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Abstract

The present paper is based on [11], where a number of conjectures
are made concerning the structure of the lattice Ext(Kt) of normal
extensions of the tense logic Kt. That paper was mainly dealing with
splittings of Ext(Kt) and some sublattices, and this is what I will con-
centrate on here as well. The main tool in analysing the splittings of
Ext(Kt) will be the splitting theorem of [7]. In [11] it was conjectured
that each finite subdirectly irreducible algebra splits the lattice of nor-
mal extensions of K4t and S4t. We will show that this is not the case
and that on the contrary only very few and trivial splittings of the
mentioned lattices exist.

∗I wish to thank Prof. Rautenberg for suggesting this work to me and for waiting
patiently for two years until I started it. Thanks also to two anonymous referees and
Frank Wolter for helpful discussion of this paper. One of the referees deserves special
mentioning for his precise and detailed criticism.
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A Splittings in Lattices of Logics

Definition 1 Let L be a lattice. p ∈ L is said to split L iff there is an
element q such that ∀x ∈ L : x ≥ q ⇔ x 6≤ p. Equivalently, if L is complete
p splits L iff p is prime in L, that is, p ≥ 〈xi | i ∈ I〉 implies p ≥ xi for
some i ∈ I. If p splits L, q is uniquely determined and called the splitting
companion of p. We write L/p for q. Dually, an element q co-splits L if
there is a splitting element p such that L/p = q.
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Dually, p co-splits L iff p is -prime. Note that if p splits L then p must be
-irreducible, that is, p = 〈bi | i ∈ I〉 implies p = bi for some i ∈ I. In the

lattices we are going to study an element p is -prime iff it is -irreducible;
however, -irreducibility does not imply -primeness. The definition of a
splitting is with minor differences the one given in [8] who also noted that p
splits a lattice iff it is prime in that lattice. For a brief history of the notion
of a splitting see [7]. The classical case of a splitting is a result by Dedekind
which states that a lattice L is modular iff the lattice N5 pictured below
cannot be embedded into L.
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This can be rephrased by saying that an equational theory Θ of lattices
contains the modular laws iff it is not contained in the theory of N5; in other
words, the equational theory of N5 splits the lattice of equational theories
of lattices. A less familiar example is a folklore result from the theory of
orthomodular lattices (see [6]). An ortholattice 〈L,u,t,′ 〉 is orthomodular
iff it does not contain the ortholattice B6 as a sublattice.
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In [2], [3], [4] and [9], [10], [12] splittings have been applied to modal
logics and quite interesting theorems were proved about splittings in this
particular setting. There are three reasons why splittings should interest a
logician. The first was already discussed in [8]. Take two logics Θ and Λ
and assume that Θ ⊆ Λ. Then define ∇Θ(Λ) to be the set of cardinalities
of independent axiomatizations of Λ over Θ. Formally, n ∈ ∇Θ(Λ) iff there
is a set X of axioms of cardinality n such that for no Y ⊆ X of cardinality
less than n, Λ = Θ(Y ). In our case, since the language is countable and
contains conjunction, there are only three possibilties for ∇Θ(Λ):

∇Θ(Λ) = ∅
∇Θ(Λ) = {1, . . . , n}
∇Θ(Λ) = {ω}

The first occurs exactly when Λ = Θ. In the second case Λ is called finitely
axiomatizable over Θ. Now McKenzie notes in [8] that

Proposition 2 Λ co-splits Ext(Θ) iff ∇Θ(Λ) = {1}. �

Since for example S5 co-splits Ext(S4) ([12]) any axiomatization of S5 over
S4 must contain a single axiom which axiomatizes S5 over S4. G on the
other hand does not split Ext(K4) and consequently, since 1 ∈ ∇K4(G), we
also have 2 ∈ ∇K4(G).

A second property of splittings is their strong connection with com-
pleteness questions. Let FsΘ(Λ) denote the set of logics containing Θ with
exactly the same Kripke-models as Λ. Following [12] we call FsΘ(Λ) the
FINE-spectrum of Λ over Θ. Λ is called complete if Λ is the largest
element of FsΘ(Λ) and strictly complete if it is the only element of its
spectrum. In [12] and [3] it is shown that if both Θ and Λ are complete
and Λ is a union of co-splitting logics of Ext(Θ) then Λ is strictly complete.
Since the proofs are given there only for special settings we will prove the
general statement here. Let L = 〈L,u,t〉 be a complete lattice and N ⊆ L
and arbitrary subset. Let SpN (a) = {b | (∀x ∈ N)(x ≥ a⇔ x ≥ b)} denote
the N-spectrum of a in L. Call a N-complete if a is the largest element
in its N-spectrum and strictly N-complete if it is the only element in its
N-spectrum. a is N-complete iff a = 〈b|b ∈ N, b ≥ a〉. In the special case
where N is the set P of prime (or splitting) elements of L we write Psp(a)
for SpP(a) and call this the prime spectrum of a. In contrast to other
spectra, the prime spectrum is always an interval.

