Referent Systems 5.1: The Manual

Marcus Kracht
March 03, 2008

1 Requirements

You need to have a Unix system, with Ocaml and LaTeX installed. Although
there is a Windows version of Ocaml, it does not offer the features we need to
use Ocaml. The best way around this is to first install Cygwin. This is a program
that emulates a Unix platform on a Windows machine. Having installed Cygwin,
you need to install Ocaml and LaTeX inside Cygwin. It will not do to just install
Cygwin and operate the windows versions of the programs, since Cygwin operates
on its own partition and does not look at the windows partition. If you have a Mac
with OS X, you should be able to use the program as is. For the most comfortable
installation, it is good to have bash ("Bourne Again Shell”) and “dialog”. The
latter is a light weight program to create graphical user interfaces for bash. If you
have neither, that is not a problem (see below).

For best benefit, it is good to know something about Unix systems. Ocaml,
if you have installed it, comes with a manual that you may consult if there are
problems. The software should give no such (I hope).

2 Platform Issues

The program as is works both on Linux and on OS X. Basically, there is no dif-
ference between the operating systems except for the system calls. If you install
LaTeX on Linux, it comes complete with a viewer for dvi-files, so if you have a file
name. tex, it is enough to call (from a command line) 1atex name to process the
file and then xdvi name.dvi to view it. In OS X, however, there are distributions
that do not have a dvi-viewer; also, the commands ’xdvi” and ”xpdf” are often un-
known. In this case, the best option is to use the sequence pdflatex name and

1

then open name.pdf. The current version uses a check on the environment vari-
ables to determine the operating system. It calls first Unix.getenv "OSTYPE".
This yields the same result as an execution of echo $0STYPE in bash. This gives
the result "1inux" on linux "Darwin" on Mac OS X. The file options.ml con-
tains a function that performs these checks, so you need not worry about these
details. It is possible to override the choices by adding explicit instructions on
whether one wants to use use latex or pdflatex, and what the name of the viewer
is. For example, in the standalone version, there is a program show_last ().
If you want to specify whether you intend latex or pdfiatex, add the argument
“meth:"dvi" or "meth:"pdf". If the name of the program is is name, add the
option “view:"name".

3 How to install and compile the system

First, you need to get referent_v5. tar (called archive). Then create a directory
RefSys, move the archive there, go there and unpack the archive. This is done
by issuing the following sequence (we use % for the prompt, enter <return> after
each line):

% mkdir RefSys

% mv referent_v5.tar RefSys
% cd RefSys

% tar xvf referent_v5.tar
% chmod a+x bin/*

% ./bin/setup -p

ey

The last command adds the absolute path to RefSys to your profile so that you can
execute the binaries without issuing any prefixes. Otherwise, instead of a simply
issuing % command you need to type

% absolute-path-to-RefSys/bin/command 2)

Issuing the four commands of (1) as shown creates subdirectories bin (where all
executables go), dict (where the dictionaries go), manuals (for the manuals) and
lib (for the Ocaml libraries). In this way the system installation is not mingled
with any of your own. The next step is to install the system. For that you do
not need make (an installation tool which is very popular in Linux circles). Notice

that setup has a few options. For example, you can choose the interface language.
Currently, only the choices ”de” (German) and “en” (English) are supported. If
you say nothing, the program will look up the variable $LANG. If that is nonempty,
it will proceed with this input; otherwise it takes ’de”. If the $LANG variable is an
extension of either en or de then this is taken as the interface language, otherwise
again de.

The most comfortable way is to run compile. It only needs bash (Bourne
Again Shell) and runs from command line. If you are unsure how to use it, type

% compile -h 3)

and you will be prompted with a short help menu. If you run the script, check
the file “compile.log” for problems encountered during compilation. Also, in any
case, it has proved useful to repeat the installation at least once (why that is I do
not know). Otherwise you will get complaints that such and such file does not
exist.

Both scripts, easy-compile and od-dialog, are interactive and give you a
variety of choices. They first ask you in which language you want to perform the
installation. This will determine both the installation language (currently English
and German) as well as the language in which the system interfaces and output
files are generated. The latter options can be overridden.

