V. We claim that

g(R) = (Ω�
n(L))

�

holds. Indeed, ifz= g(y) 2 g(R), theny = x1x2 : : :xp with xj = c(i; j)(zj), zj 2 L,
1� j � p. But

z= gÆc(i;1)(z1) : : :gÆc(i;p)(zp) = h(i;1)(z1) : : :h(i;p)(zp) 2 (Ω�
n(L))

�:

Conversely, ify = z1z2 : : :zr 2 (Ω�
n(L))

�, then there are the stringsx1;x2; : : : ;xr in
L and the positive integersk1;k2; : : : ;kr such thatzi = h(i;1)(xi) : : :h(i;ki )

(xi), 1�

(i;1);(i2); : : : ;(i;ki)� n, 1� i � r. Hence

y= g(c(1;1)(x1) : : :c(1;k1)
(x1)c(2;1)(x2) : : :c(2;k2)

(x2) : : :c(r;1)(xr) : : :c(r;kr )
(xr));

thereforey2 g(R). 2

Corollary 11.3.1. The Kleene closure of any arbitrary multiple pattern interpre-
tation of a regular (context-free) language is regular (context-free).
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11.3.2 Ambiguity

Given ann-pattern interpretationΩn = (h1;h2; : : : ;hn) and a languageL, we say
thatΩn is weakly ambiguouson L if there exists a wordx2 L such that

hi1
(x)hi2

(x) � � �hik
(x) = hj1

(x)hj2
(x) � � �hjp

(x);

holds for somek; p� 1.
Given ann-pattern interpretationΩn = (h1;h2; : : : ;hn) and a languageL, we

say thatΩn is strongly ambiguousonL if there exist two different wordsx andy in
L such that:

hi1
(y)hi2

(y) � � �hik
(y) = hj1

(x)hj2
(x) � � �hjp

(x);

holds for somek; p� 1.
If Ωn is weakly/strongly ambiguous on any languageL in a family of languages

F, thenΩn is said to beinherently weak/strong ambiguouson F.

Theorem 11.3.5.It is decidable whether or not an arbitrary multiple pattern in-
terpretation is weakly/strongly ambiguous on a finite language L.

Proof : First we discuss how the strong ambiguity can be algorithmically
checked. LetL = fx1;x2; : : : ;xkg � V� and Ωn;V;U an arbitrary multiple pattern
interpretation. We setLi = L n fxig for any 1� i � k. It is plain thatΩn is not
strongly ambiguous onL if and only if Ω�

n(Li)\Ω�
n(fxig) = /0 for all 1� i � k.

SinceΩ�
n(Li)\Ω�

n(fxig) is a regular language which can be effectively constructed
and the emptiness problem is decidable for regular languages, we are done.

Let hi(xj) = w(i; j), 1� i � n, 1� j � k; clearlyΩn is not weakly ambiguous if
and only if for each 1� i � n the following two conditions are satisfied:

(i) w(i; j) 6= w(i;r), 1� j 6= r � k,
(ii) fw(i;1);w(i;2); : : : ;w(i;k)g is a code, or equivalently the semigroup

fw(i;1);w(i;2); : : : ;w(i;k)g
+ is free.

Obviously, the first condition can be algorithmically checked while the sec-
ond condition can be checked by Sardinas-Paterson algorithm (Berstel and Perrin
(1984)) for testing injectivity of the homomorphismf : fa1;a2; : : : ;akg

� �! U�

defined by f (aj) = w(i; j), 1� j � k. It is known that, provided (i) holds, (ii) is
satisfied if and only iff is injective (see, Shyr and Thierrin (1977)). 2

Theorem 11.3.6.LetF be a family of languages having the following two proper-
ties:

1. It is effectively closed under union, letter-to-letter homomorphisms and con-
catenation with symbols.
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2. The problem “Given two languages L1;L2 2 F, is L1\L2 empty?” is unde-
cidable.

Then, given an n-pattern interpretationΩn, n� 1, and a language L2 F, one
cannot algorithmically decide whether or notΩn is strongly ambiguous on L.

Proof : Let L1�V�
1 andL2�V�

2 be two arbitrary languages inF. We construct
the letter-to-letter homomorphismg :V�

2 �!U�, whereU = fXa j a2V2g such that
U \V1 = /0, defined byg(a) = Xa for eacha2V2, and then consider the language

L = f$gL1f#g[f$gg(L2)f#g;

where $ and # are two new symbols. Now we take the homomorphismh : (V1[
U [f$;#g)� �! (V1[V2[f$;#g)

�, defined byh(a) = a for a2V1, h(Xb) = b for
all b2V2, andh($) = $, h(#) = #.

Clearly, h is strongly ambiguous onL if and only if L1\L2 6= /0. Indeed, if
w 2 L1\L2, then $g(w)# 2 f$gg(L2)f#g � L and $g(w)# is different than $w#.
But h($w#) = h($g(w)#), henceh is strongly ambiguous onL.

Conversely, ifh is strongly ambiguous onL, then there arex;y2 L, x 6= y, such
that hn(x) = hm(y) for some positive integersn;m. As hk(z) contains exactlyk
occurrences of $ for anyk� 1 andz2 L, it follows thatn = m. By the definition
of h, one cannot have both strings either fromf$gL1f#g or from f$gg(L2)f#g.
Assume thatx= $z#, withz2 L1, andy= $g(w)#, with w2 L2 (the other case may
be treated similarly). Forhn(x) = hn(y), it follows that ($z#)n = ($w#)n; hence
z= w, that isL1\L2 6= /0. 2

Since the family of context-free languages has all properties above, we get:

Corollary 11.3.2. Given an n-pattern interpretationΩn, n� 1, and a context-
free language L, one cannot algorithmically decide whether or notΩn is strongly
ambiguous on L.

The decidability status of the weak ambiguity remainsopen.

11.4 Conclusion and further work

We have investigated some properties of the families of languages obtained by arbi-
trary multiple pattern interpretations of finite, regular, and context-free languages.
Some closure properties, most of them being negative results, of these families
were presented. In spite of the fact that a characterization of the arbitrary mul-
tiple pattern interpretation of finite languages was given the problem of deciding
whether or not a regular language is such a language remained open. Two con-
cepts of ambiguity and inherent ambiguity of multiple pattern interpretation were
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defined. It was shown that both properties were decidable for multiple pattern inter-
pretations on finite languages but strong ambiguity was not decidable for multiple
pattern interpretations on the class of context-free languages.

We finish with a brief discussion about some directions for further research.
A multiple pattern interpretation is said to beinherently weakly/strongly ambigu-
ous on a family of languagesX if it is weakly/strongly ambiguous on any lan-
guage inX. Clearly, there exist multiple pattern interpretations which are inherently
weakly/strongly ambiguous on a given familyX; it suffices to take all the homo-
morphic images as being power of a common word. A languageL 2 HOM �

n(X)
is said to be inherently weakly/strongly ambiguous if for any multiple pattern in-
terpretationΩn such thatΩ�

n(E) = L, for someE 2 X, thenΩn is weakly/strongly
ambiguous onE. Note that it is not obligatoryΩn be inherently ambiguous onX.
We hope to return to this topic in a further work.
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Chapter 12

A set-theoretical investigation of P̄an. ini’s
Śivas̄utras

WIEBKE PETERSEN�

ABSTRACT. In Pān. ini’s grammar one finds théSivasūtras, a table which defines the natural
classes of phonological segments in Sanskrit by intervals. We present a formal argument which
shows that, using his representation method, P¯an. ini has chosen an optimal way of ordering the
phonological segments to represent the natural classes. The argument is based on a strict set-
theoretical point of view depending only on the set of natural classes and does not explicitly take
into account the phonological features of the segments, which are, however, implicitly given in
the way a language clusters its phonological inventory. Moreover, the argument is so general that
it allows one to decide for each set of sets whether it can be represented with P¯an. ini’s method.
Actually, Pān. ini had to modify the set of natural classes in order to define it by theŚivasūtras
(the segmenth plays a special role). We show that this modification was necessary and, in fact,
the best possible modification. We discuss how every set of classes can be modified in such a
way that it can be defined in áSivasūtra-style representation.1

12.1 P̄an. ini’s Śivas̄utras

Pān. ini’s grammar is recognized as a consistent theoretical analysis of spoken San-
skrit (bhās. ā) of the time of its origin (ca. 350 BC). ThéSivas̄utrasform the first part
of it (a short survey of the structure of P¯an. ini’s grammar can be found in Kiparsky,
1994) and define the phonological segments of the language and their grouping
in natural phonological classes, calledpratyāhāras. In the As.t.ādhȳaȳı, a system
of about 4000 grammatical rules or rule elements forming the central part of his
grammar, P¯an. ini refers to 42 of thepratyāhāras in hundreds of rules.

�Institut für allgemeine Sprachwissenschaft, Heinrich-Heine-Universit¨at Düsseldorf, Germany;
petersew@uni-duesseldorf.de

1This approach fits naturally in the framework of Formal Concept Analysis, since the investigated
graphs are formal concept lattices. The proofs of the presented propositions can be found in my
thesis, which will appear in 2003, and are sketched in an the extended version of the present paper.
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1. a i u N.
2. r. l. K
3. e o Ṅ
4. ai au C
5. h y v r T.
6. l N.
7. ñ m ṅ n. n M
8. jh bh Ñ
9. gh d.h dh S.

10. j b g d. d Ś
11. kh ph ch t.h th

c t. t V
12. k p Y
13. ś s. s R
14. h L

Table 12.1:Pān. ini’s Śivas̄utras

The Śivas̄utras state 42 phonological segments and consist of 14sūtras (rows
in table 12.1), each of which consists of a sequence of phonological segments (tran-
scribed with small letters) bounded by a marker (transcribed with a capital letter),
calledanubandha. Phonological classes are denoted by abbreviations, calledpra-
tyāhāras, consisting of a phonological segment and ananubandha. The elements
of such a class are defined by theŚivas̄utras given in table 12.1 and are the con-
tinuous sequence of phonological segments starting with the given segment and
ending with the last segment before theanubandha. Table 12.2 gives an example
of apratyāhāra.

