Referent Systems 5.0: The Manual

Marcus Kracht

December 11, 2006

1 Requirements

You need to have a Unix system, with OCaML and LaTeX installed. Al-
though there is a Windows version of OCaML,; it does not offer the features
we need to use OCaML. The best way around this is to first install Cygwin.
This is a program that emulates a Unix platform on a Windows machine.
Having installed Cygwin, you need to install OCaML and LaTeX inside Cyg-
win. It will not do to just install cygwin and operate the windows versions
of the programs, since cygwin operates on its own partition and does not
look at the windows partition. If you have a Mac with OS X, you should
be able to use the program as is. For the most comfortable installation, it
is good to have bash ("Bourne Again Shell”) and ”dialog”. The latter is a
light weight program to create graphical user interfaces for bash. If you have
neither, that is not a problem (see below).

For best benefit, it is good to know something about Unix systems.
Ocaml, if you have installed it, comes with a manual that you may consult
if there are problems. The software should give no such (I hope).

2 Platform Issues

The program as is works both on linux and on OS X. Basically, there is no
difference between the operating systems except for the system calls. If you
install LaTeX on linux, it comes complete with a viewer for dvi-files, so if you
have a file name. tex, it is enough to call (from a command line) latex name
to process the file and then xdvi name.dvi to view it. In OS X, however,
there are distributions that do not have a dvi-viewer; also, the commands

"xdvi” and "xpdf’ are often unknown. In this case, the best option is to
use the sequence pdflatex nmame and then open name.pdf. The current
version uses a check on the environment variables to determine the operating
system. It calls first Unix.getenv "OSTYPE". This yields the same result
as an execution of echo $0STYPE in bash. This gives the result "linux"
on linux "Darwin" on Mac OS X. The file options.ml contains a function
that performs these checks, so you need not worry about these details. It is
possible to override the choices by adding explicit instructions on whether
one wants to use use latex or pdflatex, and what the name of the viewer is.
For example, in the standalone version, there is a program show_last (). If
you want to specify whether you intend latex or pdflatex, add the argument
“meth:"dvi" or "meth:"pdf". If the name of the program is is name, add
the option “view:"name".

3 How to install and compile the system

First, you need to get referent_v5.tar (called archive). Then create a
directory RefSys, move the archive there, go there and unpack the archive:

mkdir RefSys
mv referent_v5.tar RefSys
cd RefSys

tar xvf referent_vb.tar

(1)

Also, you should add the absolute path to RefSys to you profile so that you
can execute the binaries without issuing any prefixes. Otherwise, instead of
a simply issuing command you need to type

absolute-path-to-RefSys /bin/command (2)

This creates subdirectories bin (where all executables go), dict (where
the dictionaries go), manuals (for the manuals) and 1ib (for the Ocaml
libraries). The system installation thus is not mingled with any of your own.
The next step is to install the system. For that you do not need make (an
installation tool).

The most comfortable is to run compile. It needs bash (Bourne Again
Shell) and ”dialog”, which is not always included. If you run the script,
check the file ”compile.log” for problems encountered during compilation.

Also, in anay case, it has proved useful to repeat the installation at least
once (why that is I do not know). Otherwise you will get complaints that
such and such file does not exist. In case you do not have ”dialog”, you may
use od-dialog. If you just want to do a quick install, use easy-compile.
You may view these scripts to see which commands to use for individual
compilation of the modules.

Both scripts, easy-compile and od-dialog, are interactive and give you
a variety of choices. They first ask you in which language you want to perform
the installation. This will determine both the installation language (currently
English and German) as well as the language in which the system interfaces
and output files are generated. The latter options can be overridden.

The next stage is the compilation of the system, which you may skip if
you have made no changes and have a compiled system. The third step is
the compilation of the dictionaries. The same applies to this step. If you
tave Tcl/Tk installed you may also create a graphical user interface.