Proposition 3 For every a there are a0 and a0 such that Psp(a) = [a0, a
0].

a0 is P-complete and a0 is a union of co-splitting logics. Consequently, if
a = a0 and a is P-complete then a is strictly P-complete.
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Proof. Clearly, a0 = 〈p | p ∈ P, p ≥ a〉 satisfies the requirements.
Now define a0 = 〈L/p | p ∈ P, p � a〉. If c ∈ Psp(a) then a0 ≤ c,
for if p ∈ P then p � a ⇔ p � c whence L/p ≤ a ⇔ L/p ≤ c and
so c ≥ 〈L/q|p ∈ P, p � a〉 = a0. Conversely, if a0 ≤ c ≤ a0 then
p ≥ c⇔ p ≥ a for all p ∈ P and so c ∈ Psp(a). �
It is easily seen that if N ⊇ P then SpN (a) ⊆ Psp(a). Hence if a = a0 and
a is N-complete, a is P-complete and thus strictly P-complete and therefore
strictly N-complete. To connect this result with modal logic, consider again
the case of S5. It is known that Λ splits the lattice of S4-extensions iff Λ is
the logic of a finite one-generated Kripke frame. Thus P is the set of logics LΓ
for finite one-generated Γ and N the set of LΓ for arbitrary Kripke-frames
Γ. S5 is a co-splitting logic, thus S5 = S50 and S5 is complete. Hence S5
is strictly complete. Moreover, our proposition gives us something stronger;
namely, since S5 has the finite model property (f.m.p.), S5 is P-complete.
Hence any extension of S4 admitting the same finite one-generated frames
as S5 is identical to S5. For example, this allows to decide positively that
S4.5 = S4(�♦�p → �p) = S5. Moreover, any extension of S5 lacks at
least one of the finite models of S5. This allows to conclude quite quickly
that the lattice of extensions of S5 is isomorphic to 1 + ω?, where ω? is the
converse of ω and n ∈ ω? represents the logic of the n-point cluster.

Finally, splittings relate quite intimately with certain decidability ques-
tions. For suppose that Θ splits Ext(Λ); then the problem ‘Λ(P ) ⊇ Λ/Θ’ is
equivalent to ‘P 6∈ Θ’; thus if Θ is decidable, so is the problem ‘Λ(P ) ⊇ Λ/Θ’.
If in addition Λ/Θ is decidable, the problem ‘Λ(P ) ⊆ Λ/Θ’ is decidable as
well. This can be generalized to the following proposition.

Proposition 4 Let Θi, i ∈ n, be logics splitting the lattice Ext(Λ). If all Θi

are decidable, e.g. if they are modal theories of some finite frames, and if
also 〈Λ/Θi|i ∈ n〉 is decidable, then the problem ‘Λ(P ) = 〈Λ/Θi|i ∈ n〉’
is decidable as well.

Proof. Observe that ‘Λ(P ) ⊇ 〈Λ/Θi|i ∈ n〉’ is equivalent to ‘P 6∈ Θ0&P 6∈
Θ1& . . .&P 6∈ Θn−1’. �

It seems therefore a natural question whether there are interesting appli-
cations of splittings in tense logics. Since the extension lattices of K4 and
S4 are rather rich in splittings it might be hoped that the extension lattices
of their tense extensions K4t and S4t defined below share this property.
Our results, however, are negative. In tense-logics there are very few split-
tings. Thus there are few logics which share the rather pleasing properties
of co-splitting extension. And this in turn suggests that in general modal
logic the applications of this method will be rather limited.
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B Tense Logics

The lattices we will discuss will be the extension lattices Ext(Θ) for some
normal tense logic Θ. As usual, there are denumerably many propositional
variables p, q, r, ..., the boolean connectives ∧,¬,→, . . . and the two modal
operators 2+,2− with their duals 3+,3−. A normal tense-logic is a set
Λ of wff’s composed from variables and the above symbols which contains all
the axioms of classical logic, the axioms BD+ : 2+(p→ q) → .2+p→ 2+q,
BD− : 2−(p→ q) → .2−p→ 2−q, Z+ : p→ 2+3−p, Z− : p→ 2−3+p and
is closed under MP, substitution and MN+ : P/2+P , MN− : P/2−P . The
smallest tense logic is denoted by Kt. The lattice Ext(K) of normal modal
logics can be embedded into the lattice of normal tense logics by interpreting
2 as 2+ which turns the language of modal logics into a sublanguage of tense
logic. This defines a translation (−)+ of modal formulae into tense formulae
but it can also be used to translate modal logics into tense logics. If Λ ∈
Ext(K) then take Λ+ to be the smallest normal tense logic containing all P+

with P ∈ Λ. This defines a -homomorphism (−)+ : Ext(K) → Ext(Kt).
Instead of Λ+ we usually write Λt, following common practice. Likewise,
the map (−)− is defined by identifying 2 with 2−. Thus, Alt+

1 denotes the
formula resulting from the axiom Alt1 by replacing � by �+ throughout
and Alt−1 the formula resulting from Alt1 by replacing � uniformly by
�−. So, K4t is the same as K4+ (and incidentally also the same as K4−).
Equally, K4.1t = K4+.1+(6= K4−.1−)!. There are also maps (−)+, (−)− :
Ext(Kt) → Ext(K) defined by restricting a tense logic Λ to its fragments
without 2− vz. without 2+. Both are -homomorphisms and by semantic
inspection Λ = (Λ+)+ = (Λ−)−. Moreover, (−)+ is the right adjoint of
(−)+, that is, for all Λ,Θ: Λ ⊆ Θ+ ⇔ Λ+ ⊆ Θ; and dually for (−)− and
(−)−.

The semantics for tense logics is straightforward from the simple modal
case. A tense algebra is an object A := 〈A, τ+, τ−〉, where A = 〈A,−,∩, 1〉
is a boolean algebra and τ+, τ− unary operators satisfying τ◦1 = 1 and
τ◦(a ∩ b) = τ◦a ∩ τ◦b, ◦ = +,−. A tense-frame is an object Γ = 〈G,�〉,
where G is a set and � ⊆ G × G a relation on G i.e. tense-frames are just
Kripke-frames. A map p : Γ → ∆, ∆ = 〈D,�〉, is a t-morphism iff
(�h) x�Γ y ⇒ p(x) �∆ p(y)
(+c) p(x) �∆ y ⇒ (∃u)(p(u) = y&x�Γ u)
(−c) y �∆ p(x) ⇒ (∃u)(p(u) = y&u�Γ x)

If p is injective, we say that Γ is a generated subframe of ∆. It is easy
to see that generated subframes correspond to full connected subsets of ∆.
Hence, if ∆ is connected and Γ a generated subframe, it follows that Γ = ∆.
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If S ⊆ D is a subset, we call the least generated subframe containing S the
transit of S in ∆ and denote it by T(S,∆). We say, ∆ is one-generated
if ∆ = T({s},∆) for some (and hence any) s ∈ D. Evidently, ∆ is one-
generated iff ∆ is connected. We write p : Γ → ∆ whenever p is a t-morphism
and p : Γ ; ∆ for an arbitrary map.

