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1 Introduction

Modal logic is by and large the theory of a single normal operator. The great
majority of papers that develop the theory of modal logics deal with single
operator logics, while papers that are concerned with applications of modal
logics tend to use several operators, and occasionally also non-normal operators,
dyadic operators, and sorted languages. This defect has been noticed quite early
by Dana Scott in [38], but his criticism has had little effect on the research in
modal logic. Even the rise of temporal logic and dynamic logic has not changed
that to a great extent, perhaps for the reason that both were deemed to be too
different from ‘plain’ modal logic to be assimilated with it.

One can only speculate about the reasons for not dealing with several op-
erators. Beyond mere tradition we believe it is due to the great success of
modelling intuitionistic logic with modal logic, and the great interest in exten-
sions of K4 during the 70ies and 80ies. Moreover, to those in the know it must
have seemed too ambitious to develop a theory of several operators, for even
the lattice of monomodal logics is very complex. Finally, however, the interest
in modal logic and its applications was rising sharply in the late 80ies, and with
it came the quest for a theory of several operators. Rather than building such
a theory from scratch, it seemed worthwile to try to build it upon the already
existing theory of monomodal logic. One example is [19]. Goldblatt takes
the machinery of Stone representation originally used by Jónsson and Tarski
in their classic [24] and generalized it to the setting of polymodal, polyadic op-
erators. However, this was from a technical point a straightforward extension of
these methods, even though it killed the case of duality theory for modal logics
in one blow. What is left with respect to duality theory are only the known
unsolved problems in correspondence theory, such as a complete characteriza-
tion of elementary, modally definable properties. Thus, only the completeness
and decidability problems remained as new territory for research in polymodal
logic. However, they turned out to be rather involved. Already the simplest
case of bimodal logics deserves very careful proofs despite its apparent simplic-
ity. We are alluding here to the case of a bimodal logic which has no axioms
that use both of the operators. Such logics were called stratified in [16], and
independently axiomatizable or fusions of their monomodal fragments in [28].
For fusions it was shown for many properties P that they have P iff both of
their monomodal fragments have P. The list of properties includes finite model
property, completeness, canonicity and decidability. It does not contain tabu-
larity, however. In fact, it was shown in [22] that even if the fragments of a
bimodal logic Λ are tabular, then Λ can have continuously many extensions,
and – what is more –, even continuously many maximal ones (i. e. logics of
codimension 1 in the lattice of normal extensions of Λ). This result shows that
studying a bimodal logic via its monomodal fragments is a rather raw approxi-
mation, comparable to studying a monomodal logic via its completion, that is,
the smallest complete logic containing the given logic (see [5, 6] and below).

Another way to relate monomodal logics and polymodal logics was found
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earlier by Thomason in [42, 44]. He showed that there is a way to code any fi-
nite number of modal operators with a single operator such that many negative
properties (e. g. undecidability, incompleteness) are being preserved. Using
this reduction numerous counterexamples to specific conjectures in monomodal
logic have been found by first developing a counterexample with several oper-
ators, and then appealing to the properties of Thomason’s simulation. How-
ever, Thomason did not develop the full potential of this simulation. In [27]
it is shown that Thomason’s simulation preserves not only negative proper-
ties but also positive properties of logics, such as decidability, finite model
property, completeness and canonicity. Moreover, the map itself is an isomor-
phism from the lattice of n-modal logics onto an interval of logics in the lattice
of monomodal logics. In a sense, these results justify the exclusive study of
monomodal logics ex post, because by simulation a statement that is true of
all monomodal logics has a great chance of being true of polymodal logics in
general.

We have briefly introduced two different methods for comparing classes of
modal logics. The first one investigates the transfer of properties when we
extend the language while the second one defines a simulation of the logics
of one class by means of another class. As indicated above, the methods are
connected by the fact that simulations yield insights into the class of simulated
logics only via strong transfer results for the simulation. In this paper we give
three examples of transfer problems that have been studied in the past and are
of great significance, namely

• the transfer from normal polymodal logics to their fusions,

• the transfer from a normal modal logic to its extension by adding the
universal modality,

• the transfer from normal modal logic to its minimal tense extension.

Likewise, we give five examples of simulations of modal logics via modal logics,
namely

• simulations of normal polymodal logics by normal monomodal logics,

• simulations of nominals and the difference operator by normal operators,

• simulations of monotonic modal logics by normal bimodal logics,

• simulations of polyadic normal modal logics by polymodal normal logics,

• simulations of intuitionistic modal logics by normal bimodal logics.

