
Referent Systems: The Manual

Marcus Kracht

April 14, 2006

1 Requirements

You need to have a Unix system, with OCaML and LaTeX installed. Al-
though there is a Windows version of OCaML, it does not offer the features
we need to use OCaML. The best way around this is to first install Cygwin.
This is a program that emulates a Unix platform on a Windows machine.
Having installed Cygwin, you need to install OCaML and LaTeX inside Cyg-
win. It will not do to just install cygwin and operate the windows versions of
the programs, since cygwin operates on its own partition and does not look
at the windows partition. If you have a Mac with OS X, you should be able
to use the program as is. For the most comfortable installation, it is good to
have bash (”Bourne Again Shell”) and ”dialog”. The latter is a light weight
program to create graphical user interfaces. If you have neither, that is not
a problem (see below).

2 Platform Issues

The program as is works both on linux and on OS X. Basically, there is no
difference between the operating systems except for the system calls. If you
install LaTeX on linux, it comes complete with a viewer for dvi-files, so if you
have a file name.tex, it is enough to call (from a command line) latex name

to process the file and then xdvi name.dvi to view it. In OS X, however,
there are distributions that do not have a dvi-viewer; also, the commands
”xdvi” and ”xpdf” are often unknown. In this case, the best option is to
use the sequence pdflatex name and then open name.pdf. The current
version uses a check on the environment variables to determine the operating

1

system. It calls first Unix.getenv "OSTYPE". This yields the same result
as an execution of echo $OSTYPE in bash. This gives the result "linux"

on linux "Darwin" on Mac OS X. The file latex.ml contains a function
that performs these checks, so you need not worry about these details. It is
possible to override the choices by adding explicit instructions on whether
one wants to use use latex or pdflatex, and what the name of the viewer is.
For example, in the standalone version, there is a program show_last (). If
you want to specify whether you intend latex or pdflatex, add the argument
~meth:"dvi" or ~meth:"pdf". If the name of the program is is name , add
the option ~view:"name ".

3 How to produce the standalone version

The most comfortable is to run compile. It needs bash (Bourne Again Shell)
and ”dialog”, which is not always included. If you run the script, check the
file ”compile.log” for problems encountered during compilation. Also, in anay
case, it has proved useful to repeat the installation at least once (why that
is I do not know). Otherwise you will get complaints that such and such
file does not exist. In case you do not have ”dialog”, you may either use

2

easy-compile, or execute the following sequence:

ocamlc -i latex.ml > latex.mli

ocamlc -a -o latex.cma -intf latex.mli latex.ml

ocamlc -i zeichen.ml > zeichen.mli

ocamlc -a -o messages.cma -intf messages.mli messages.ml

ocamlc -i messages.ml > messages.mli

ocamlc -a -o zeichen.cma -intf zeichen.mli zeichen.ml

ocamlc -i str.cma subst.ml > subst.mli

ocamlc -a -o subst.cma -intf subst.mli str.cma subst.ml

ocamlc -i dia.ml > dia.mli

ocamlc -a -o dia.cma -intf dia.mli dia.ml

ocamlc -i avs.ml > avs.mli

ocamlc -a -o avs.cma -intf avs.mli avs.ml

ocamlc -i term.ml > term.mli

ocamlc -a -o term.cma -intf term.mli term.ml

ocamlc -i sargs.ml > sargs.mli

ocamlc -a -o sargs.cma -intf sargs.mli sargs.ml

ocamlc -i parse.ml > parse.mli

ocamlc -a -o parse.cma -intf parse.mli parse.ml

ocamlc -i pavs.ml > pavs.mli

ocamlc -a -o pavs.cma -intf pavs.mli pavs.ml

ocamlc -i drs.ml > drs.mli

ocamlc -a -o drs.cma -intf drs.mli drs.ml

ocamlc -i sem.ml > sem.mli

ocamlc -a -o sem.cma -intf sem.mli sem.ml

ocamlc -i morph.ml > morph.mli

ocamlc -a -o morph.cma -intf morph.mli morph.ml

ocamlc -i entry.ml > entry.mli

ocamlc -a -o entry.cma -intf entry.mli entry.ml

ocamlc -i dct.ml > dct.mli

ocamlc -a -o dct.cma -intf dct.mli dct.ml

(1)

3

This gives you the standalone version, based only on OCaML and LaTeX.
Additionally, you can create a new toplevel system as follows. (This should
go either all into one line or else use backslash at the end of each line (this
will indicate for bash that the next line continues the instruction).)

exec ‘ocamlmktop -o referent -I ./dict unix.cma str.cma

latex.cma zeichen.cma messages.cma subst.cma dia.cma

avs.cma term.cma sargs.cma parse.cma pavs.cma drs.cma

sem.cma morph.cma entry.cma dct.cma‘

(2)