1. a i u N.
2. r. l. K

3. e o Ṅ

4. ai au C
5. h y v r T.

Table 12.2:Example of apratyāhāra: iC = fi,u,r.,l.,e,o,ai,aug

In this way 285pratyāhāras can be constructed, which is more than the 42
actually needed by P¯an. ini, but it is still a small number compared to the number
of all classes that can be formed from the phonological segments, which is 242 >
4�1012.

As Kornai (1993) points out clearly, the task of characterizing a phonological
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system of a language is to specify the segmental inventory, phonological rules and
the set of natural classes of phonological segments which allow generalized rules.
The set of natural classes is externally given by the phonological patterning of a
language and it always meets two conditions: it is small compared to the set of
unnatural classes and the nonempty intersection of two natural classes is a natural
class itself.

Kornai stresses that the representation device used for the notation of the classes
must make it easier to use natural classes than unnatural ones (e.g. the complement
of a natural class is generally unnatural). Contemporary phonological theories
build up a structured system of phonological features which are used to charac-
terize the natural classes. Instead of referring to phonological features in order
to define a phonological class, P¯an. ini refers to intervals in a linear order of the
phonological segments. His method of defining the natural classes bypratyāhāras
– intervals of théSivas̄utras– meets the required conditions.

The phonological classes of a grammar are mutually related: classes can be
subclasses of other classes, two or more classes can have common elements, etc.
These connections are naturally represented in a hierarchy. AŚivas̄utra-style rep-
resentation encodes such connections in a linear form.2 An aim of this paper is
to determine the conditions under which a set of sets does have aŚivas̄utra-style
linear representation.

The rest of the paper is organized as follows: In section 12.2 a general formal-
ization of Pān. ini’s Śivas̄utra-style representation of phonological classes is given.
Furthermore, the main questions which will be answered in the course of the pa-
per are raised. Section 12.3 explains how the Hasse-diagrams of sets of subsets
determine whether áSivas̄utra-style representation of natural classes exists. Since
some results of graph theory are needed, a brief introduction to planar graphs is
given. Finally, in section 12.4 a procedure is presented which constructs an opti-
malŚivas̄utra-style representation of a set of natural classes if it exists. This section
ends with the proof that P¯an. ini has chosen a perfectŚivas̄utra-style representation.
The whole approach is based only on a set-theoretical investigation of the set of
natural classes used in P¯an. ini’s grammar of Sanskrit. No external – phonological –
arguments are involved.

12.2 General definitions and the main questions

Definition 12.2.1. A well-formedŚivas̄utra-alphabet(shortS-alphabet) is a triple
(A ;Σ;<) consisting of a finite alphabetA and a finite set of markersΣ (such that

2Since Pān. ini’s grammar was designed for oral tradition, the linear form of theŚivasūtraswas a
prerequisite.
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A \Σ = /0), and a total order< onA [Σ.

Definition 12.2.2. A subset T of the alphabetA is S-encodable in(A ;Σ;<) iff
there exists a2 A and M2 Σ, such that T= fb2 A ja� b< Mg. aM is called
thepratyāhāraor S-encodingof T in (A ;Σ;<).

Definition 12.2.3.An S-alphabet(A 0;Σ;<) correspondsto a system of sets(A ;Φ)
(whereΦ is a set of subsets ofA ) iff A =A 0 and each element ofΦ is S-encodable
in (A 0;Σ;<). An S-alphabet which corresponds to(A ;Φ) is called anS-alphabet
of (A ;Φ). A system of sets for which a corresponding S-alphabet exists is said to
beS-encodable.

For example, take the set of subsets

(12.2.1) Φ = ffd;eg;fb;c;d; f ;g;h; ig;fa;bg;f f ; ig;fc;d;e; f ;g;h; ig;fg;hgg

of the alphabetA = fa;b;c;d;e; f ;g;h; ig: it is S-encodable and

(12.2.2) a b M1 c g h M2 f i M3 d M4 e M5

is one of the corresponding S-alphabets. Thepratyāhāras of Φ are: dM5, bM4,
aM1, f M3, cM5 andgM2.

Definition 12.2.4. An S-alphabet(A ;Σ;<) of (A ;Φ) is said to beoptimaliff there
exists no other S-alphabet(A ;Σ0;<0) of (A ;Φ) such that the set of markersΣ0 has
fewer elements thanΣ.

Looking at Pān. ini’s Śivas̄utras it is striking that the phonological segmenth
occurs twice, namely insūtra 5 andsūtra 14. To model this phenomenon we
will introduce the concept ofenlargingan alphabet by duplicating some of its ele-
ments.3

ˆA is said to be anenlarged alphabetof A if there exists a surjective map
ϑ : ˆA !A . It is clear that for every system of sets(A ;Φ) we can find an enlarged
alphabet ˆA and a set of subsetŝΦ with Φ = fϑ(ϕ 0) : ϕ 0 2 Φ̂g such that( ˆA ;Φ̂)
is S-encodable. To achieve such an S-encodable system of sets( ˆA ;Φ̂) we enlarge
A so that the sets of̂Φ are disjoint. Then we arrange the sets ofΦ̂ in a sequence
and separate them by markers. The induced S-alphabet( ˆA ; Σ̂; <̂) then obviously
corresponds to( ˆA ;Φ̂).

An S-alphabet of( ˆA ;Φ̂) will sometimes be called anenlarged S-alphabet of
(A ;Φ). Since we always find a finite, enlarged S-alphabet of(A ;Φ), a minimally
enlarged S-alphabet exists.

3Duplicating an elementa means adding a new elementa0 toA and changing some of the occur-
rences ofa in Φ to a0.
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Definition 12.2.5. An enlarged S-alphabet( ˆA ; Σ̂; <̂) of (A ;Φ) is said to beper-
fect iff it fulfills the following conditions: First, there exists no other enlarged
S-alphabet( ˜A ; Σ̃; <̃) of (A ;Φ), the alphabet ˜A of which has fewer elements than

ˆA and furthermore, as a secondary condition,( ˆA ; Σ̂; <̂) is optimal.4

After this introduction of basic concepts the following questions will be inves-
tigated in the present paper:

1. Given a system of sets, is it possible to decide whether it is S-encodable?

2. If a system of sets is S-encodable, how can we construct an optimal corre-
sponding S-alphabet?

And with respect to the special case of the phonological classes defined by P¯an.ini’s
Śivas̄utras:

3. Is the duplication ofh in Pān. ini’s Śivas̄utrasnecessary?

4. Are Pān. ini’s Śivas̄utrasperfect?

Kiparsky (1991) discusses questions 3 and 4 and affirms both, as I will do in what
follows, using a different approach.

12.3 The existence of́Sivas̄utra-style representations of sys-
tems of sets

12.3.1 A Brief introduction to the theory of planar graphs

Throughout this paper we will need some basic knowledge about planar graphs,
which will be briefly introduced in this section.5 A graph G is a pair(V;E) con-
sisting of a set ofvertices Vand a set ofedges E� V �V. Pathsin graphs are
defined in the natural way andcirclesare closed paths, as usual.Directed graphs
are graphs the edges of which are directed.

A graph is aplane graphif its vertices are points in the Euclidean planeR�R
and its edges are polygonal arcs inR�R , such neither a vertex nor a point of an
edge lies in the inner part of another edge. The Euclidean planeR�R is subdivided
by a plane graph intofaces(areas). Exactly one of this faces, theinfinite face, is of
unlimited size.

4Note that for every system of sets a perfect S-alphabet exists.
5The full details can be found in every introductory book on graph theory. In writing this paper

Diestel (1997) proved to be especially helpful.
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Figure 12.1:The graphsK5 andK3;3

Figure 12.2:Hasse diagram of(H (Φ);�), Φ = ffd;eg , fb;c;d; f ;g;h; ig, fa;bg, f f ; ig,
fc;d;e; f ;g;h; ig, fg;hgg

If a graph is isomorphic to a plane graph, it is said to beplanar. One of the
most important criteria for the planarity of graphs is the criterion of Kuratowski,
which is based on the notion of minors of a graph. A graphM is said to be aminor
of a graphG if it can be arrived fromG by first removing a number of vertices and
edges fromG and then contracting some of the remaining edges.

Proposition 12.3.1 (Criterion of Kuratowski). A graph G is planar iff G contains
neither a K5 nor a K3;3 as a minor (see figure 12.1).

12.3.2 Plane Hasse-diagrams and S-encodability

Let (A ;Φ) be a system of sets as above, and letH (Φ) be the set of all intersec-
tions of elements ofΦ[fA g. H (Φ) is partially ordered by the superset relation.
A Hasse-diagram of a partially ordered set is a drawing of a directed graph whose
vertices are the elements of the set and whose edges correspond to the upper neigh-
bor relations determined by the partial order. The drawing must meet the following
condition: if an element of the partially ordered set is an upper neighbor of another
element, then its vertex lies above the vertex of the other one. In this paper we will
stipulate that all edges are directed upwards.

Figure 12.2 shows a drawing of the Hasse-diagram(H (Φ);�) of our example
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Figure 12.3:A section of the Hasse-diagram of thepratyāhārasused in theAs.t.ādhȳaȳı
which hasK5 as a minor. The figure shows that the class memberships of the phonological
segmentsh,v andl (denoted byl2) are independent of each other.

system of sets(A ;Φ) from (12.2.1). All Hasse-diagrams in this paper are labeled
economically as follows: for everyb 2 A the smallest set ofH (Φ) containing
b (its b-set) is labeled. The set corresponding to a vertex of the diagram can be
reconstructed by collecting all elements which are labeled to the vertex itself or to
a vertex above. For example, in figure 12.2 the vertex labeled withc corresponds
to the setfc;d; f ;g;h; ig.