4 How to operate the program

If you have done the previous and opted for a standalone version, you should
find in the directory bin a filew called referent. Type 1s -al bin/referent
and you should be able to see that it exists and is executable. Likewise, if
you have opted for a Tk-user interface, you may use 1s -al bin/rs to see
that you have an executable file named rs. I shall not describe in detail the
workings of the Tk-user interface. You can invoke it by typing rs.

Now type after the shell prompt:

referent (3)

This will invoke OCaML. You will then get an OCaML prompt after the
“welcome” sequence. The modules are then automatically loaded.
Next you will have to load a dictionary. Type, for example,

#use "dict/deu.ml";; (4)

and the dictionary named deu.ml will be used. Important note: commands
must always be ended by a double semicolon, which I will not use henceforth.

Once you have a entered a dictionary, it is ready for use. Once have
loaded a dictionary using the above method, it is not necessary to use the

command #use again. Instead, you can use load and cload. Both take as
argument the name of the dictionary, without dict/ and the suffix. So, the
second time round instead of (8) you may just type

load "deu";; (5)

(Remember the double semicolon! The dictionary contains the lines open
Standalone.Q;; and open Entry;;, which are main level commands and
can therefore not be entered into the libraries. They must be entered through
the toplevel system itself. Once issued, however, it is possible to load the file
via Dynlink, which is what the load command does.) Notice however that
when you load a dictionary, the old dictionary is not erased. You just add
more bindings. (This is useful if you want to spread a dictionary over several
files.) If you want to use another dictionary, type

cload "mame";; (6)

Important Notice: You can always type help ();; to bring up this man-
ual.
The workspace you have consists of several things:

1. a dictionary, which in turn consists in a set of entries, and several
hashtables. The dictionary can be manipulated by the following com-
mands.

e show_dict () to be shown the current dictionary.
e clear_dict () clears the dictionary.

e load "mame" loads the dictionary dict/mame.ml on top of the
existing one.

e cload "mame" clears the existing dictionary and loads dict/name.

in its place.

e add_entry entry adds the entry entry. See below for a de-
scription of how entries need to look like. If you add an entry that
uses an identifier that is already taken, you get a warning. If you
think this is in error, you might consider clearing the dictionary
if you want to work with a new dictionary (or if you load a new
dictionary without clearing the previous).

ml

e word_add word adds a word to the wordlist. The latter is simply
a lookup from strings to entries, used in creating the interfaces.
Even if have an entry for, say, word dog you must also add the line
word_add "dog" to see it in the TCl/Tk interface (even though
to enter it there you need not have it explicitly listed).

e by_identifier string allows you to get an entry from the dic-
tionary by its identifier rather than its surface string. This is
useful if you want to check you dictionaries.

2. a stack of entries. This stack is manipulated as follows:

e show_last () shows the topmost entry of the stack.

e push string allows you to push an entry by using its identifier,
which is the argument string.

e pop () pops the last entry from the stack

e merge_list () returns the list of sargs identified under merge of
the the top two elements. If merge fails, the elements are returned
to the stack; otherwise they disappear and the result is put on the
top instead.

e merge () merge the top two elements. The order is always (1)
functor (2) argument irrespective of the surface order in which
they appear. A different is only when you use evaluated, where
you may use forward and backward conventions.

e diagnose () This returns a complete analysis of the steps. This
is useful in understanding how merge works.

e clear_workspace () clears the stack.

e evaluate string evaluates a string consisting of identifiers and
elements of the form < and >, depending on whether you want
to forward multiply or backward multiply (that is, whether you
use merge el e2 or merge e2 el). You may use brackets (and
) for your convenience but they are ignored (and therefore not
checked for consistency).

3. The entire system is multilingual. Type language () and it returns
the operating language. If you run ”compile” you are actually given a
choice as to whether to install in English or in German.

4.

5

The current dictionary name is stored in two languages, German and
English. To see its name, type name (). To assign a new name to your
dictionary, use set_name (german_name, english_name)

. parse_show string parses and shows you the result. It has two op-

tional arguments. If you omit them, the parse is for the given word
order and the current language. If you type “language:"de", the re-
sult is communicated to you in German.

show_parse () Show you the parse of the last item in detail. Only
look at it when you are really interested.