The next stage is the compilation of the system, which you may skip if you
have made no changes and have a compiled system. The third step is the compila-
tion of the dictionaries. The same applies to this step. If you have Tcl/Tk installed
you may also create a graphical user interface.

4 How to operate the program

If you have done the previous and opted for a standalone version, you should find
in the directory bin a file called referent. Type 1s -al bin/referent and
you should be able to see that it exists and is executable. Likewise, if you have
opted for a Tk-user interface, you may use 1s -al bin/rs to see that you have
an executable file named rs. I shall not describe in detail the workings of the
Tk-user interface. You can invoke it by typing rs.

Now type after the shell prompt (written here as usual %):

% referent 4)

This will invoke Ocaml. You will then get an Ocaml prompt (#) after the “wel-
come” sequence. The modules are then automatically loaded.
Next you will have to load a dictionary. Type, for example,

#use "dict/deu.ml";; 5

and the dictionary named deu.ml will be used. Important note: commands must
always be ended by a double semicolon, which I will not use henceforth.

Once you have a entered a dictionary, it is ready for use. Once have loaded a
dictionary using the above method, it is not necessary to use the command #use
again. Instead, you can use load and cload. Both take as argument the name of
the dictionary, without dict/ and the suffix. So, the second time round instead of
(5) you may just type

load "deu";; 6)

(Remember the double semicolon! The dictionary contains the lines open Standalone.Q;;
and open Entry; ;, which are main level commands and can therefore not be en-
tered into the libraries. They must be entered through the top level system itself.
Once issued, however, it is possible to load the file via Dynlink, which is what the
load command does.) Notice however that when you load a dictionary, the old
dictionary is not erased. You just add more bindings. (This is useful if you want
to spread a dictionary over several files.) If you want to use another dictionary,
type
cload "name";; @)

Important Notice: You can always type help ();; to bring up this manual.

The workspace you have consists of several things:

1. a dictionary, which in turn consists in a set of entries, and several hash
tables. The dictionary can be manipulated by the following commands.
e show_dict () to be shown the current dictionary.
e clear_dict () clears the dictionary.

e load "name" loads the dictionary dict/name.ml on top of the ex-
isting one.

e cload "name" clears the existing dictionary and loads dict/name.ml
in its place.

e add_entry entry adds the entry entry. See below for a description
of how entries need to look like. If you add an entry that uses an
identifier that is already taken, you get a warning. If you think this
is in error, you might consider clearing the dictionary if you want to
work with a new dictionary (or if you load a new dictionary without
clearing the previous).

e word_add word adds a word to the word list. The latter is simply a
lookup from strings to entries, used in creating the interfaces. Even if
have an entry for, say, word dog you must also add the line word_add
"dog" to see it in the TCI/Tk interface (even though to enter it there
you need not have it explicitly listed).

e by_identifier string allows you to get an entry from the dictio-
nary by its identifier rather than its surface string. This is useful if you
want to check you dictionaries.

2. a stack of entries. This stack is manipulated as follows:

e show_last () shows the topmost entry of the stack.

e push stringallows you to push an entry by using its identifier, which
is the argument string.

e pop () pops the last entry from the stack

e merge_list () returns the list of sargs identified under merge of the
the top two elements. If merge fails, the elements are returned to the
stack; otherwise they disappear and the result is put on the top instead.

e merge () merge the top two elements. The order is always (1) functor
(2) argument irrespective of the surface order in which they appear. A
different is only when you use evaluated, where you may use forward
and backward conventions.

e diagnose () This returns a complete analysis of the steps. This is
useful in understanding how merge works.

e clear_workspace () clears the stack.

e evaluate string evaluates a string consisting of identifiers and ele-
ments of the form < and >, depending on whether you want to forward
multiply or backward multiply (that is, whether you use merge el e2
ormerge e2 el). Youmay use brackets (and) for your convenience
but they are ignored (and therefore not checked for consistency).

5

. The entire system is multilingual. Type language () and it returns the

operating language. If you run ”compile” you are actually given a choice as
to whether to install in English or in German.