The Hasse-diagram of(H (Φ);�) gives a first hint of the question whether
(A ;Φ) is S-encodable:

Proposition 12.3.2.If (A ;Φ) is S-encodable, then the Hasse-diagram of(H (Φ);�
) is a planar graph.6

It follows as a corollary that a system of sets is not S-encodable whenever the
Hasse-diagram of the corresponding set of intersections is not planar.

Together with Kuratowski’s criterion 12.3.1 this answers question 3, since fig-
ure 12.3 shows a section of the Hasse-diagram of thepratyāhāras and their in-
tersections, which hasK5 as a minor.7 Hence, P¯an. ini was forced to duplicate at

6Due to the limited space, no proofs are given in this paper, but the results are illustrated by a
number of examples.

7The emphasized lines in the figure mark a way to arrive at the minorK5: remove all edges which
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least one of the phonological segments. But it remains to prove thath is the best
candidate for the duplication; this discussion will be postponed.

Figure 12.4: Hasse-diagram of the intersections of the setsffd;eg;fa;bg;fb;c;dg;
fb;c;d; fg;fa;b;c;d;e; fgg. It is plane, but there exists no corresponding S-alphabet.

The condition for S-encodable systems of sets given in proposition 12.3.2 is
necessary but not sufficient, however. Figure 12.4 shows an example of a system
of sets which is not S-encodable, although the Hasse-diagram of its intersection
sets is planar. We need a second proposition to fully identify those systems of sets
which are S-encodable.

If (A ;Φ) is a system of sets which is S-encodable, then the boundary of the
infinite face of a plane Hasse-diagram of(H (Φ) n /0;�) is called theS-graph of
(A ; ). It can be shown that the S-graph of(A ;Φ) is fixed up to isomorphism, and
is therefore independent of the chosen embedding of the Hasse-diagram inR

2.

Proposition 12.3.3.If (A ;Φ) is S-encodable, then the Hasse-diagram of(H (Φ);�
) is a planar graph and the S-graph of(A ;Φ) meets the following condition: For
every b2 A the smallest set ofH (Φ) containing b (its b-set) is a vertex of the
S-graph.

In the example of figure 12.4 thef -set violates the condition of proposition
12.3.3 since in a plane Hasse-diagram of(H (Φ)n /0;�) it would only touch inner
faces. It is obvious that there exists no alternative embedding of the Hasse-diagram
into R2 which would fulfill both conditions.

are not emphasized and contract those edges which are marked by arrows.
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12.4 The construction ofŚivas̄utra-style representations
of systems of sets

12.4.1 The boundary graph determines the S-alphabet

If (A ;Φ) is a system of sets which is S-encodable, then an S-alphabet(A ;Σ;<)
of (A ;Φ) can be found as follows: Take the labeled S-graph of(A ;Φ) and a path
in it, that starts and ends at the vertex corresponding toA . The path must meet
the following conditions: First, for everya2 A the path passes thea-set at least
once; second, none of the edges occurring more than once in the path is part of
a circle in the S-graph. By looking at the S-graph as a subgraph of the directed
Hasse-diagram, the edges of the path can be directed.

The S-alphabet, seen as a sequence of markers and elements ofA , can be
constructed from the empty sequence by traversing the path from the beginning to
the end: If a vertex is reached which is labeled with ana-set, then adda to the se-
quence, together with all other labels of the same vertex. If an edge is passed whose
direction contradicts the traversal direction, a new, previously unused, marker ele-
ment is added to the sequence, unless the last added element is already a marker.
Finally, after the end of the path is reached, revise the sequence as follows: If an
element ofA appears more than once in the sequence, delete all occurrences of it
except one, and if two markers happen to occur next to each other, remove one.

Applied to our small example (12.2.1) and the plane graph of its Hasse-diagram
given in figure 12.2, we may choose the path illustrated in figure 12.5, which fulfills
the required conditions. Traversing the path, we pass first thea-set and theb-set
without using an edge against its destined direction. Now we move downwards
and violate the direction of the edge, and therefore we have to add a marker to our
sequence, so that it starts witha b M1. Now moving upwards we collect thec and
the g, but since theg- and theh-sets are identical we also have to collect theh.
After this we move downwards again, and that is why we add a new marker. We
again reach thec-set and addc a second time to our sequence. So far our sequence
is a b M1 c g h M2 c, and if we continue we end up with the S-alphabet depicted in
(12.2.2).

Note that this procedure does not yield a unique S-alphabet since we have sev-
eral decisions to make: (a) If a vertex is labeled with more than one element, their
order in the S-alphabet is arbitrary; (b) the ultimately deleted elements are arbitrar-
ily chosen; (c) from the vertex labeledc we can either go to the vertex labeledgh
or i f ; (d) the path can be traversed clockwise or anti-clockwise.

It can be shown that every optimal S-alphabet of(A ;Φ) can be constructed in
this way by finding a path which fulfills the conditions and violates the direction
of the edges as seldom as possible. This proves our main theorem and answers
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Figure 12.5:Hasse-diagram of example (12.2.1) with a possible path in its S-graph from
which the S-alphabeta b M1 c g h M2 f i M3 d M4 e M5 can be achieved.

questions 1 and 2.

Theorem 12.4.1.(A ;Φ) is S-encodable iff the Hasse-diagram of(H (Φ);�) is
isomorphic to a plane graph G and for every b2A the b-set lies at the boundary
of the infinite face of G0, where G0 is obtained from G by removing the vertex of the
empty set and all corresponding edges.

If (A ;Φ) is S-encodable, then all optimal S-alphabets(A ;Σ;<) of (A ;Φ)
can be constructed systematically.

12.4.2 P̄an. ini’s Śivas̄utrasare perfect

Figure 12.6 shows the Hasse-diagram, with duplicatedh, corresponding to thepra-
tyāhāras which Pān. ini uses in hisAs.t.ādhȳaȳı; the duplication ofh is denoted by
h .8 The 42pratyāhāras actually used by P¯an.ini in the As.t.ādhȳaȳı are marked in
the figure with white boxes. The black and the striped rectangles next to some
of the vertices mark the places where markers have to be added, depending on
the traversal direction (black: anti-clockwise [14 markers], striped: clockwise [17
markers]). It is obvious that no S-encoding can have less than 14 markers and the
optimal S-alphabets are the various combinatorial variants of



a,i,u,M1; r.,l.,M2;fhfe,og;M3i;hfai,aug;M4ig,h,y,v,r,M5,l,M6;

ñ,m,fn̄,n.,n;g;M7; jh,bh,M8;fgh,d.h,dhg;M9; j,fb,g,d.,dg;M10;

fkh,phg;fch,t.h,thg;fc,t.,tg;M11;fk,pg;M12;fś,s.,sg;M13,h,M14

�
:

Kiparsky (1991) argues in detail that the order chosen by P¯an.ini out of the set
of possibilities is unique if one requires a subsidiary principle of restrictiveness.

8The drawing was done by the tool “Concept Explorer” written by Sergey Yevtushenko, which
can be found athttp://www.sourceforge.net/projects/conexp .
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So far we have answered the first three questions in the affirmative. Hence,
we have argued that P¯an. ini was forced to enlarge the alphabet, but it remains to
show why duplicating theh is the best choice. Ifh is entirely removed from the
pratyāhāras, then the optimal S-alphabet has only one marker less, namely 13.

In thepratyāhāras, the occurrence ofh and any two of the segmentsfs;bh;v; lg
are independent of each other. Take for example the three segmentsh, l andv; then
there exists apratyāhāra – or an intersection ofpratyāhāras – for each subset of
fh; l ;vg which contains the elements of the subset but no element of its complement
in fh; l ;vg. Therefore, the class memberships of the segmentsh, l andv are inde-
pendent of each other. A Hasse-diagram which contains 3 independent elements
hasK5 as a minor and is therefore not planar (see figure 12.3). Hence, to avoid
the duplication ofh it would be necessary to duplicate at least 3 of the segments
fs;bh;v; lg, which is worse than duplicating just one. For that reason, it is neces-
sary to duplicateh in order to get a perfect S-alphabet corresponding to P¯an. ini’s
pratyāhāras.

Summarizing, all 4 questions at issue have to be affirmed. P¯an. ini’s method
of representing hierarchical information in a linear form is an interesting field of
further investigations. Also the fact that one does not need to refer to phonological
features explicitly in order to define phonological classes is remarkable.

Kornai (1993) points out that P¯an. ini’s approach is generalized byfeature ge-
ometry, and that it is genuinely weaker than the latter. Although Kornai argues that
the power of feature geometry is needed in order to get the proper set of natural
classes of a phonological system, for some special tasks like describing the set of
major class featuresa Śivas̄utra-style analysis seems to be quite appropriate.

Finally, it should be emphasized again: The approach presented is so general
that it is not limited to the domain of phonology.
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Figure 12.6:Hasse-diagram of the of thepratyāhārasused in theAs.t.ādhȳaȳı. The denotations in the figure are as follows:h is the
duplicate ofh and r1:r., l1:l., r2:r, l2:l, n1:ñ, n2:ṅ, n3:n., n4:n, dh1:d.h, dh2:dh, d1:d., d2:d, th1:t.h, th2:th, t1:t., t2:t, s1:ś, s2:s., s3:s.
The white boxes mark the 42 phonological classes which P¯an.ini uses in theAs.t.ādhȳaȳı. The small figure on top shows the path in the
S-graph which one has to choose in order to construct P¯an. ini’s Śivas̄utras.



Chapter 13

The Semantic Complexity of some Fragments of
English

IAN PRATT-HARTMANN �

ABSTRACT. By a fragment of a natural language we mean a subset of that language equipped
with a semantics which translates its sentences into some formal system such as first-order logic.
The familiar concepts of satisfiability and entailment can be defined for any such fragment in
a natural way. The question therefore arises, for any given fragment of natural language, as to
the computational complexity of determining satisfiability and entailment within that fragment.
This paper presents some new technical results concerning a series of fragments of English for
which the satisfiability problem lies in various complexity classes. The paper thus represents a
case study in how to approach the problem of determining the semantic complexity of certain
natural language constructions.