System Options

When the system is set up, a number of options are recorded and set. You
find in the files bin/VARS.LGE and bin/VARS.SYS information about the
language and the operating system (on some installations of OCaml there
was no way to call uname from inside Ocaml, so I use a file to have the option
ready). They are set by the installer script. When the system is compiled,
the values for other options are set. You find them listed also in options.ml:

osys: the operating system
meth: the viewing method (dvi or pdf)
view: the command to call the viewer

col: the column size (used for latex to determine how wide to format
the tables; default is 38)

farbe: whether or not to use colours in output (set to ”"true”)
lang: the output language (in ISO 639)

transsem: whether or not semantics is discarded when applying trans-
formers (default "true”)

det: whether or not terms are issued with all list details (default
"false”)

ddet: the way to render handlers (default "num”)

6

e edet: the way to render exponents (default ”dots”, that means that
the morpheme boundaries are show with a colon)

Each of te options can be set individually. Here are the commands:
e sys () Queries the system; cannot be reset, naturally.
e meth () Queries the method; reset with setmeth method.
e view () Queries the viewer command; can be rest with setview command
e det (); reset with setdet bool
e edet (); reset with setedet string
e ddet (); reset with setddet string
e language (); reset with setlanguage string
e colwidth (); reset with setcolwidth %nt
e colour (); reset with setcolour bool

e trans (); reset with settrans bool

6 How to use and make dictionaries

Notice that dictionaries are assumed to be in the subdirectory /dict by the
compilation programs (for the Tk and the html-version). The standalone
version does not care about that, but it is wise to keep with this structure.

So far, dictionaries must be entered by hand. To see how they have to be
made, take a look at deu.ml:

(A) Introductory commentary (for the user only):

(* Dictname=Deutsch *)

(7)

(* This is the German dictionary. *)

(B) To save you a lot of typing, open the modules Standalone.Q and Entry:

open Standalone.(Q;;

(8)

open Entry;;

(C) The dictionary names is given as a set of pairs of strings. The first
string states the name of the language (using ISO 639 two letter codes)
and the second is a string that you choose to identify the dictionary in that
language (mostly English, I presume, so the first member will be "en"). So
we define the dictionary name as follows:

add_name ("en","German");;
add_name ("de","German");; (9)

add_name ("hu","Nmet");;

There is no limit on the languages you use (or the codes), though for most
of them no use can be made for lack of messages and headers (see below).
Additionally, a dictionary contains the name of a locale. The locale is needed
in sorting the dictionaries (recall that other languages have different charac-
ters and different ways of ordering words). You may freely set the locale by
issuing:

set_locale "hu";; (10)

There are standard references for locales, so I will not repeat anything here.

(D) Add entries, like this:

add_entry {i = "fm";
a = [["x"; "duflt"; "gen=ast&cat=ob"; "gen=f&cat=ob";
"ptm:t:t&stm:t0:t0&rtm:t1:t1"]]; (11)

=]
I

<morpheme> ;
"D(H()+B(L(female(x))))"};;

The structure is this: an entry is a record, consisting of the following fields:

e 7i”: the identifier; can be anything of type string.
e "m”: the morpheme. Its structure is looked at further below.

e 7a”: the argument structure, given as a list of lists. The latter represent
the sargs, consisting in turn of

1. a string for the variable, which has to be a letter followed by
sequence of digits

a string for the diacritics,

a string to define the in-avs,

= W N

a string to define the out-avs,
5. a string to define the pavs.

e "s”: the semantics, of type string.
Any number of entries can be entered.

The string for the diacritics is composed from several letters, which may
be given in any order. These are

e d if the AIS is a functor,

e u if the AIS is an argument,

e t if the AIS is a transformer,

e f if the merge operation to be used is fusion.

The string for the in-avs is a string of the following form. A pair at-
tribute+values is coded as a string att=valuel+value2+...+valuen. A
sequence of pairs is written as follows: pairi&pair2&...&pairn. out-avs
can be left empty if it is identical with the in-avs.