The current dictionary name is stored in two languages, German and En-
glish. To see its name, type name (). To assign a new name to your dictio-
nary, use set_name (german_name, english_name)

. parse_show string parses and shows you the result. It has two optional

arguments. If you omit them, the parse is for the given word order and the
current language. If you type “language: "de", the result is communicated
to you in German.

show_parse () Show you the parse of the last item in detail. Only look at
it when you are really interested.

5 System Options

When the system is set up, a number of options are recorded and set. You find in
the files bin/VARS.LGE and bin/VARS.SYS information about the language and
the operating system (on some installations of Ocaml there was no way to call
uname from inside Ocaml, so I use a file to have the option ready). They are set
by the installer script. When the system is compiled, the values for other options
are set. You find them listed also in options.ml:

osys: the operating system
meth: the viewing method (dvi or pdf)
view: the command to call the viewer

col: the column size (used for latex to determine how wide to format the
tables; default is 38)

farbe: whether or not to use colours in output (set to ’true”)
lang: the output language (in ISO 639)

transsem: whether or not semantics is discarded when applying transform-
ers (default true”)

det: whether or not terms are issued with all list details (default "false”)
ddet: the way to render handlers (default "num”)

edet: the way to render exponents (default ”dots”, that means that the mor-
pheme boundaries are show with a colon)

Each of the options can be set individually. Here are the commands:

sys () Queries the system; cannot be reset, naturally.

meth () Queries the method; reset with setmeth method.

view () Queries the viewer command; can be rest with setview command
det ();reset with setdet bool

edet ();reset with setedet string

ddet ();reset with setddet string

language ();reset with setlanguage string

colwidth ();reset with setcolwidth int

colour ();reset with setcolour bool

trans ();reset with settrans bool

6 How to use and make dictionaries

Notice that dictionaries are assumed to be in the subdirectory /dict by the com-
pilation programs (for the Tk and the html-version). The standalone version does
not care about that, but it is wise to keep with this structure.

So far, dictionaries must be entered by hand. To see how they have to be made,
take a look at deu.ml:

(A) Introductory commentary (for the user only):

(* Dictname=Deutsch *)

®)

(* This is the German dictionary. ¥*)

(B) To save you a lot of typing, open the modules Standalone.Q and Entry:

open Standalone.Q;;

)

open Entry;;

(C) The dictionary names is given as a set of pairs of strings. The first string
states the name of the language (using ISO 639 two letter codes) and the second
is a string that you choose to identify the dictionary in that language (mostly
English, I presume, so the first member will be "en"). So we define the dictionary
name as follows:

add_name ("en","German");;

add_name ("de","German");; (10)
add_name ("hu","Nmet");;

There is no limit on the languages you use (or the codes), though for most of them
no use can be made for lack of messages and headers (see below). Additionally, a
dictionary contains the name of a locale. The locale is needed in sorting the dic-
tionaries (recall that other languages have different characters and different ways
of ordering words). You may freely set the locale by issuing:

set_locale "hu";; (11)
There are standard references for locales, so I will not repeat anything here.

(D) Add entries, like this:

add_entry {i = "fm";

a = [["x"; "duflt"; "gen=ast&cat=ob"; "gen=f&cat=ob";
"ptm:t:t&stm:tO:tO&rtm:tl:t1"]]; (12)

m = <morpheme>;

s = "DCHO+B(L(female(x))))"};;

The structure is this: an entry is a record, consisting of the following fields:

99299,

e ”1”: the identifier; can be anything of type string.

95,99,

e ’m”: the morpheme. Its structure is looked at further below.

9999,

e 7a”: the argument structure, given as a list of lists. The latter represent the
sargs, consisting in turn of

1. a string for the variable, which has to be a letter followed by sequence
of digits
. a string for the diacritics,

. a string to define the in-avs,

A~ W

. a string to define the out-avs,
5. astring to define the pavs.

9% A

e ”’s”: the semantics, of type string.

Any number of entries can be entered.
The string for the diacritics is composed from several letters, which may be
given in any order. These are

e d if the AIS is a functor,

e uif the AIS is an argument,

e t if the AIS is a transformer,

o £ if the merge operation to be used is fusion.

The string for the in-avs is a string of the following form. A pair attribute+values
is coded as a string att=valuel+value2+...+valuen. A sequence of pairs is
written as follows: pairl&pair2&...&pairn. out-avs can be left empty if it is
identical with the in-avs.