13.1 Introduction

This paper presents new results on the semantic complexity of various fragments
of English. Afragmentof English is a set of English sentences equipped with a se-
mantics translating those sentences into a formal language such as first-order logic.
To investigate thesemantic complexityof such a fragment is to determine the com-
putational complexity of the satisfiability and entailment problems for sentences in
that fragment, as defined by the associated semantics.

We begin with a simple example. Consider the following context-free gram-
mar. This grammar defines a set of English sentences by successive expansion
of nonterminals, with the expressions on the right of the obliques indicating the
semantic values of the corresponding phrases in the familiar way.
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Syntax

IP/φ(ψ)! NP/φ , I0/ψ
I0/φ ! is a N0/φ
I0/:φ ! is not a N0/φ
NP/φ ! PropN/φ
NP/φ(ψ)! Det/φ , N0/ψ
N0/φ ! N/φ .

Formal lexicon

Det/λ pλq[9x(p(x)^q(x))]! some
Det/λ pλq[8x(p(x)! q(x))]! every
Det/λ pλq[8x(p(x)!:q(x))]! no

Content lexicon

N/λx[man(x)]! man
N/λx[mortal(x)]! mortal
. . .

PropN/λ p[p(socrates)]! Socrates
PropN/λ p[p(diogenes)]! Diogenes
. . .

Since the primary form-determining element in this fragment of English is the cop-
ula, let us denote the fragment by Cop. The content-lexicon, comprising the open
word-classes of common and proper nouns, is assumed to be open-ended. Thus,
Cop can be viewed as the union of afamilyof fragments, with each member of that
family corresponding to a choice of content-lexicon. In this respect, the notion of
a fragment of English resembles the logician’s familiar notion of a fragment of a
formal language such as first-order logic.

The set of sentences recognized by Cop is, in effect, the familiar language of
the syllogism; and the formulas to which Cop translates those sentences are the
familiar formal translations found in introductory logic courses. For example, Cop
contains the sentences featured in the following argument, and assigns them the
corresponding logical translations.

Every man is a mortal 8x(man(x)!mortal(x))
Socrates is a man man(socrates)
Socrates is a mortal mortal(socrates)

This translation allows familiar semantic concepts to be transferred from first-order
logic to the fragment Cop in the obvious way. Thus, a set of Cop-sentencesE can
be said toentaila Cop-sentencee if the formulas to whichE is translated entail the
formula to whiche is translated in the usual sense of first-order logic; likewise, a
set of Cop-sentencesE can be said to besatisfiableif the set of formulas to which
E is translated is satisfiable in the usual sense of first-order logic. The philosophi-
cal justification of this rational reconstruction of entailment and satisfiability need
not detain us here, since, for the applications we have in mind, it is not open to
productive doubt.



131n Mathematics of Language 8

Define thesizeof an English sentence to be the number of words it contains;
likewise, define the size of a setE of sentences, denotedjEj, to be the sum of the
sizes of its members. Using this concept of size, we can formulate complexity-
theoretic questions concerning fragments of English in the usual way. In particu-
lar, the computational complexity of the satisfiability problem for an English frag-
ment is the number of steps of computation required to determine algorithmically
whether a given finite setE of sentences in that fragment is satisfiable, expressed
as a function ofjEj.

Theorem 1. The problem of determining the satisfiability of a set of sentences in
Cop is in PTIME.

Proof: Every sentence recognized by Cop is easily seen to have a first-order
translation matching one of the schemata8x(p(x)!�q(x)), 9x(p(x)^�q(x)), or
�p(c), wherep andq are predicates andc is a constant. (We take�φ to stand
indeterminately forφ or :φ .) Clausifying such formulas results in function-free
clauses matching either of the schemata:p(x)_�q(x) or�p(c). Since resolution
only produces more clauses of this form, saturation is reached in PTIME.�
This simple observation suggests a programme of work: take a fragment of En-

glish delineated in terms which respect the syntax of the language; then determine
the computational complexity of deciding satisfiability in that fragment, if, indeed,
the fragment is decidable. From this standpoint, the syllogistic is just one such
fragment, with very restricted syntax and a correspondingly efficient decision pro-
cedure. In the sequel, we shall investigate what happens as we expand our syntactic
horizons. Throughout the paper, we make extensive use of the standard apparatus
of resolution theorem-proving, including the notions ofclause, A-ordering, ordered
resolution, andsplitting. For the definitions of these terms, the reader is referred to
a standard text such as Leitsch (1997).

13.2 Relative clauses

Let Cop+Rel be the fragment defined by the grammar rules of Cop together with
the following rules. For the sake of avoiding clutter, here and in the sequel, we sup-
press the semantic annotations on these rules, since these are completely routine.

Syntax

CP! CSpec, C0

C0! C, IP
CSpec!

N0! N, CP
NP! RelPro

Formal lexicon

RelPro! who, which
C!
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In addition, we assume that, following generation of an IP by these rules, relative
pronouns are subject to wh-movement to produce the observed word-order. For
our purposes, we may take the wh-movement rule to require: (i) the empty position
CSpec must be filled by movement of a RelPro from within the IP which forms its
right-sister (i.e. which it C-commands); (ii) every RelPro must move to a closest
such CSpec position.

As for Cop, so too for Cop+Rel, the semantics map its sentences to first-order
logic, thus inducing natural definitions of satisfiability and validity. For example,
Cop+Rel contains the sentences featured in the following argument, and assigns
them the corresponding logical translations.

Every man who is not a stoic is a cynic 8x(man(x)^:stoic(x)! cynic(x))
Every stoic is a fool 8x(stoic(x)! fool(x))
Every cynic is a fool 8x(cynic(x)! fool(x))
Every man is a fool 8x(man(x)! fool(x))

The following result shows us that determining satisfiability has become more
difficult.

Theorem 2. The problem of determining the satisfiability of a set of sentences in
Cop+Rel is NP-complete.

Proof: To show membership in NP, letE be a finite set of Cop+Rel-sentences,
and letΦ be the corresponding first-order logic formulas. SinceΦ has no nested
quantifiers, it is obvious that ifΦ is satisfiable, then it has a model whose size is
bounded byjΦj.

To show NP-hardness, we reduce 3SAT to the problem of determining satisfiability
in Cop+Rel. LetC be a set of propositional clauses, each of which has at most
three literals. Without loss of generality, we may assume all the clauses inC to
be of the formsp_q, :p_:q or :p_:q_ r. We then map each clause inC to
a Cop+Rel-sentence as follows. (The first-order translations of these sentences are
also given.)

p_q Every el which is not a q is a p 8x(el(x)^:q(x)! p(x))
:p_:q No p is a q 8x(p(x)!:q(x))

:p_:q_ r Every p which is a q is an r 8x(p(x)^q(x)! r(x))

Finally, we add the sentenceSome el is an el. (Readel as ‘element’.) Let the
resulting set of Cop+Rel-sentences beE, and let the first-order translations ofE be
Φ. It is then easy to transform any satisfying assignment forC into a model forΦ
and vice versa. �
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13.3 Adding transitive verbs

Whereas adding relative clauses to Cop increases computational complexity, other
additions are computationally harmless. Perhaps the simplest involves the addition
of transitive verbs. Let Cop+TV be the fragment defined by the grammar rules of
Cop together with the following rules. (Again, we assume the obvious semantics.)

Syntax

I0! VP
I0! NegP
NegP! Neg, VP
VP! TV, NP

Formal Lexicon

Neg! does not

Content Lexicon

TV ! admires
TV ! despises
. . .

For the sake of clarity, we have suppressed the issue of verb-inflections as well
as that of polarity effects of negative contexts on determiners. In the sequel, we
will silently correct any such syntactic shortcomings as required. Accommodating
these details in our grammar and ruling out otherwise awkward-sounding sentences
can easily be seen not to affect the complexity-theoretic results reported below. For
example, Cop+TV contains the sentences featured in the following argument, and
assigns them the corresponding logical translations.

Every stoic admires every cynic 8x(sto(x)!8y(cyn(y)! adm(x;y)))
No cynic admires any stoic 8x(cyn(x)!:9y(sto(y)^adm(x;y)))
No stoic is a cynic 8x(sto(x)!:cyn(x))

Theorem 3. The problem of determining the satisfiability of a set of sentences in
Cop+TV is in PTIME.

Proof: If E is a finite set of sentences of Cop+TV, letΦ be the corresponding set
of first-order formulas, and letC be the result of puttingΦ into clausal form. It
suffices to show that the satisfiability ofC can be computed in polynomial time.

It follows easily from the semantics of Cop+TV that everyC 2 C is of one of
the following forms.

�p(c) � r(c;d) :p(x)_�r(x; f (x)) :p(x)_:q(y)_�r(x;y)
:p(x)_q( f (x)) :p(x)_�q(x) :p(x)_�r(c;x) :p(x)_�r(x;c)

Call a literalnon-unaryif its predicate is not unary. LetC ∞ be the result of sat-
uratingC under resolution,but only allowing non-unary literals to be resolved
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upon, and letD be the result of removing fromC ∞ any clauses containing a non-
unary literal. Since everyC 2 C contains at most 1 non-unary literal,we have
jD j � jC ∞j � jC j+ jC j2. We claim thatC andD are equisatisfiable. Certainly, if
C is satisfiable thenD is. So supposeC is unsatisfiable, and let� be the A-order
defined byA� B if A is unary andB is non-unary. Since�-resolution is a com-
plete proof strategy, there must be a derivation of the empty clause fromC . But the
ordering� ensures that, in this derivation (considered as a tree), no steps of res-
olution on unary literals can precede any step of resolution on non-unary literals.
Hence there is a derivation of the empty clause fromD , and soD is unsatisfiable.