Notice: When using arbitrary strings, it is wise to avoid incuding delim-
iters of any sort. These are: (,), +, &, =, :, and +. It is best to avoid blanks
too, even though that should not create problems. The best practice is to
use plain letters (upper and lowercase) and numbers. Underscore is also fine,
as are the remaining punctuation marks. If you understand the syntax of the
expressions well you may find that symbols that are not used in delimiting
a given expression type can then be included into your string. For example,
the strings att and value may contain :, since it is not used as a delimiter
in AVSs.

The morphemes are sets of morphs. This said, they are issued in the
following way: a morpheme is given as a list, each of which has the following
structure:

e 7id”: the identifier; can be anything of type string.
7

e "ex”: the exponent; a list of strings. Internally, this is translated into
an array of strings, the exponent.

9

e "ar”: the argument structure, given as a list of records. The records

consist of the following field labels: of

1. f, function, a string, representing a simplified function;

2. h, handler, a list of lists, containing pairs of numbers and booleans;
if the list has n members, then each member characterises on of the
members of the resulting output exponent (recall that the output
exponent is composed of several strings). In turn, the ith member
is a list, specifying each of the parts that constitute it; the parts
may come from the functor or the argument. If it is the jth part
of the functor, the item must be (7, true), and otherwise (7,
false).

3. mi, the input morphology. input like an AVS structure. This is
described in detail; there are some execptional additions to the
field mo.

4. mo, the output morphology, consisting of a string specifying an
AVS plus an extra dia=t, dia= or dia=a and an extra contact=1c
(to signal that the last character of the argument must be ¢)
contact=rc (to signal that the first character of the argument
must be ¢) contact=Lc (to signal that the last character of the
argument must be anything but ¢) contact=1c (to signal that the
first character of the argument must be anything but ¢). (Evi-
dently, this must be redone in a nicer format.)

The pavss are entered as follows. A single statement is written in the
form att :varin:wvarout, where att is the role predicate, varin is the
input name and wvarout the output name. These names can be left empty.
(Note that the empty sequence is not a variable name, but is treated as the
absence of a variable name.) A sequence of such statements is entered with
& as a separator.

The semantics is defined as follows. If you take a look at drs.ml, you will
find that the type of a DRS is recursive, and uses a number of other types.
Literals have the form pred (termi,..., termn). Notice that we do not
distinguish terms from atomic formulae. A DRS consists of a head and a
body. The head is a set of variables, the body a list of clauses. A clause is
either a DRS, an equation, a literal, a unary constructor applied to a DRS, a
binary constructor applied to two DRSs, a unary quantifier applied to some

10

variables and a DRS, or a binary quantifier applied to some variables and
two DRSs.

1. H(L): L a sequence of strings, separated by + gives a head;
2. B(L): L a list with + as separator, defines a body;

3. L(P): P alist formed by using +. The first member is a predicate, the
others are arguments. L stands for ”Literal”.

4. E(T+U): T a term, U a term gives an equation;

5. D(H+B): for DRS consisting of head H and body B;

6. U(S+D) for a unary constructor S and a DRS D;

7. P(S+H+D) for a unary quantifier S, a head H and a DRS D;

8. Q(S+H+D1+D2) for the quantified DRS with quantifier name @, vari-
able set H, nucleus D1 and scope D2;

9. J(S+D1+D2) for a binary constructor S and DRSs D1 and D2;
10. T(s) for a string s defines a term.

There is a special unary operator "null” such that UnDrs("null", d) is a
clause, where d is a DRS. There are no sanity checks on the DRS constructor
names.

(E) Add morphological decompositions:

mor add "Lehrer" [||2u . "msc" . "S" . "Il"] .
-— b 3 b P 12
mor_add "Lehrer” [||2u ’ "IIISC" , "S" , ngn] , ’ ()

A morphological decomposition consists in a string (the word you type in
eventually, when you parse) and a sequence of morphemes. The morphemes
must appear in the list under (D) or else the parse will fail for that word. You
can add any number of such bindings of words to sequences of morphemes.

(G) That’s all.

11