There is a dual correspondence between finite frames and finite algebras.
A finite algebra A uniquely determines a frame F (A) = 〈G(A),�A〉 with
G(A) the set of atoms of A and a �A b iff a ≤ −τ+− b. A finite frame
Γ = 〈G,�〉 uniquely determines an algebra A(Γ) = 〈℘(G), τ+

Γ , τ
−
Γ 〉 where

℘(G) is the powerset algebra of G and τ+
Γ A = {g ∈ G | ∀h : g�h⇒ h ∈ A},

τ−Γ A = {g ∈ G | ∀h : h� g ⇒ h ∈ A}. It is standard to verify Γ ∼= F (A(Γ))
and A ∼= A(F (A)).

Proposition 5 For finite A the following are equivalent:
(i) A is subdirect irreducible.
(ii) A is directly irreducible.
(iii) F (A) is connected.
(iv) A is simple.

If either of (i) - (iv) holds, then LA is -irreducible.

Proof. If (i) holds then (ii) holds as well. Moreover, since F (A×B) is the
disjoint union (= co-product) of the frames F (A) and F (B), (ii) and (iii)
are clearly equivalent. Finally, if F (A) is connected, it is one-generated and
therefore A subdirectly irreducible (Goldblatt [89]) whence (iii) implies (i).
By duality, homomorphic images of A are generated subsets of F (A) and
thus (iii) and (iv) are equivalent. Finally, for finite A the implication (i) ⇒
(v) follows from universal algebra. �
For infinite algebras some of the equivalences are not valid. Finally, recall
the notion of a generalized frame from [13] which is a pair 〈Γ,G〉 such
that Γ is a tense-frame and G ⊆ 2Γ a set closed under complementation,
intersection and the operators τ+

Γ , τ
−
Γ . We will not use them much; let us

just state that every tense algebra can be thought of a set algebra over a
tense-frame whose points are the ultrafilters of that algebra. If Γ is a frame
and X is a set of variables, γ : X → 2G is called a valuation. If P is
based on variables of X, 〈Γ, γ, g〉 |= P is well defined by induction on P ,
the critical cases being 〈Γ, γ, g〉 |= 2+Q iff ∀h : g � h ⇒ 〈Γ, γ, h〉 |= Q and
〈Γ, γ, g〉 |= 2−Q iff ∀h : h � g ⇒ 〈Γ, γ, h〉 |= Q. We write 〈Γ, γ〉 |= Q if
∀g ∈ G : 〈Γ, γ, g〉 |= Q and Γ |= Q if ∀γ : var(Q) → 2G : 〈Γ, γ〉 |= Q. The
logic of Γ is simply LΓ = {Q | Γ |= Q}. A logic Λ is called tabular iff there
is a finite Γ such that Λ = LΓ. Analogously, a valuation α : X → A into an
algebra A = 〈A, τ+, τ−〉 is defined.
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If Γ is finite, one can define a diagram of Γ on a set {pg | g ∈ G} of
propositional variables as follows:

∆(Γ) =
∧
〈ps → ¬pt | s 6= t〉

∧
∧
〈ps → 3+pt | s� t〉

∧
∧
〈ps → 2+¬pt | s 6 t〉

∧
∨
〈ps | s ∈ G〉

Here, s and t range over points of G. With the abbreviation 2(0)P := P
and 2(n+1)P := 2+2(n)P ∧2−2(n)P ∧2(n)P we can now state the

Theorem 6 (Splitting Theorem) Let Θ be a tense-logic with f.m.p. Then
Λ splits Ext(Θ) iff Λ = LΓ, where Γ is finite (and thus has a diagram ∆(Γ)),
connected and there is a m such that for every Θ-algebra A:

(†) If A 2 2(m)∆(Γ) → ¬pg then for every m′ A 2 2(m′)∆(Γ) → ¬pg.

A proof of this splitting theorem can be found in [7]. Suffice it to say here
that if Λ splits Ext(Θ) then Λ is -irreducible and so Λ = LA for a s.i. A. So
if Θ has f.m.p., then Θ = 〈LA | A f.s.i.〉 = 〈LΓ | Γ finite, connected〉.
And if B is infinite or not s.i. then for no finite connected Γ LΓ ⊆ LB

but 〈LΓ | Γ finite,connected〉 ⊆ LB, so that LB is not prime in Ext(Θ).
Since for any Λ there is a B such that LB = Λ, Λ splits Ext(Θ) iff Λ is
the logic of a one-generated finite frame. If we call a logic Θ k-transitive
if 2(k)p → 2(k+1)p ∈ Θ we have the following corollary essentially due to
Rautenberg ([9]):

Corollary 7 Let Θ be a k-transitive tense logic with f.m.p. Then Λ splits
Ext(Θ) iff Λ = LΓ for a finite and connected Γ.

The intuition behind k-transitivity is the following: call a function w :
{0, . . . , `} → G, ` ∈ ω, a path of length ` in Γ, if ∀i < ` : w(i) � w(i +
1) or w(i) � w(i + 1). A frame is k-transitive if any pair of points that
can be connected at all can be connected by a path of length ≤ k. The
axiom of k-transitivity forces all frames to be k-transitive. k-transitive logics
are therefore easy to deal with. But the logics K4t, S4t, which are of
considerable interest, are not among them although the frames for those
logics are transitive as modal frames, which may have caused the error in
[11] in which he states that S4t and K4t are 1-transitive. They are not,
and this forces us to look more deeply into the structure of their extension
lattices.