If you tave Tcl/Tk installed and want to use a graphical user interface, exe-
cute the following:

ocamlc -i dict-compile.ml > dict-compile.mli

ocamlc -o dc -intf dict-compile.mli str.cma unix.cma

dict-compile.ml

./dc "en"

chmod +x rs-gui.tcl

(3)

(Run ./dc ”de” to get a German installation.) If you update any of the
programs above, you need to go through the whole sequence. Otherwise, if
you change only the dictionary, you do not need to do anything with the
standalone version. For the Tk-GUI you need to repeat the first three of the
four lines above:

ocamlc -i dict-compile.ml > dict-compile.mli

ocamlc -o dc -intf dict-compile.mli str.cma unix.cma

dict-compile.ml

./dc "en"

(4)

This is because the file rs-gui.tcl is overwritten, so its permissions remain.

4 How to operate the program

If you have done the previous, type after the shell prompt:

./referent (5)

4

This will invoke OCaML. You will then get an OCaML prompt after the “wel-
come” sequence. The modules are then automatically loaded. Equivalently,
you may type

ocaml (6)

And then type
#use "prepare.ml";; (7)

This will load all the modules. However, involing the programm referent

will save you the extra step of loading the required modules.
Next you will have to load a dictionary. Type, for example,

#use "dict/deu.ml";; (8)

and the dictionary named deu.ml will be used. Once you have a entered a
dictionary, it is ready for use. Once have loaded a dictionary using the above
method, it is not necessary to use the command #use again. Instead, you
can use load and cload. Both take as argument the name of the dictionary,
without dict/ and the suffix. So, the second time round instead of (8) you
may just type

load "deu";; (9)

(The dictionary contains the lines open Dct.Q;; and open Entry;;, which
are main level commands and can therefore not be entered into the libraries.
They must be entered through the toplevel system itself. Once issued, how-
ever, it is possible to load the file via Dynlink, which is what the load

command does.) Notice however that when you load a dictionary, the old
dictionary is not erased. You just add more bindings. (This is useful if you
want to spread a dictionary over several files.) If you want to use another
dictionary, type

cload "name ";; (10)

The workspace you have consists of several things:

1. a dictionary, which in turn consists in a set of entries, and several
hashtables. The dictionary can be manipulated by the following com-
mands.

• refresh_lexicon ();; adds the bindings in the hashtables. This
is needed when you add an entry.

• show_dict ();; to be shown the current dictionary.

5

• clear_dict ();; clears the dictionary.

• load "name ";; loads the dictionary dict/name.ml on top of the
existing one.

• cload "name ";; clears the existing dictionary and loads dict/name.ml
in its place.

• add_entry entry ;; adds the entry entry . See below for a de-
scription of how entries need to look like. If you add an entry that
uses an identifier that is already taken, you get a warning. If you
think this is in error, you might consider clearing the dictionary
if you want to work with a new dictionary (or if you load a new
dictionary without clearing the previous).

• mor_add word morphlist ;; adds an entry saying that word

consists of the sequence morpholist . Notice that entering and
entry is not enough to have it available for parsing. Even if have
an entry for, say, word dog you must also add the line mor_add

"dog" ["dog"];; The dictionary has otherwise no means to tell
whether a unit is simple or composite.

2. a stack of entries. This stack is manipulated as follows:

• show_last ();; shows the topmost entry of the stack.

• push string ;; allows you to push an entry by using its identifier,
which is the argument string .

• pop ();; pops the last entry from the stack

• forward_list ();; returns the list of sargs identified under for-
ward multiplication of the the top two elements. (Here forward
and backward mean this: let e1 be the element below the topmost
element, and e2 the topmost element. Then forward multiplica-
tion consists in multiplying in the order e1 e2, with e1 the functor;
backward multiplication with e2 the functor. In each case, when
the multiplication attempt fails, the arguments are still lost, so
beware.)

• backward_list ();; returns the list of sargs identified under
backward multiplication of the the top two elements.

• forward_multiply ();; multiplies the top two elements in a for-
ward fashion.

6

• backward_multiply ();; multiplies the top two elements in a
backward fashion.

• diagnose dir;; where dir may be either "f" of "b". If it is
"f" then the program returns a complete analysis of the steps
involved in forward multiplying the top two elements; if it is "b"

it does the same but with backward multiplication. This is useful
in understanding how merge works.

• clear_workspace ();; clears the stack.

3. The entire system is bilingual. Type language ();; and it returns
the operating language. If you run ”compile” you are actually given a
choice as to whether to install in English or in German.