Notice: When using arbitrary strings, it is wise to avoid including delimiters
of any sort. These are: (,), +, & =, :, and +. It is best to avoid blanks too, even
though that should not create problems. The best practice is to use plain letters
(upper and lowercase) and numbers. Underscore is also fine, as are the remaining
punctuation marks. If you understand the syntax of the expressions well you may
find that symbols that are not used in delimiting a given expression type can then
be included into your string. For example, the strings att and value may contain
:, since it is not used as a delimiter in AVSs.

The morphemes are sets of morphs. This said, they are issued in the following
way: a morpheme is given as a [list, each of which has the following structure:

e 7’id”: the identifier; can be anything of type string.

9

2 bRl

e “ex”: the exponent; a list of strings. Internally, this is translated into an
array of strings, the exponent.

e “ar”: the argument structure, given as a list of records. The records consist
of the following field labels: of

1. f, function, a string, representing a simplified function;

2. h, handler, a list of lists, containing pairs of numbers and booleans;
if the list has n» members, then each member characterises on of the
members of the resulting output exponent (recall that the output expo-
nent is composed of several strings). In turn, the ith member is a list,
specifying each of the parts that constitute it; the parts may come from
the functor or the argument. If it is the jth part of the functor, the item
must be (j, true), and otherwise (j, false).

3. mi, the input morphology. input like an AVS structure. This is de-
scribed in detail; there are some exceptional additions to the field mo.

4. mo, the output morphology, consisting of a string specifying an AVS
plus an extra dia=t, dia= or dia=a and an extra contact=1c (to sig-
nal that the last character of the argument must be ¢) contact=rc (to
signal that the first character of the argument must be c¢) contact=Lc
(to signal that the last character of the argument must be anything but
c) contact=1c (to signal that the first character of the argument must
be anything but c). (Evidently, this must be redone in a nicer format.)

The pavss are entered as follows. A single statement is written in the form
att:varin:varout, where att is the role predicate, varin is the input name
and varout the output name. These names can be left empty. (Note that the
empty sequence is not a variable name, but is treated as the absence of a variable
name.) A sequence of such statements is entered with & as a separator.

The semantics is defined as follows. If you take a look at drs.ml, you will
find that the type of a DRS is recursive, and uses a number of other types. Literals
have the form pred(terml, ..., termn). Notice that we do not distinguish
terms from atomic formulae. A DRS consists of a head and a body. The head is a
set of variables, the body a list of clauses. A clause is either a DRS, an equation,
a literal, a unary constructor applied to a DRS, a binary constructor applied to
two DRSs, a unary quantifier applied to some variables and a DRS, or a binary
quantifier applied to some variables and two DRSs.

10

1. H(L): L a sequence of strings, separated by + gives a head;
2. B(L): L alist with + as separator, defines a body;

3. L(P): P alist formed by using +. The first member is a predicate, the others
are arguments. L stands for “Literal”.

4. E(T+U): T aterm, U a term gives an equation;

5. D(H+B): for DRS consisting of head H and body B;

6. U(S+D) for a unary constructor S and a DRS D;

7. P(S+H+D) for a unary quantifier S, a head H and a DRS D;

8. Q(S+H+D1+D2) for the quantified DRS with quantifier name Q, variable set
H, nucleus D1 and scope D2;

9. J(S+D1+D2) for a binary constructor S and DRSs DI and D2;
10. T(s) for a string s defines a term.

There is a special unary operator “null” such that UnDrs ("null", d) is a clause,
where d is a DRS. There are no sanity checks on the DRS constructor names.

(E) Add morphological decompositions:

mor_add llLehrerll [IIZII; "mSC"; "S"; llnll] ; ; (13)
mOI‘_add "Lehrer" [Ilzll; "msc"; "S"; llgll] ; ;

A morphological decomposition consists in a string (the word you type in even-
tually, when you parse) and a sequence of morphemes. The morphemes must
appear in the list under (D) or else the parse will fail for that word. You can add
any number of such bindings of words to sequences of morphemes.

(G) That’s all.

11