In [7], a generalization of a theorem by Blok in [3] to poly-modal logics
is proved. Call Γ cycle-free if there is a k ∈ ω such that there exists no
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path of length k in Γ. Then for any cycle-free tense frame Γ LΓ splits EΘ as
was conjectured in [11]. However, it is quickly checked that there is exactly
one cycle-free tense frame namely 〈{s}, ∅〉, which we denote by x .

C Subreducing Sequences

To prove that a logic Λ does not split the lattice of extensions of Ext(Θ) is
an altogether different task than to prove that it does. The most direct way
is to show that Λ is not prime in the lattice by naming a sequence of logics
〈Ξi | i ∈ ω〉 such that Λ 6⊇ Ξi for any i ∈ ω but Θ ⊇

⋂
〈Ξi | i ∈ ω〉. This

motivates the following

Definition 8 A sequence 〈ai | i ∈ I〉 of elements of a complete lattice L
subreduces p if for all i ∈ I: p 6≥ ai but p ≥ 〈ai | i ∈ I〉. A sequence of
frames 〈∆i | i ∈ ω〉 subreduces Γ if 〈L∆i | i ∈ ω〉 subreduces LΓ.

A simple example for a subreducing sequence is the sequence of unravel-
lings or ramification stages for a modal frame with a cycle ([10]). It can be
shown that a modal logic Λ splits the lattice Ext(K) only if Λ = LΓ for a
finite, one-generated and cycle-free Γ by showing that if Γ contains a cycle,
the infinite series of ramification stages subreduces Γ. Although of some im-
portance, the ramification technique is not general enough for our purpose.
Even Kt requires a more sophisticated technique which I will describe now.
The essence is the notion of a local t-morphism. Before we can define it let
us introduce some more technology. Define the modal degree dg(P ) of P
inductively by

dg(p) = 0 p a variable
dg(¬P ) = dg(P )
dg(P ∧Q) = max{dg(P ), dg(Q)}
dg(2+P ) = dg(P ) + 1
dg(2−P ) = dg(P ) + 1

Write Ln(Γ) for the set of formulae P of degree ≤ n such that Γ |= P . Then
by the Compactness Theorem 〈∆i | i ∈ ω〉 subreduces Γ if Li(∆i) ⊆ Li(Γ)
but L∆i * LΓ for all i ∈ ω. Alternatively, if U is a non-principal ultrafilter
on ω then L(

∏
U ∆i) ⊆ LΓ and hence

⋂
〈L∆i | i ∈ ω〉 ⊆ LΓ. Now if Γ is a

frame and g ∈ G, define T k(g,Γ) to be the set of points s such that there is
a path of length ≤ k from g to s and let s� t iff s�Γ t. This defines the k-
transit Tk(g,Γ) = 〈T k(g,Γ),�〉 of g in Γ. Now let p : ∆ ; Γ be an arbitrary
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map. We call p a k--localic t-morphism with respect to g iff p satisfies (�h)
and (±c) only locally, that is, for all x ∈ Tk−1(g,Γ), y ∈ Tk(g,Γ)
(�h) x� y ⇒ p(x) � p(y)
(+c) p(x) � y ⇒ ∃u(p(u) = y&x� u)
(−c) y � p(x) ⇒ ∃u(p(u) = y&u� x)
The main reason for studying localic t-morphisms is the following lemma,
which makes use of the notion of an admissible map. A map π : ∆ ; Γ is
called admissible for γ : X → 2G if all sets γ(p), p ∈ X, are unions of fibres
of π, that is, unions of sets of the form π−1(x) for x ∈ D. In that case γ
defines a unique valuation δ : X → 2D via δ(p) = π[γ(p)].

Lemma 9 Let p : ∆ ; Γ be k-localic with respect to g. Let γ, δ be valuations
on Γ,∆ such that p is admissible for δ. Then for all P with dg(P ) ≤ k

〈∆, δ, g〉 |= P ⇔ 〈Γ, γ, p(g)〉 |= P

Proof. By induction on P . 2

Now suppose p : ∆ ; Γ is m-localic with respect to g ∈ G and that
Γ = Tk(g,Γ). Then Lm−k(∆) ⊆ Lm−k(Γ). This is so because if y ∈ T k(g,Γ)
then Tm−k(y,Γ) ⊆ Tm(g,Γ) and if P is of degree ≤ m − k and 〈Γ, γ, y〉 |=
P then with δ defined by δ(q) = p−1[γ(q)] we have 〈∆, δ, p−1(y)〉 |= P
whence ¬P 6∈ Lm−k(Γ) implies ¬P 6∈ Lm−k(∆). Thus if 〈∆i | i ∈ ω〉 is
a sequence of frames such that there are points di ∈ Di and pi : ∆i ; Γ
which are m-localic with respect to di but no t-morphism exists from ∆i to
Γ then 〈∆i | i ∈ ω〉 subreduces Γ. This connects with the Splitting Theorem
as follows. We have Γ 2 2(m)∆(Γ) → ¬pg for all m. Hence ∆m+k+1 2
2(m)∆(Γ) → ¬pg as dg(2(m)∆(Γ) → ¬pg) = m + 1 and Lm+1(∆m+k+1) ⊆
Lm+1(Γ). But if we had ∆m+k+1 2 2(n)∆(Γ) → ¬pg for every n, then we
take n large so that ∆m+k+1 = Tn(d,∆m+k+1) for some d (assuming that
the frames are connected). Then ∆m+k+1 2 2(n)∆(Γ) → ¬pg simply means
that ∆m+k+1 � Γ (see [7]). But we have excluded that. Thus, (†) fails for
every m and so Γ does not split.