Thus it suffices to show that the satisfiability ofD can be decided in PTIME.
By definition, the clauses inD involve onlyunaryliterals; and it is routine to verify
that everyC 2D satisfies the conditions:

P1: at most 2 variables and at most 4 literals occur inC;

P2: the depth ofC is at most 1;

P3: if C is non-negative, thenC must be of one of the forms

(13.3.1) p(c) :p(x)_q(x) :p(x)_q( f (x)):

(The depthof any expressionX, denotedd(X), is the maximum level of nest-
ing of function-symbols inX, with non-functional expressions assigned depth 0.)
Consider the familiar A-ordering�d defined by settingA�d B if and only if: (i)
d(A)< d(B), (ii) Vars(A)�Vars(B), and (iii) d(x;A)< d(x;B) for all x2Vars(A).
(Leitsch 1997, p. 100). It is routine to show that, when�d-resolution is applied
to the clausesD , propertiesP1–P3 are preserved. It follows fromP1 andP2 that
saturation is reached in PTIME. �

If adding relative clauses increases complexity but adding transitive verbs does
not, the question naturally arises as to what happens when both are added together.
That is, let Cop+Rel+TV be the fragment defined by the grammar rules of Cop+Rel
together with those of Cop+TV. For example, Cop+Rel+TV contains the sentences
featured in the following argument, and assigns them the corresponding logical
translations.

Every stoic is a philosopher 8x(sto(x)! phil(x))
Every cynic whom some stoic

admires is a cynic whom some
philosopher admires

8x(cyn(x)^9y(sto(y)^adm(y;x))!
cyn(x)^9y(phil(y)^adm(y;x)))

The result of this addition is a further jump in the complexity of reasoning.
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Theorem 4. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV is EXPTIME-complete.

Proof: Essentially Pratt-Hartmann (forthcoming), Theorem 4.1. �

13.4 Adding ditransitive verbs

Let Cop+Rel+TV+DTV be the fragment defined by the grammar rules of Cop+Rel+TV,
together with the following rules.

Syntax

VP! DTV, NP, to, NP

Content Lexicon

DTV! prefers . . .

For example, Cop+Rel+TV+DTV contains the following sentence, and assigns it
the corresponding logical translation.

Every stoic whom no sceptic prefers any cynic to admires every philosopher

8x(sto(x)^8y(sce(y)!:9z(cyn(z)^pref(y;z;x)))!
8y(phil(y)! adm(x;y)))

Theorem 5. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV+DTV is NEXPTIME-complete.

Proof: To show membership in NEXPTIME, letE be a finite set of Cop+Rel+TV+
DTV-sentences. LetΦ be the first-order logic translations ofE. Since the sentences
in E contain only one main verb, and since all noun-phrases in this fragment trans-
late to expressions with only one (λ -bound) variable, it is easy to transformΦ poly-
nomially into an equisatisfiable set of clausesC such that everyC2 C contains at
most one non-unary literal. Now letD be the set of clauses defined exactly as in
the proof of Theorem 3, so thatC andD are equisatisfiable withjD j � jC j+ jC j2.
Thus, it suffices to show that the satisfiability ofD can be decided in nondetermin-
istic exponential time.

By construction,D involves only unary literals. And it is easy to check that,
by splitting clauses if necessary, every clauseC2D has the properties:

P1: if C contains a ground literal, thenC is ground;

P2: if a functional ground term occurs inC, thenC is ground;

P3: C contains at most two variables;
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P4: if C contains two variablesx and y, then d(C) = 1; moreover, all binary
function-symbols inC occur in atoms of the formp(h(x;y)), andC contains
at least one such literal.

Now define the A-order� as follows. Let�g be the ordering on ground atoms
defined by settingA�g B iff A is a ground atom of the formq(g(t)) andB a ground
atom of the formp( f (t1; t2)). Define�d on the set of ground atoms by setting
A�d A0 iff either (i) d(A)< d(A0) or (ii) d(A) = d(A0) andA�g A0. Finally, define
� on the set of all atoms by settingA�A0 iff Aθ �d A0θ for all ground substitutions
θ . It is clear that� is an A-order.

Let C_ L andC0 _ L0 be clauses satisfyingP1–P4 which resolve under the A-
ordering� with resolventC00. It is routine to show thatd(C00)�max(d(C);d(C0))
and that furthermore, by applying the splitting rule toC00 if necessary, we ob-
tain clauses also satisfyingP1–P4. Since the number of such clauses is expo-
nential in jD j, saturation is reached, via exponentially many non-deterministic
choice points, in exponentially many steps. Hence, the satisfiability problem for
Cop+Rel+TV+DTV is in NEXPTIME.

We show next that satisfiability in Cop+Rel+TV+DTV is NEXPTIME-hard. To
simplify the proof, we will allow ourselves to use the NPssomething and ev-
erything in the fragment, with the obvious interpretation. (In fact, this facility
is inessential.) Let us say that a formula is astandard two-variable formulaif
it can be written either as8x8yα or as8x9yα , whereα is a quantifier-free for-
mula involving only unary predicates (and no functions or constants). It is well
known that the satisfiability problem for a set of standard two-variable formulas is
NEXPTIME-hard (Börger et al. 1997, pp. 253 ff). Any such problem can easily be
reduced to the satisfiability problem for a set of clausesC of the following form:

:pi1(x)_:pi2(y)_:pi3(x;y) (1� i � n1)
:qi1(x;y)_:qi2(x;y)_:qi3(x;y) (1� i � n2)
:ri(x; fi(x)) (1� i � n3)
si1(x)_si2(x) (1� i � n4)
ti1(x;y)_ ti2(x;y) (1� i � n5);

wheren1; : : : ;n5 are non-negative integers, the subscriptedp, q, r, sandt are pred-
icates of the indicated arities, and thefi (1� i � n3) arepairwise distinctfunction-
symbols. It follows that the satisfiability problem for such sets of clauses is also
NEXPTIME-hard.

For every binary predicatep appearing inC , let p+ be a new unary predicate.
In addition, letn be a new unary predicate,c0 a new individual constant and� a
new binary function-symbol. (Think ofx� y as denoting the ordered pairhx;yi,



137n Mathematics of Language 8

and think ofn(x) as stating thatx is a ‘normal’ element—i.e. not an ordered pair.)
Now letD be the corresponding set of clauses:

:n(x)_:n(y)_:pi1(x)_:pi2(y)_:p+i3(x�y) (1� i � n1)
n(z)_:q+i1(z)_:q+i2(z)_:q+i3(z) (1� i � n2)
:n(x)_:r+i (x� fi(x)) (1� i � n3)
:n(x)_n( fi(x)) (1� i � n3)
:n(x)_si1(x)_si2(x) (1� i � n4)
t+i1(z)_ t+i2(z) (1� i � n5)
:n(x)_:n(y)_:n(x�y); n(c0):

It is routine to show thatC andD are equisatisfiable. Now let us further transform
the clause-setD . For eachi (1� i � n2), let q+i12 be a new unary predicate and let
d be a new ternary predicate. (Think of ofq+i12(x) as standing forq+i1(x)^q+i2(x).)
Now letE be the corresponding set of clauses:

:n(x)_:n(y)_:pi1(x)_:pi2(y)_:p+i3(z)_d(x;y;z) (1� i � n1)
n(z)_:q+i12(z)_:q+i3(z) (1� i � n2)
:q+i1(z)_:q+i2(z)_q+i12(z) (1� i � n2)
:n(x)_:r+i (z)_d(x; fi(x);z) (1� i � n3)
:n(x)_n( fi(x)) (1� i � n3)
:n(x)_si1(x)_si2(x) (1� i � n4)
t+i1(z)_ t+i2(z) (1� i � n5)
:n(x)_:n(y)_:n(z)_d(x;y;z); n(c0)
:n(x)_:n(y)_:d(x;y;x�y):

Again, the setsD andE are easily seen to be equisatisfiable. Finally, the setE of
Cop+Rel+TV+DTV-sentences

Every pi1 which is an n ds every pi2 which is an n
to every p+i3 (1� i � n1)

Every q+i12 which is a q+i3 is an n (1� i � n2)
Every q+i1 which is a q+i2 is a q+i12 (1� i � n2)
Every n ds some n to every r+i (1� i � n3)
Every n which is not an si1 is an si2 (1� i � n4)
Everything which is not a t+i1 is a t+i2 (1� i � n4)
Something is an n
Every n ds every n to every n
No n ds any n to everything.

translates to formulas which clausify toE , up to renaming of of predicates and
Skolem functions. (At this point we use the assumption that thefi are pairwise
distinct.) The NEXPTIME-hardness of Cop+Rel+TV+DTV then follows. �
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13.5 Anaphora

A more radical addition to the fragments considered above concerns pronouns and
reflexives. Thus, for example, we might add to Cop+Rel+TV the following rules.

Syntax

NP! Reflexive
NP! Pronoun

Formal lexicon

Reflexive! itself (him/herself)
Pronoun! it (he/she/him/her)

For simplicity, we shall always take pronouns and reflexives to have antecedents in
the sentences in which they occur. That is to say: all anaphora is intra-sentential.
Of course, we also assume the selection of such antecedents to be subject to the
usual rules of binding theory, which, again, we need not rehearse here. Providing
a formal semantics for pronouns and anaphora is rather more complicated than for
the fragments considered above; however, from a complexity-theoretic point of
view, these details may be safely ignored.

It is easy to see that adding the above grammar rules results in anaphoric am-
biguities. For example, in the sentence

Every philosopher who admires a cynic despises every stoic who castigates him,

the pronoun may take as antecedent either the NP headed byphilosopher or the NP
headed bycynic. (The NP headed bystoic is not available as a pronoun antecedent
here.) We then have two options: either we resolve such ambiguities by fiat, or
we decorate nouns and pronouns in these sentences with indices to record which
pronouns take which NPs as antecedents.