4. The current dictionary name is stored in two languages, German and
English. To see its name, type name ();;. To assign a new name to
your dictionary, use set_name (german name, english name);;

5. parse_show string ;; parses and shows you the result. It has two
optional arguments. If you omit them, the parse is for the given word
order and the current language. If you add ~orders:"all" you get
parses for all permutations of the words; if you type ~language:"de",
the result is communicated to you in German.

5 How to use and make dictionaries

Notice that dictionaries are assumed to be in the subdirectory ”/dict” by
the compilation programs (for the Tk and the html-version). The standalone
version does not care about that, but it is wise to keep with this structure.

So far, dictionaries must be entered by hand. To see how they have to be
made, take a look at deu.ml:

(A) Introductory commentary (for the user only):

(* Dictname=Deutsch *)

(* This is the German dictionary. *)
(11)

7

(B) To save you a lot of typing, open the modules Dct.Q and Entry:

open Dct.Q;;

open Entry;;
(12)

(C) The dictionary names is given as a pair of strings. The first string
gives the name in German (use the empty string of the same as the English
string if you don’t care about it), and the second string is the English name.
So we define the dictionary name as follows:

set_name ("Deutsch","German");; (13)

(D) Add entries, like this:

add_entry {i = "fm";

e = "FM";

a = [["x"; "duflt"; "gen=ast&cat=ob"; "gen=f&cat=ob";

"ptm:t:t&stm:t0:t0&rtm:t1:t1"]];

m = false;

d = "D(H()+B(L(female(x))))"};;

(14)

The structure is this: an entry is a record, consisting of the following fields:

• ”i”: the identifier; can be anything of type string.

• ”e”: the exponent, of type string. Basically this is the string by which
one normally designates the morpheme, while the identifier is a book-
keeping device.

• ”a”: the argument structure, given as a list of lists. The latter represent
the sargs, consisting in turn of a

1. string for the variable, which has to be a letter followed by se-
quence of digits

2. a string for the diacritics,

3. a string to define the in-avs,

4. a string to define the out-avs,

8

5. a string to define the pavs.

• ”m”: the morphology of type boolean;

• ”d”: the semantics, of type string.

Any number of entries can be entered.
The string for the diacritics is composed from several letters, which may

be given in any order. These are

• d if the AIS is a functor,

• u if the AIS is an argument,

• l if the variable is identified to the left,

• r if the variable is identified to the right,

• f if the merge operation to be used is fusion.

The string for the in-avs is a string of the following form. A pair at-
tribute+values is coded as a string att =value1 +value2 +...+valuen . A
sequence of pairs is written as follows: pair1 &pair2 &...&pairn . out-avs
can be left empty if it is identical with the in-avs.

The pavss are entered as follows. A single statement is written in the
form att :varin :varout , where att is the role predicate, varin is the
input name and varout the output name. These names can be left empty.
(Note that the empty sequence is not a variable name, but is treated as the
absence of a variable name.) A sequence of such statements is entered with
& as a separator.

The semantics is defined as follows. If you take a look at drs.ml, you will
find that the type of a DRS is recursive, and uses a number of other types.
Literals have the form pred (term1,..., termn). Notice that we do not
distinguish terms from atomic formulae. A DRS consists of a head and a
body. The head is a set of variables, the body a list of clauses. A clause is
either a DRS, an equation, a literal, a unary constructor applied to a DRS, a
binary constructor applied to two DRSs, a unary quantifier applied to some
variables and a DRS, or a binary quantifier applied to some variables and
two DRSs.

1. H(L): L a sequence of strings, separated by + gives a head;

9

2. B(L): L a list with + as separator, defines a body;

3. L(P): P a list formed by using +. The first member is a predicate, the
others are arguments. L stands for ”Literal”.

4. E(T +U): T a term, U a term gives an equation;

5. D(H +B): for DRS consisting of head H and body B ;

6. U(S +D) for a unary constructor S and a DRS D ;

7. P(S +H +D) for a unary quantifier S , a head H and a DRS D ;

8. Q(S +H +D1 +D2) for the quantified DRS with quantifier name Q , vari-
able set H , nucleus D1 and scope D2 ;

9. J(S +D1 +D2) for a binary constructor S and DRSs D1 and D2;

10. T(s) for a string s defines a term.

There is a special unary operator ”null” such that UnDrs("null", d) is a
clause, where d is a DRS. There are no sanity checks on the DRS constructor
names.

(E) Add morphological decompositions:

mor_add "Lehrer" ["2"; "msc"; "s"; "n"];;

mor_add "Lehrer" ["2"; "msc"; "s"; "g"];;
(15)

A morphological decomposition consists in a string (the word you type in
eventually, when you parse) and a sequence of morphemes. The morphemes
must appear in the list under (D) or else the parse will fail for that word. You
can add any number of such bindings of words to sequences of morphemes.

(F) Create the hashtables:

refresh_lexicon ();; (16)

(G) That’s all.

10