For the definition of subreducing frames we use the following construc-
tion. Take two frames Γ,∆ and let s ∈ G, t ∈ D. Then let Γ s ot ∆ denote
the frame 〈G s ot D,�〉 where G s ot D = G× {0} ∪D × {1} − {〈t, 1〉} and �

is defined by
(i) 〈a, 0〉� 〈b, 0〉 iff a�Γ b
(ii) 〈a, 1〉� 〈b, 1〉 iff a�∆ b
(iii) 〈s, 0〉� 〈b, 1〉 iff t�∆ b

This is well-defined whenever s � s ⇔ t � t. If Γ,∆ are transitive � will
be taken to be the transitive closure of the relation defined above. We call
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Γ s ot ∆ a book and Γ and ∆ the pages. When the choice of the points is
clear we write Γ o∆ instead of Γ s ot ∆. With two points g � h ∈ G fixed we
define nΓ, n ≥ 1, by

1Γ = Γ
2k+1Γ = 2kΓ g og Γ
2k+2Γ = 2k+1Γ h oh Γ

�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�• • • • •

Γ Γ Γ Γ

g g gh h

- -� �
QQ

QQ��

��

∆

We distinguish the elements of different pages in nΓ by indices 0, . . . , n− 1.
The map φ : xi 7→ x is a t-morphism; for if xi � yj then either i = j and
thus x� y by (i) and (ii) or i+ 1 = j and x� y by (iii). Now if φxi � y we
have y = φyi and xi � yi. Likewise for x� φyi. The same can be shown in
the transitive case. By this we see that any map ψ : nΓ o∆ ; Γ satisfying
ψ(xi) = x is m − 1-localic with respect to any point x0 of the first page.
This suggests that by taking a suitable ∆ so that there is no t-morphism
from nΓ o∆ to Γ for any n ∈ ω we have a subreducing sequence for Γ.

D Splittings of Tense Logics

We will study the extension lattices of Kt, K4t and S4t. The method is
uniform in all three cases and can be transferred to numerous other cases.
Each of these logics has f.m.p. (see [5]) and therefore only finite algebras can
induce splittings. Thus we can concentrate on the Kripke-frames of those
algebras. Let me first introduce you to an important collection of frames,
the garlands. A garland is a zigzag frame which looks like this:

G2n−1

•
0

•
2

•
2n− 2

•
1

@
@@I

�
���

•
3

@
@@I

•
2n− 1

@
@@I· · ·

Formally, we define Gn as a frame 〈n + 1,�〉 where i � j iff i = j or i is
odd and j = i ± 1. Thus, Gn has n arrows and n + 1 points. Note that a
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garland is isomorphic to a book where each page is the frame • •- .
Garlands can be characterized modally. To see this, recall some notions from
standard modal logic. A tense-frame Γ is called a cluster if Γ = 〈{s}, ∅〉 or
Γ = 〈G,G×G〉. A frame is of alternativity n iff every point sees at most
n points and can only be seen by at most n incomparable points and it is of
depth ≤ n if every strictly ascending chain of points has at most nmembers.
Finally, Γ = 〈G,�〉 is called meager if there are no two points s� t� s. A
connected frame Γ is a garland iff it is reflexive, meager, of alternativity 3 and
of depth 2. Thus Γ is a garland iff LΓ ⊇ Ga := S4t.Grz+.Alt+

3 .Alt−3 .J
+
2 ,

which is the logic of all garlands. (Recall that frames for S4t.Grz+ are
meager, that frames for Kt.Alt+

3 .Alt−3 are of alternativity ≤ 3 and that
frames for J+

2 are of depth 2.) We first prove an important

Lemma 10 Suppose that Γ is not a cluster. Then LΓ splits Ext(Kt),
Ext(K4t) and Ext(S4t) only if Γ is a garland.

Proof. Γ is finite and connected and ]G = n. Since Γ is not a cluster, there
are points g, h such that g � h 6 g. Then Γ = Tn(g,Γ). Now consider the
frame mΓ o0 G2n+8. This is well defined in case g and h are both reflexive
points. In case one of them is not reflexive we take mΓ o0 G◦

2n+8 instead,
where G◦

2n+8 is identical to G2n+8 except that 0 6 0. We have to show
that if there is a t-morphism p : mΓ o0 G

(◦)
2n+8 → Γ then (a) Γ is reflexive

and transitive, (b) Γ is of alternativity ≤ 3, (c) Γ is meager and (d) Γ is
of depth ≤ 2. For then Γ splits the lattice only if it satisfies (a) - (d) and
thus is a garland. The proof goes as follows. Consider g = p(n + 4) where
n + 4 ∈ mΓ o0 G

(◦)
2n+8 is in the last page i.e. is right in the middle of the

garland. Now as Γ = Tn(g,Γ) any point t ∈ G can be connected by a path
v of length ≤ n from g. By (±c) this path v has a preimage w with starting
point n+4. The end point e of w must be a point of the garland, moreover,
it lies in between 4 and 2n + 4. This implies (a) that e � e. Consequently,
t � t since t = p(e). And if t � s� r then by (+c) there are preimages x, y
with e�x�y. But as the garlands are transitive, e�y and so t�r. To show
(b), t has at most three successors one of which is t, since each successor has
a preimage succeeding e. But e has at most three successors in mΓ o0 G

(◦)
2n+8.

Likewise for predecessors of t. Now, suppose that t � u � t. Then by (+c)
there is a x such that e� x, p(x) = u and a y such that x� y and p(y) = e.
Now either e = x or x = y. If e 6= x then y = x; thus u = p(x) = p(e) = t.
If x = e then also u = t. This shows (c). For (d) observe similarly that if
we had an ascending chain t� u� v then we could find an ascending chain
e � f � h such that p(f) = u, p(v) = h; but then either e = f or f = h, so
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that this chain is not strictly ascending. Neither is then t � u � v strictly
ascending. 2

This considerably reduces the class of possible splitting frames. However,
we will also show that most of the garlands and clusters cannot split any of
these logics. This we do by establishing a lemma on splittings of Ext(Ga).