Considering the former option, let the fragment Cop+Rel+TV+RA (RA for “re-
stricted anaphora”) be the fragment defined by the grammar rules for Cop+Rel+TV
together with the above rules for reflexives and pronouns, subject to the restriction
that pronouns must take their closest allowed antecedents. Here,closestmeans
“closest measured along edges of the phrase-structure” andallowed means “al-
lowed by the principles of binding theory”. (We ignore case and gender agree-
ment.) It turns out that this fragment corresponds closely to the two-variable frag-
ment of first-order logic. Because of this correspondence, we have:

Theorem 6. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV+RA is NEXPTIME-complete.

Proof: See Pratt-Hartmann (2003), Corollaries 1 and 2. �

Turning attention now to the latter option for dealing with anaphoric ambiguity,
let Cop+Rel+TV+GA (GA for “general anaphora”) be the fragment defined by the
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Fragment Complexity of satisfiability
Cop P
Cop+Rel NP-complete
Cop+TV P
Cop+Rel+TV EXPTIME-complete
Cop+Rel+TV+DTV NEXPTIME-complete
Cop+Rel+TV+RA NEXPTIME-complete
Cop+Rel+TV+GA undecidable

Table 13.1: Lattice of fragments of English and their complexity classes

grammar rules for Cop+Rel+TV together with the above rules for reflexives and
pronouns, with anaphoric antecedents indicated by coindexing in the usual way,
subject only to the usual rules of binding theory.

Theorem 7. The problem of determining the satisfiability of a set of sentences in
Cop+Rel+TV+GA is undecidable.

Proof: See Pratt-Hartmann (2003), Theorem 5. �

13.6 Conclusions and relation to other work

This paper has extended results obtained in Pratt-Hartmann (2003, forthcoming),
where the general programme of determining the semantic complexity of frag-
ments of natural languages is outlined. The new results reported here concern the
complexity of the fragments Cop+TV and Cop+Rel+TV+DTV. The complexity of
satisfiability for all of the fragments considered above is shown in Table 13.1.

Several authors have proposed formalisms based on logical constructions in-
spired by the syntax of natural language, apparently in the belief that such for-
malisms increase inferential efficiency. These include Fitch (1973), Suppes (1979),
Purdy (1991) and ‘traditional’ logicians such as Englebretsen (1981) and Sommers
(1982). But none of these analyses yields any immediate complexity-theoretic
consequences of the sorts reported here. On the other hand, McAllester and Givan
(1992) present a natural-language-inspired formal language with NP-complete sat-
isfiability (PTIME in certain cases). However, this formal language is not shown
to be generated by any linguistically natural fragment such as those considered
above. More recently, Purdy (1996, 1999, 2002) has analysed thefluted fragment
of first-order logic, alleging some (not completely specified) affinity between this
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fragment and quantification in natural language. We note in this regard that the
fragment Cop+Rel+TV+ DTV does not translate into the fluted fragment.1
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Chapter 14

Word Vectors and Quantum Logic
Experiments with negation and disjunction

DOMINIC WIDDOWS� , STANLEY PETERS†

A calculus which combined the flexible geometric structure of vector mod-
els with the crisp efficiency of Boolean logic would be extremely beneficial for
modelling natural language. With this goal in mind, we present a formulation for
logical connectives in vector spaces based on standard linear algebra, giving ex-
amples of the use of vector negation to discriminate between different senses of
ambiguous words. It turns out that the operators developed in this way are pre-
cisely the connectives of quantum logic (Birkhoff and von Neumann, 1936), which
to our knowledge have not been exploited before in natural language processing.
In quantum logic, arbitrary sets are replaced by linear subspaces of a vector space,
and set unions, intersections and complements are replaced by vector sum, inter-
section and orthogonal complements of subspaces. We demonstrate that these logi-
cal connectives (particularly the orthogonal complement for negation) are powerful
tools for exploring and analysing word meanings and show distinct advantages over
Boolean operators in document retrieval experiments.

This paper is organised as follows. In Section 14.1 we describe some of the
ways vectors have been used to represent the meanings of terms and documents
in natural language processing, and describe the way theWORD-SPACE used in
our later experiments is built automatically from text corpora. In Section 14.2 we
define the logical connectives on vector spaces, focussing particularly on nega-
tion and disjunction. This introduces the basic material needed to understand the
worked examples given in Section 14.3, and the document retrieval experiments
described in Section 14.3.1. Section 14.4 gives a much fuller outline of the theory
of quantum logic, the natural setting for the operators of Section 14.2. Finally,
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in Section 14.5, we examine the similarities between quantum logic andWORD-
SPACE, asking whether quantum logic is an appropriate framework for modelling
word-meanings or if the initial successes we have obtained are mainly coincidental.

To some extent, this paper may have been written backwards, in that the im-
plementation and examples are at the beginning and most of the theory is at the
end. This is for two reasons. Firstly, we hoped to make the paper as accessible as
possible and were afraid that beginning with an introduction to the full machinery
of quantum logic would defeat this goal before the reader has a chance to realise
that the techniques and equations used in this work are really quite elementary.
Secondly, the link with ‘quantum logic’ was itself only brought to our attention
after the bulk of the results in this paper had been obtained, and since this research
is very much ongoing, we deemed it appropriate to give an honest account of its
history and current state.

14.1 Representing word-meaning in vector spaces

A vector space is a collection of points each of which can be specified by a list of
co-ordinates (such as the familiarx-y co-ordinates in Cartesian geometry) (J¨anich,
1994, Ch 2), where pairs of points can be added together by adding their co-
ordinates, and an individual point can be multiplied by a ‘scalar’ or number (in this
paper, these scalars are real numbers, so all of our vector spaces are ‘real’ vector
spaces). The first linguistic examples of vector spaces were developed for infor-
mation retrieval (Salton and McGill, 1983), where counting the number of times
each word occurs in each document gives aterm-document matrix, where thei; jth

matrix entry records the number of times the wordwi occurs in the documentDj .
The rows of this matrix can then be thought of asword-vectors. The dimension of
this vector space (the number of co-ordinates given to each word) is therefore equal
to the number of documents in the collection.Document vectorsare generated by
computing a (weighted) sum of the word-vectors of the words appearing in a given
document.

Such techniques are used in information retrieval to measure the similarity be-
tween words (or more general query statements) and documents, using a similarity
measure such as the cosine of the angle between two vectors (Salton and McGill,
1983, p 121),

sim(w;d) =
∑widiq
∑w2

i ∑d2
i

=
w �d
jjwjj jjdjj

;

wherewi;di are the co-ordinates of the vectorsw andd, w � d is the (Euclidean)
scalar product ofw andd, andjjwjj is the norm of the vectorw (Jänich, 1994, Ch
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8). This calculation is simplified further by normalising all vectors to have unit
length, so that the ‘cosine similarity’ is the same as the Euclidean scalar product.
This is a standard technique which (for example) avoids giving too much semantic
significance to frequent terms or long documents. Normalised vectors were used
in all of the models and experiments described in this paper.

A natural advantage of this structure is that it can be used to define a similarity
score between pairs of terms in exactly the same way — two terms will have a high
similarity score if they often occur in the same documents, and only seldom occur
without one another. In general, several terms are combined into a combined query-
statement using commutative vector addition (though the fuzzy-set andp-norm
operations of (Salton et al., 1983) give more sophisticated models for conjunction
and disjunction which also combine some of the benefits of Boolean and vector
approaches).

Typically, such term-document matrices are extremely sparse. The informa-
tion can be concentrated in a smaller number of dimensions using (among other di-
mension reduction algorithms) singular value decomposition, projecting each word
onto then-dimensional subspace which gives the best least-squares approximation
to the original data. This represents each word using then most significant ‘latent
variables’, and for this reason this process is calledlatent semantic analysis(Lan-
dauer and Dumais, 1997). A variant of latent semantic analysis was developed
by Schütze (1998) specifically for the purpose of measuring semantic similarity
between words. Instead of using the documents as column labels for the matrix,
semantically significantcontent-bearing wordsare used, and other words in the vo-
cabulary are given a score each time they occur within a context window of (eg.) 15
words of one of these content-bearing words. Thus the vector of the wordfootball
is determined by the fact that it frequently appears near the wordssportandplay,
etc.This method has been found to be well-suited for semantic tasks such as word-
sense clustering and disambiguation. Such a vector space where points are used
to represent words and concepts is sometimes called aWORD-SPACE (Schütze,
1998). The examples and experiments described in this article use exactly this
sort ofWORD-SPACE, using the Euclidean scalar product on normalised vectors to
compute similarity.

Traditional approaches to semantics using set theory and Boolean logic are
well-adapted for arranging primitives into composite propositions but have little
to say on the meaning of those primitives1. The vector models described in this
section, by contrast, have plenty to say about the meaning of the primitive units,

1Typical analyses (eg. (Partee et al., 1993, Ch 13)) give lambda calculus such asλxλy:loves(x;y)
for the meaning of the predicate ‘loves’, but are content to say that the semantics of ‘John’ is given
by john or j and the semantics of ‘Mary’ is given bymary or m.
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but only limited means to infer the meaning of sentences from these units. We
would ideally, of course, have the best of both worlds.

14.2 Logical Connectives inWORD-SPACE

In this section we introduce logical connectives which can be used to explore mean-
ings of terms inWORD-SPACE. In particular, we define negation in terms of orthog-
onality and disjunction in terms of the vector sum of subspaces. A more thorough
discussion of the logic behind these operations is given in Section 14.4.

Vector Negation

We want to model the meaning of a statement like ‘rock NOT band’ in such a
way that the system realises we are interested in the geological, not the musical
meaning of the wordrock. This involves finding which aspects of the meaning of
rockwhich are different from, and preferably unrelated to, those ofband. Meanings
are unrelated to one another if they have no features in common at all, just as a
document is regarded as completely irrelevant to a user if its scalar product with the
user’s query is zero — precisely when the query vector and the document vector are
orthogonal (J¨anich, 1994,x8.2) 2. Our definition of negation for vectors relies on
precisely this correspondence between the notions of ‘irrelevant’ and ‘orthogonal
in WORD-SPACE’.