Lemma 11 LΓn splits Ext(Ga) iff n ≤ 1.

Once this lemma is proved it follows that Γn cannot split Ext(Kt), Ext(K4t)
nor Ext(S4t) for n > 1 since all these lattices contain Ext(Ga).

Proposition 12 There is a t-morphism p : Gm → Gn iff n = 0, m = ω or
n divides m.

Proof. (⇒) Suppose p : Gm → Gn is a t-morphism. It is clear that n = 0
is always possible. Thus let n > 0. Write i ≡ j for p(i) = p(j). We now
have the following

Claim 13 On the condition that n > 0, if i ≡ j then i ≡ j(mod 2). More-
over, if i ≡ j then i − 1 ≡ j − 1 or ≡ j + 1 and i + 1 ≡ j − 1 or ≡ j + 1,
whenever these points exist.

For suppose i ≡ j and that i is even and j is odd. Then j � j − 1, j and
if j + 1 ≤ m then also j � j + 1. By (+c) and the fact that i � k iff k = i
we get j − 1 ≡ i and j + 1 ≡ i. Similarly, if i > 0 then by (−c) i − 1 ≡ j
and if i < m also i + 1 ≡ j. Continuing this argument we get k ≡ ` for all
k, ` and hence n = 0, which we have excluded. Now let again i ≡ j. Then if
both are even, i− 1, i, i+ 1 � i and j − 1, j, j + 1 � j whenever these points
exist. By (−c), i− 1 ≡ j− 1, j or j+1. But since j is even and i− 1 is odd,
i− 1 ≡ j cannot hold. Likewise, i+ 1 ≡ j as well as i ≡ j − 1, j + 1 cannot
occur. 2

In order to prove that m is a multiple of n we look at subsets C of Gm

which are connected and on which p � C is injective. Such sets are called
partial sections. If p � C is also surjective, in other words, if ]C = n + 1
then C is called section. We now prove

Claim 14 If C is a partial section and ]C > 1 then C is contained in
exactly one section.

To see this observe first that since C is connected and p is a �-homomorphism,
p[C] is connected as well. Therefore, C ⊆ {0, . . . ,m} is an interval as is
p[C] ⊆ {0, . . . , n}. If i, i + 1 ∈ C and p : i 7→ k then by the above claim
p : i+1 7→ k+1 or k−1. If p : i+1 7→ k+1 then p : i+2 7→ k+2, for by the
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same argument p : i + 2 7→ k, k + 2 but p(i + 2) = k contradicts injectivity
of p � C. But if p : i + 1 7→ k − 1 then similarly p : i + 2 7→ k − 2. So, by
induction, either p � C is a strictly increasing or strictly decreasing function.
Now if C = {i, . . . , j} and p[C] = {k, . . . , `} and p is monotone increasing
then if k > 0, p(i) = k > 0 we get that by (±c) either i− 1 or i+ 1 is in the
preimage of k− 1. But p(i+ 1) = k+ 1 Thus i > 0 and p(i− 1) = k− 1. So
we add i− 1 to C. Likewise, p(j) = ` and if ` < n then j < m and we add
j + 1 to C. Similarly, if p is decreasing. 2

Now Gm contains exactly m subsets {i, i + 1}. p is injective on each of
them and they are all contained in one and only one section. Each section
contains n + 1 points and thus n subsets {j, j + 1}. Hence n divides m or
m = ω.
(⇐) If n = 0 take p : m 7→ 0. If n > 0, Gm must be covered by sections in
the following way. If S, T are sections then S = T or ](S ∩ T ) ≤ 1. Each
section is an interval of n+1 points and each pair {i, i+1} is in exactly one
section. Hence the sections are Sk = {nk, . . . , n(k + 1)}. On each section p
is bijective. Suppose that p is increasing on Si. Then p(n(k+1)) = n. Thus
p must be decreasing on Si+1 and vice versa. Thus let p be increasing on all
even sections S2i and decreasing on all odd sections S2i+1. Thus p(i) = s iff
i = 2kn+s or i = 2(k+1)n−s for some k. We show that p defined this way
is a t-morphism. (�h) is as follows. We have i� i and p(i)�p(i). Moreover,
if i� i+ 1 or i� i− 1 then i is odd. Now of p(i) = s then either i = 2kn+ s
or i = (2k + 2)n − s. In both cases s is odd as well and s � s + 1, s − 1
and {s − 1, s + 1} = p[i − 1, i + 1]. Similarly if i is even. (+c) and (−c)
are straightforward. If i ∈ S, p(i) � `, then take s = p−1(`) ∩ S. Since
p � S : 〈S,�〉 → Gn is an isomorphism, i� s as well. Similarly for (−c). 2

With this result in our hands we can probe quite deeply into the structure
of Ext(Ga) and also prove the desired lemma. We have that Ga = LGω

since LGω ⊇ LGn for every n. Each logic containing Ga must be complete.
This is due to

Theorem 15 Every extension of Kt.Alt+n .Alt−m is canonical.

Proof. The proof is a straightforward generalization of the one given in [1].
One has to observe that first of all Kt.Alt+

n .Alt−m is canonical and so if Λ
contains this logic, in every canonical generalized tense-frame frame 〈Γ,G〉,
G ⊆ 2G, Γ is a frame for Kt.Alt+

n .Alt−m and so for every point g ∈ G,
T k(g,Γ) is finite. This is enough to see that Γ must be a frame for Λ. 2

Incidentally this shows an interesting result on extensions of K4t. It is
well known that an extension of K4 is tabular iff it is of finite codimension
in Ext(K4) (see for example [10]). The above theorem shows that every
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extension of Ext(K4t) of finite codimension is complete. (I owe this remark
to Frank Wolter.)

Corollary 16 Every extension of K4t of finite codimension is complete and
of finite alternativity.

Proof. If Λ ⊇ K4t is of finite codimension in Ext(K4t) then Λ+ is of finite
codimension in Ext(K4) and hence tabular. For if 〈Θi|i ∈ α〉, α ∈ Ord,
is a strictly ascending chain of modal logics, then 〈Θ+

i |i ∈ α〉 is a strictly
ascending chain of tense logics by the fact that (−)+ is monotone and Θi =
Θj implies Θi = (Θ+

i )+ = (Θ+
j )+ = Θj ; thus αmust be finite. Consequently,

Λ+ = LΓ for a frame Γ with ]G = n ∈ ω; thus K.Altn ⊆ Λ+ from which
K.Alt+

1 ⊆ Λ, by left adjointness. Similarly we prove that Kt.Alt−m ⊆ Λ for
some m ∈ ω. Thus Λ is of finite alternativity and complete. 2

We do not believe, however, that every extension of finite codimension of
either K4t or S4t is tabular although this is certainly true for k-transitive
logics, for example S4.2t and S4.3t (see below). But now back to Ext(Ga)!
The -irreducible elements are the LGn for n ∈ ω. Every proper extension
of Ga which is not trivial is therefore an intersection 〈LGn | n ∈ F 〉
where F ⊆ ω is finite. For if F is infinite we immediately have 〈LGn |
n ∈ F 〉 = Ga since Gω is contained in

∏
U Gn for a non-trivial ultrafilter

U on F . Equivalently, it is checked that the composition of the embedding
Gn ⊆ Gω with the t-morphism Gω � Gm is an n-localic map with respect
to 0. This has for consequence that every proper extension of Ga is tabular
while Ga itself is not. Such a logic is called pretabular.

Theorem 17 Ga is pretabular. 2

It is now straightforward to verify that the lattice of non-trivial proper
extensions of Ga is isomorphic to the distributive lattice freely u-generated
by 〈ω, µ〉 with mµn ⇔ n | m or n = 0. Thus the upper part of Ext(Ga)
looks like this:
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Ext(Ga)

•8

•4

•6

•2,3

•2 •3

•1

•0

•

•5 . . .

•4,3 •2,3,5

•2,5

•15

•3,5 •25 . . .

•25,3

. . .

•125 . . .�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

�
�

��

@
@

@@
�

�
��

@
@

@@

To the left of each node we have written numbers n such that the node is
the intersection of the logics of the corresponding Gn.

Proposition 18 There are infinitely many logics of codimension n in Ext(Ga).
2

This proves a conjecture in [11] that S4t has infinitely many extensions of
codimension 3 in contrast to S4 which for any n has only finitely many.
The proof of Lemma 11 is now easy. Clearly, bot Γ0 and Γ1 split the lattice.
But for n > 1 observe that the sequence 〈Gp | p prime, p > n〉 subreduces
Gn. As we have noted, this implies also that none of the garlands Gn split
Ext(S4) unless n ≤ 1. It will turn out soon that we cannot improve this
result for Ext(S4t). But for Ext(Kt) and Ext(K4t) even these cases are
ruled out. Look at the sequence 〈G◦

n | n ∈ ω〉 where G◦
n differs from Gn in

that n 6 n. The maps p : Γ◦
n ; Γ1 : j 7→ j(mod 2) and q : Γ◦

n ; Γ0 : j 7→ 0
are n-localic with respect to 0. Thus this sequence subreduces both frames
in Ext(K4t) and in Ext(K).

Lemma 19 For no n, LGn splits Ext(Kt), Ext(K4t). 2

It now remains to treat the clusters. Here the situation is quite similar to
the situation of the garlands.

Lemma 20 Suppose Γ is a cluster. Then LΓ splits Ext(Kt) and Ext(K4t)
only if Γ ∼= x and Ext(S4t) only if Γ ∼= • .
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Proof. Let n := ]G > 1 and Hk = 〈Hk,�〉 with Hk = {0, . . . , k} ×
{1, . . . , n} − {〈k, n〉} and 〈i, j〉� 〈i′, j′〉 iff (i) i is odd, i′ = i+ 1 or i− 1 or
(ii) i is even and i′ = i. This can be visualized by

Hk

@
@@I

�
���

@
@@I c@

@@I· · ·

denotes a cluster with n points and ◦ a cluster with n− 1 points. There is
no t-morphism from Hk into Γ as there is no way to map a point belonging
to an n− 1-point cluster onto a n-point cluster.

Now look at Tk(〈0, 0〉,Hk). Every point in T k(〈0, 0〉,Hk) is contained
in an n-point cluster since 〈i, j〉 ∈ T k(〈0, 0〉,Hk) iff i < k. Thus there is
a t-morphism p : Tk(〈0, 0〉,Hk) → Γ. Extend p to a map p+ : Hk ; Γ.
p+ is k-localic with respect to 〈0, i〉 for every i. Hence Lk(Hk) ⊆ Lk(Γ).
Consequently, the Hk subreduce Γ. 2

Now we have collected all the material we need to prove the splitting the-
orems. Notice that a splitting frame for any of these logics can only be
one-point cluster or a two-point garland. We will now show that the frames
not excluded by the above lemmata are indeed splitting frames.

Theorem 21 Λ splits Ext(S4t) iff Λ = L • •- or Λ = L • .