Definition 1. Two words a and b are considered irrelevant to one another if their
vectors are orthogonal, i.e. a and b are mutually irrelevant if a�b= 0.

The statement ‘a NOT b’ is now interpreted as ‘those features ofa to whichb
is irrelevant’.

Definition 2. Let V be a vector space equipped with a scalar product. For a vector
subspace A�V, define the orthogonal subspace A? to be the subspace

A? � fv2V : 8a2 A;a�v= 0g:

Let A and B be subspaces of V . ByNOT B we mean B? and by ANOT B we
mean the projection of A onto B?.

Let a;b2V. By aNOT b we mean the projection of a ontohbi?, wherehbi is
the subspacefλb : λ 2 Rg.

2This idea of negation as ‘otherness’ is found in Plato’sSophistdialogue (Horn, 2001, p. 1).
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We now show how to use these notions to perform simple calculations with
individual vectors inWORD-SPACE, using a standard projection mapping technique
(Jänich, 1994,x8.2).

Theorem 1. Let a;b2V. Then aNOT b is represented by the vector

a NOT b� a�
a�b
jbj2

b:

wherejbj2 = b�b is the norm of b.

Proof. Taking scalar product withb, we have that

(a NOT b) �b = (a�
a�b
jbj2

b) �b

= a�b�
(a�b) (b�b)

b�b
= 0:

This shows thata NOT b andb are orthogonal, so the vectora NOT b is precisely
the part ofa which is irrelevant tob (in the sense of Definition 1) as desired.

For normalised vectors, Theorem 1 takes the particularly simple form

a NOT b= a� (a�b)b:

In practice this vector is then renormalised for consistency. As well as being well-
motivated theoretically, this expression for negation is computationally extremely
efficient to implement in the ‘search phase’ of a retrieval system. In order to find
terms or documents that are closely related toa NOT b, it is not necessary to com-
pare each candidate with botha andb and then compute some difference. The-
orem 1 gives a single vector fora NOT b, so finding the similarity between any
other vector anda NOT b is just a single scalar product computation.

Vector Disjunction and Conjunction

Modelling disjunctive expressions (such asA ORB) works similarly. Disjunction
in set theory is modelled as the union of sets, which corresponds in linear algebra
to the vector sum of subspaces, sinceA+B is the smallest subspace ofV containing
bothA andB.

Definition 3. Let b1 : : :bn 2V. The expression b1 OR : : : ORbn is represented by
the subspace

B= fλ1b1+ : : :+λnbn : λi 2 Rg:
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Finding the similarity between an individual terma and a general subspaceB
is more complicated than finding the similarity between individual terms. It makes
sense to define

(14.2.1) sim(a;B) = a�PB(a)

that is, the scalar product ofa with theprojectionof a onto the subspaceB, since
this measures the magnitude of the component ofa which lies in the subspaceB.

To find this similarity in practice, it is not correct simply to compute sim(a;bj )
for each of the vectorsbj in turn unless the setfbjg is orthonormali.e. the vec-
tors are pairwise orthogonal and of unit length (J¨anich, 1994, p 139) (this is very
unlikely). Instead, an orthonormal basis forB must first be constructed, a process
which can be accomplished in practice by first using the Gram-Schmidt process
(Jänich, 1994, p 142) to obtain an orthonormal basisfb̃jg for the subspaceB. Once
this is accomplished, it follows that

PB(a) =∑
j

(a� b̃j)b̃j

so that sim(a;B) = ∑ j(a � b̃j). To compute sim(a;B) we need to take the scalar

product ofa with eachof the vectorsb̃j , so this similarity is more expensive to
compute than that given by Theorem 1. Thus the gain we get by comparing each
document with the querya NOT b using only one scalar product operation is lost
for disjunction, though we show later that this desirable property is recovered for
negateddisjunction.

Just as disjunction makes things more general, we would expect conjunction
to make them more specific. Since our underlyingWORD-SPACE is homogeneous
(in the sense that any two non-zero points can be mapped to each other by a linear
transformation), no one point is naturally any more or less general than any other.
This is one of the noticeable drawbacks for the basic vector model generally: the
termsplant, fruit andapple are all represented by single points without any no-
tion of inclusion or inheritance. Ideally, this problem could be solved by having
concepts represented not only by points but also by higher dimensional subspaces.
Thenplant, for example, could refer to a space withfruit as a subspace thereof, and
with appleas an even smaller subspace or point in thefruit subspace. In theory it
should be possible to build such a space using a taxonomy and corpus-data, though
to our knowledge this has not been accomplished. Such a structure would present
a natural model for conjunction: the conjunction of two subspaces would simply
be their intersection. In the meantime, the intersection of distinct one-dimensional
subspaces is always zero, so conjunction in this form is not a useful option.
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suit suit NOT lawsuit
suit 1.000000 pants 0.810573
lawsuit 0.868791 shirt 0.807780
suits 0.807798 jacket 0.795674
plaintiff 0.717156 silk 0.781623
sued 0.706158 dress 0.778841
plaintiffs 0.697506 trousers 0.771312
suing 0.674661 sweater 0.765677
lawsuits 0.664649 wearing 0.764283
damages 0.660513 satin 0.761530
filed 0.655072 plaid 0.755880
behalf 0.650374 lace 0.755510
appeal 0.608732 worn 0.755260

play play NOT game
play 1.000000 play 0.779183
playing 0.773676 playing 0.658680
plays 0.699858 role 0.594148
played 0.684860 plays 0.581623
game 0.626796 versatility 0.485053
offensively 0.597609 played 0.479669
defensively 0.546795 roles 0.470640
preseason 0.544166 solos 0.448625
midfield 0.540720 lalas 0.442326
role 0.535318 onstage 0.438302
tempo 0.504522 piano 0.438175
score 0.475698 tyrone 0.437917

Terms related to ‘suit NOT lawsuit’ Terms related to ‘play NOT game’

Table 14.1: Examples of negation

14.3 Using negation to find word-senses

This section presents initial examples of our vector connectives which demonstrate
the uses of vector negation, and of vector disjunction and negation together, to find
vectors which represent different senses of ambiguous words. We briefly describe
document retrieval experiments which show that vector negation has clear benefits
over a traditional Boolean method, as shown in (Widdows, 2003b).

A WORD-SPACE model was built as described in Section 14.1 using the New
York Times data from the LDC, a corpus consisting ofca 173 million words from
news articles written between July 1994 and December 1996. As one might expect,
news articles consistently prefer some meanings of ambiguous words over others:
for example, the wordsuit is used far more often in a legal context than a clothing
context. To test the effectiveness of our negation operator, we tried to find some of
the less common meanings by removing words belonging to the more predominant
meanings.

Table 14.1 shows that vector negation is very effective for removing the ‘legal’
meaning from the wordsuit and the ‘sporting’ meaning from the wordplay, leav-
ing respectively the ‘clothing’ and ‘performance’ meanings. Note that removing
a particular word also removes concepts related to the negated word. This gives
credence to the claim that our mathematical model is removing themeaningof a
word, rather than just a string of characters.

Vector negation and disjunction can be combined to remove several unwanted
areas of meaning simultaneously. Suppose we negate not only one argument but
several. If a user states that they want documents related toa but notb1;b2; : : : ;bn,
then (unless otherwise indicated) it is clear that they only want documents related
to noneof the unwanted termsbi (rather than, say, the average of these terms). In
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rock rock NOT band rock NOT band, arkansas
rock 1.000000 rock 0.450473 rock 0.412383
band 0.892790 dubious 0.402324 stands 0.389242
band’s 0.868856 arkansas 0.400669 celestial 0.387825
bands 0.867765 ark 0.392304 underground 0.381206
punk 0.861354 madison 0.378165 muck 0.376508
pop 0.848222 celestial 0.376519 touches 0.373402
guitar 0.840769 muck 0.367648 pure 0.373129
tunes 0.837099 sheds 0.363119 wind 0.373017
reggae 0.828602 whitewater 0.362743 echoes 0.360734
acoustic 0.820719 gore 0.360440 explosions 0.356637
blues 0.817073 wind 0.357299 beneath 0.355244
rockers 0.807684 majestic 0.355958 planet 0.354783

The wordrock is most closely associated with pop music in the New York Times corpus. However,
removing these meanings by negating the wordbandleaves a set of associations derived from the town
Little Rock, Arkansas. (The wordlittle is not indexed because it is regarded as too common and general
to be a useful search term.) Removingarkansasas well gives meanings closely associated to rock as
a geological material.

Table 14.2: Senses ofrock in the New York Times

this way the expression

a AND (NOT b1) AND (NOT b2) : : : AND (NOT bn)

becomes

(14.3.1) a NOT (b1 OR : : : ORbn):

Using Definition 3 to model the disjunctionb1 OR : : : ORbn as the vector sub-
spaceB = fλ1b1+ : : :+λnbn : λi 2 Rg, this expression can be assigned a unique
vector which is orthogonal toall of the unwanted argumentsfbjg, this vector be-
ing a�PB(a), wherePB is the projection onto the subspaceB just as in Equation
14.2.1. It follows that to compute the similarity between any vector and the expres-
siona NOT (b1 OR : : : ORbn) is again asinglescalar product calculation, which
gives the same computational efficiency as Theorem 1. This technique can be used
to ‘home in on’ the desired meaning by systematically pruning away unwanted
features (see Table 14.2).