Proof. (⇐) The nontrivial part is G1. We will show that Ext(S4t)/LG1 =
S5t by proving that (†) of the Splitting Theorem holds for m = 1. Therefore
let A be an algebra satisfying LA 6⊇ S5t. Then there is a set C ∈ A of A

such that 0 < C ∩�+τ+−C. Consequently, in the underlying Kripke-frame
there are two points s � t such that s ∈ C and t ∈ τ+ − C whence t 6 s.
Now we have ∆(G1) = (pa ↔ ¬pb)∧3+pb∧3−pa∧ (2+pb ↔ pb)∧ (2−pa ↔
pa). Suppose that under these circumstances we can construct valuations
αn : {pa, pb} → A such that s ∈ αn(pa ∧ 2(n)∆(G1)). Then indeed (†) is
satisfied and by the Splitting Theorem G1 splits Ext(S4). To construct the
αn we define inductively subsets An, Bn in A as follows:

(0) B0 = τ+ − C
A0 = −B0

(i) A2k+1 = −B2k+1

B2k+1 = B2k ∩ �−A2k

(ii) A2k+2 = A2k+1 ∩ �+B2k+1

B2k+2 = −A2k+1

Furthermore define T0 = {s}, T2k+1 = �+T2k, T2k+2 = �−T2k+1. The
Tn do not necessarily belong to A. Since T2k ⊆ τ−�+T2k = τ−T2k+1
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and T2k+1 ⊆ τ+�−T2k+1 = τ+T2k+1 it follows that Tn ⊆ τ (1)Tn+2. For
τ (1)T2k+2 = τ+T2k+2∩τ−T2k+2 ⊇ T2k+1∩τ−T2k+1 ⊇ T2k and dually for odd
n. Consequently, s ∈ τ (n)Tn+1.

We now verify the following claims:
(I) An ∩Bn = ∅

An ∪Bn = 1
(II) An = τ−An

Bn = τ+Bn

(III) Tn ∩An = Tn ∩An+1

Tn ∩Bn = Tn ∩Bn+1

(IV ) Tn ⊆ �+Bn ∩ �−An

(I) is trivial, (II-IV) are verified by induction; for (II) we only need
to show A ⊆ τ−An and B ⊆ τ+Bn. By symmetry of (i) and (ii) we
may only take the case (i); B2k+1 = B2k ∩ �−A2k = τ+B2k ∩ �−A2k ⊆
τ+B2k ∩ τ+�−�−A2k = τ+(B2k ∩ �−A2k) = τ+B2k+1, A2k+1 = −B2k+1 =
−τ+B2k+1 = �+A2k+1 ⊆ τ−�+�+A2k+1 = τ−�+A2k+1 = τ− − τ+B2k+1 =
τ− −B2k+1 = τ−A2k+1. For (III) we now observe that T2k ∩B2k+1 = T2k ∩
B2k∩�−A2k = T2k∩B2k since T2k ⊆ �−A2k by (IV). T2k∩A2k+1 = T2k∩A2k

immediately follows. To prove (IV) we observe that if t ∈ T2k+1 there is a
s ∈ T2k such that s� t. By IH we have s ∈ �+B2k and therefore there is a
u�s such that u ∈ T2k∩B2k. Now u ∈ B2k∩�−A2k = B2k+1 and, as t�s�u,
t ∈ �+B2k+1. To show t ∈ �−A2k+1 we distinguish two cases: (α) t ∈ A2k+1

and (β) t ∈ B2k+1. In case (α) we immediately have t ∈ �−A2k+1 and in
case (β) we have t ∈ �−A2k. But as �−A2k+1 = �−(A2k ∪ τ−B2k) ⊇ �−A2k

we also have t ∈ �−A2k+1.
Now we put α : pa 7→ An+1, pb 7→ Bn+1. It remains to be shown that s ∈

αn(pa∧�(n)∆(G1)). Notice that (I) - (IV) together yield Tn+1 ⊆ αn(∆(G1))
whence {s} ⊆ τ (n)Tn+1 ⊆ αn(�(n)∆(G1)). And since by (III) and the fact
that s ∈ Tn+1 we have s ∈ αn(pa), everything is proved. �
From this theorem one can deduce that the lattice Ext(S4t) has exactly two
elements of codimension 2. For if Λ * L • •- then Λ ⊇ S5t; thus if Λ
is of codimension 2 it is the logic of the two point cluster.

Theorem 22 Θ splits Ext(K4t) and Ext(Kt) iff Θ = L x .

Proof. x is cycle–free and therefore splits Ext(Kt). A fortiori it splits
Ext(K4t). 2

As we see, compared to modal logics tense logics is a lost paradise. By way
of consolation I prove some ‘positive’ results:

Proposition 23 LA splits Ext(S4.2t) (Ext(S4.3t), Ext(S5t)) iff A is f.s.i.
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Moreover, an extension of these lattices is tabular iff it is of finite codimen-
sion.

Proof. We will show that S4.2t is 2-transitive. Then since S4.2t ⊂
S4.3t ⊂ S5t all logics are 2-transitive. Since they have f.m.p. (see Burgess
[84]) the proposition is proved. Now S4.2t = S4t(♦+2+p→ 2+♦+p). Thus
♦−♦+p ` ♦−♦+2+♦−p ` ♦−2+♦+♦−p ` ♦+♦−p. By the laws of S4t, 2-
transitivity is equivalent to showing ♦+♦−♦+p ∨ ♦−♦+♦−p → ♦+♦−p ∨
♦−♦+p. But this holds because ♦+♦−♦+p ∨ ♦−♦+♦−p ` ♦+♦+♦−p ∨
♦+♦−♦−p ` ♦+♦−p ∨ ♦−♦+p. Now take an extension Λ of finite codi-
mension; then it is complete and, say, of alternativity n. So Λ = LΓ for
some frame Γ. By 2-transitivity, T2(g,Γ) is a connected component of Γ for
any g and by n-alternativity ]T2(g,Γ) ≤ 2n2. As Λ = 〈LT2(g,Γ)|g ∈ Γ〉
is of finite codimension, only finitely many of the logics LT2(g,Γ) can be
different, so we can assume that Γ contains only finitely many generated
subframes. But then Γ is finite. 2
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