14.3.1 Experiments with document retrieval

The effectiveness of vector negation and disjunction at removing unwanted con-
cepts has been reliably demonstrated in document retrieval experiments, which are
reported in much more detail in (Widdows, 2003b). In order to evaluate the effec-
tiveness of different forms of negation, we used the hypothesis that a query for

terma NOT termb
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should retrieve documents containing many occurences of terma and few oc-
curences of termb. This can be accomplished trivially by first retrieving docu-
ments using the query ‘terma’ and then removing any documents that contain
termb, in the traditional Boolean manner (Salton and McGill, 1983, p. 26). How-
ever, we also measured the occurence of synonyms and neighbours of the term
b. Documents retrieved using vector negation contained far fewer of these than
the Boolean method, which we believe to be strong evidence that vector negation
removes not only unwanted words but unwantedareas of meaning.

14.4 Quantum Logic in Vector Spaces

A development that has recently come to our attention is that the logical opera-
tors onWORD-SPACEintroduced in section 14.2 are precisely the connectives used
in quantum logic. Quantum logic was formally introduced by Birkhoff and von
Neumann (1936) as a framework in which to account for the observations and
predictions of quantum mechanics, which exhibits some distinctly non-classical
behaviour. A famous example is given by the two-slit experiment, in which pat-
terns are observed which can not be accounted for by assuming that an electron
must have passed through only one of the two slits (Putnam, 1976, p. 180). A
much better approach is to model the emerging electron as a linear combination
of states, assuming that the final description receives a contribution from each of
the electron’s possible routes. Classical logic has problems in this situation, be-
cause in set-theory ifa is an element of the unionA[B, it follows that at least one
of the statementsa2 A, a2 B must hold — for example, wherea represents the
state of an electron which has passed through the two slitsA andB then one of the
statements “a passed throughA” or “ a passed throughB” must hold.

Quantum logic solves this problem by describing the outcomesA andB not as
arbitrary sets, but as subspaces of a vector space. Their disjunction is then their
vector sumA+B, which is strictly larger than their set unionA[B unlessA� B
or B� A. 3 Since there are many pointsa2 A+B which are neither inA nor inB,
the question “which slit did the electrona go through?” ceases to apply. Putnam
(1976) contends that the differences between quantum logic and classical logic can
account for all of the apparent ‘difficulties’ of quantum mechanics, and that we

3A simple way to envisage the difference between these two forms of disjunction is to consider
the possible trajectories of a point which starts in the centre of a map with the instructions that it can
travel in a North-Southor an East-West direction. If this disjunction is interpreted classically, the
particle can only travel to one of a ‘cross-shape’ of points which are either of the same latitude or of
the same longitude as the starting point. In the disjunction is interpreted in the quantum framework,
the point can travel anywhere that is a linear combination of north-south or east-west journeys,i.e.
anywhere on the map.
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should be prepared to change our view of ‘logic’ accordingly.
Philosophical issues aside, the structure of quantum logic itself is quite simple

and is arrived at precisely by replacing the notions of sets and subsets with those of
vector spaces and subspaces (Birkhoff and von Neumann, 1936,x6), (Cohen, 1989;
Wilce, 2003; Putnam, 1976, p. 177). Events in quantum mechanics are represented
by subspaces of a vector spaceV. 4 This leads us to consider the collectionL(V)
of subspaces of vector spaceV, which is a partially ordered set under the inclusion
relation, so that an eventA implies an eventB precisely whenA� B.

The greatest lower bound ormeetof A;B 2 L(V) is the greatest elementC 2
L(V) such thatC � A andC � B, which is precisely the intersectionA\B. The
least upper bound orjoin of A andB is the smallestD 2 L(V) such thatA� D
and B� D. However, the set unionA[B is not in general a member ofL(V),
and the smallest member ofL(V) which contains this set is instead the linear span
A+B. These two operations give the partially ordered setL(V) the structure of
a lattice (Birkhoff and von Neumann, 1936,x8), (Birkhoff, 1967), (Cohen, 1989,
p. 35). Furthermore, because we are working in a space with an inner product,
for eachA2 L(V) we can define its (unique) orthogonal complementA? just as in
Definition 2. We now have three connectives on the latticeL(V), defined as follows
(Birkhoff and von Neumann, 1936,x1, x6) (Putnam, 1976, p. 178):

(14.4.1)
Conjunction A AND B= A\B
Disjunction A ORB= A+B
Negation NOTA= A?

It is simple to show that these connectives onL(V) satisfy the necessary relations
(such as, for example,A+A? =V, A\A? = f02Vg) to define alogic on L(V).
(Cohen, 1989, p. 36).

Another important equivalence is that each subspaceA2 L(V) can be identified
(using the scalar product) with a unique projection mapPA : V!A (as in Theorem
1), and through this bijection the logic of subspacesL(V) is equivalent to the logic
of projection mappings onV. This logic plays a key role in quantum mechanics,
where the imagePA(V) of a pointv2V under the projectionPA is used to measure
the probability that a particle in the state represented byv will be found to have a
physical property represented by the subspaceA, using the scalar productPA(v) �v
as a probability measure (Wilce, 2003), just as in Equation 14.2.1.

4More precisely, quantum mechanics is usually modelled within a Hilbert space, which is a com-
plete inner-product space (Cohen, 1989, 2.18). Every finite dimensional Euclidean space (and so
every example of aWORD-SPACEwith the Euclidean scalar product) is a Hilbert space, and so to
avoid overly technical language we shall continue to talk about vector spaces rather than Hilbert
spaces.
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Quantum logic differs from classical Boolean logic in (at least) two well-known
properties: quantum logic is neither distributive nor commutative. The distributive
law

(A[B)\C= (A\C)[ (B\C)

is responsible for the question “which slit did the electron pass through”, and so
(as described above), quantum logic avoids this issue by avoiding the assumption
that the electronmusthave passed entirely through either one of the slits. The
commutative property fails because two projection mappingsPA and PB do not
in general commute. (An easy example is to consider the projections onto the
x-axis and the liney = x in the planeR2.) This is used to account for the fact
that observations interfere with one another in quantum mechanics, which leads to
Heisenberg’s famous uncertainty principle (Birkhoff and von Neumann, 1936,x1).
Measurements made by the projectionsPA andPB are said to becompatibleif and
only if PA andPB commute, which imposes particular conditions on the subspaces
A andB (Cohen, 1989, p. 37).

14.5 Quantum Logic and WORD-SPACE — a fluke or a
goldmine?

The reason for our interest in quantum logic is that we have already been using
the quantum connectives onWORD-SPACE in Sections 14.2 and 14.3: the logical
operations defined in Equations 2 and 3 are precisely the negation and disjunction
connectives in Equation 14.4.1. This gives a much clearer account for some of
the observations in Section 14.3. For example, the reformulation of the extended
conjunction in Equation 14.3.1 follows immediately from knowing that the logic
L(V) satisfies the de Morgan laws (Cohen, 1989, p. 37), and it is precisely the
non-commutativity of projection operators which forced us to first obtain an or-
thonormal basis for the subspace(b1 OR : : : ORbn) in order to implement Equa-
tion 14.2.1.

This raises the question of whether quantum logic is a desirable framework
for natural language semantics, or whether the links between quantum logic and
concepts inWORD-SPACEare more accidental. The examples in Section 14.3, and
in particular the retrieval experiments outlined in Section 14.3.1, demonstrate that
the quantum connectives are at least very useful for manipulating word-meanings.

As models for composition of meaning, Boolean and quantum connectives
seem to have different spheres of influence. One intuitive prediction, based on the
mathematical models underlying the two frameworks, is that Boolean connectives
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should be more appropriate for describing discrete entities, and quantum connec-
tives should describe concepts which are more continuous. This prediction is borne
out in at least some examples. If one’s host for a dinner party said“Please come at
7 or 7.30”, one would expect 7.15 also to be a perfectly agreeable time to arrive,
which would be false under a Boolean interpretation of“7 or 7.30” but true under
a quantum interpretation. On the other hand, if upon arrival one was asked“Would
you like an apple or a plum?”and responded positively, one would not really
expect to be given a nectarine on the basis that nectarines are on a scale between
apples and plums — here we are talking about discrete objects and it appears that
a Boolean interpretation is appropriate. (In practice, there are many other factors
to take into account — for example, in many day to day contexts (such as train
timetables), a continuous variable becomes ‘quantised’ and interpretations change
accordingly.) This discussion at the very least demonstrates that the differences
between Boolean and vector connectives have linguistic significance beyond sta-
tistical word sense disambiguation and query generation for information retrieval.

One conceptual problem with the quantum disjunction operator is that in a
WORD-SPACEof n-dimensions,n fairly similar concepts could be used to generate
the whole space, provided they are linearly independent, leaving the possibility that
the ‘disjunctions’ predicted by quantum logic may become far too general. Another
problem with the ‘linear span of the arguments’ approach to disjunction is that it
permits interpolationandextrapolation, where extrapolation may be inappropriate.
For example, in the“7 or 7.30” example, we should not predict that 6 o’clock is
also an acceptable arrival time. It follows that a better option might be to interpret
a disjunction not as a linear subspace but as asimplexby adding the conditions
λi � 0, ∑i λi = 1 to Definition 3.

There are many apparent similarities between the historical debate over quan-
tum and classical mechanics on the one hand, and the tension between ‘symbolic’
and ‘statistical’ approaches to natural language processing on the other. The vec-
tor model for information retrieval was first adopted largely because it allowed for
a naturally continuous ‘relevance score’ rather than a simple dichotomy between
relevance and irrelevance, in much the same way that quantum mechanics yields a
probability that a particular event will be observed. The possible similarity between
finding the ‘state’ of a particle through measurement and finding the ‘sense’ of an
ambiguous word in context is raised in Widdows (2003a). More generally, quan-
tum mechanics is possibly the single most successful scientific theory for making
rigourous, testable predictions about systems where it is known thatexceptions are
always a possibility. That natural language bears the hallmarks of such a system is
at the least plausible.
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Demonstration

An interactive demonstration of word-similarity and negation inWORD-SPACE is
publicly available athttp://infomap.stanford.edu/webdemo .
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