Finally, we note that simulations of non–modal systems as modal logics form
another powerful tool for investigating modal logics. For instance, showing how
hard modal logic generally is let us note as examples the simulation of second
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order logic [43], word problems for semigroups [40], the Minsky machine [23, 9]
and [10], and for complexity results also the tiling problems [41]. However, we
shall not deal with those simulations here.

2 Fundamentals of Modal Logic

We assume that the basic notions of modal logics are familiar. Nevertheless,
the terminology is explained here briefly. It is more or less identical to [8]. The
language of κ-modal logic Lκ, κ an cardinal number, consists of denumerably
many variables pi, i ∈ ω, the booleans >, ¬ and ∧, and modal operators �i,
i < κ. Other occurring symbols are treated as abbreviations in the standard
way. Modal operators are often kept apart by using different symbols rather
than subscripts, for example �, �, � etc. Elements of Lκ are denoted by lower
case Greek letters. Logics are equated with the set of their theorems, and
so they are simply subsets of Lκ. A (κ-modal) logic is normal if it contains
the tautologies of the boolean calculus, the so-called box-distribution axioms
�i(p → q). → .�ip → �iq, for every i < κ, and is closed under substitution,
modus ponens and the rule p/�ip, for i < κ. The consequence `Λ associated
with a classical logic has as its only rule of inference modus ponens. Thus
Σ `Λ φ iff φ is derivable from Σ ∪ Λ with the use of modus ponens alone.
The smallest κ-modal normal logic is denoted by Kκ. Given a normal modal
logic Λ and a set X of formulae, then Λ⊕X denotes the smallest normal logic
containing Λ and X. A logic Λ is decidable if for every formula φ it is decidable
whether or not φ ∈ Λ. A logic has interpolation if for every formula φ→ ψ ∈ Λ
there exists a formula χ in the variables occurring both in φ and ψ such that
φ→ χ ∈ Λ and χ→ ψ ∈ Λ. Λ is Halldén-complete if for every pair formulae φ,
ψ with no variables in common, if φ ∨ ψ ∈ Λ then either φ ∈ Λ or ψ ∈ Λ.

The logics extending the system Kκ form a complete, distributive lattice,
denoted by EKκ. An important concept in the study of these lattices is the
notion of a splitting. A splitting of a lattice L is a pair 〈x, y〉 of elements such
that for every element z either z ≤ x or z ≥ y, but not both. In other words,
the pair is a splitting iff the lattice is partitioned into the ideal generated by
x and the filter generated by y. Given x, y is uniquely determined; likewise,
y uniquely determines x. For logics we use the following notation. Given a
splitting 〈Λ,Θ〉 of EKκ we say Θ is a splitting logic of the lattice EKκ and
write Kκ/Λ for Θ.

A boolean algebra is a quadruple A = 〈A, 1,−,∩〉 satisfing the standard laws
of boolean logic. An expanded boolean algebra is a pair 〈A, 〈�i|i < κ〉〉, where
�i : A → A. The operators are said to be monadic in this case. An operator
is called a hemimorphism if �i1 = 1 and �i(a ∩ b) = �ia. ∩ .�ib. A κ-modal
algebra is a pair A = 〈A, 〈�i|i < κ〉〉, where �i are hemimorphisms. (There is an
extension of notation and terminology to polyadic operators. Polyadic operators
corresponding to normal polyadic logics must be hemimorphisms with respect
to all their arguments. To avoid being overly abstract, though, we stick to the
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unary case.) The theory of an expanded boolean algebra A is the set of all
formulas φ such that h(φ) = 1 for all homomorphisms from the term-algebra
over Lκ into A. The theory of A is denoted by ThA. For a class K of algebras,
ThK =

⋂
〈ThA|A ∈ K〉. A class of algebras is a variety iff it is closed under

products, subalgebras and homomorphic images. The following is a standard
theorem.

Proposition 1 Any normal κ-modal logic is complete with respect to a vari-
ety of κ-modal algebras. The correspondence between logics and varieties is a
lattice anti-isomorphism with respect to the inclusion (of logics and varieties,
respectively).

A Kripke-frame is a pair f = 〈f, 〈Ci|i < κ〉〉, where Ci ⊆ f2 are the so-called
accessibility relations. A valuation into f is a function β : var → ℘(f). A
Kripke-model is a triple 〈f, β, x〉, where x ∈ f and β is a valuation. By induction
on φ, 〈f, β, x〉 |= φ is defined. A generalized frame is a pair F = 〈f,F〉 where F
is a system of subsets of f closed under relative complement, intersection and
the operations �i : ℘(f) → ℘(f), defined by

�ia := {y|(∀z)(y Ci z.→ .z ∈ a)}.

We call a member of F an internal set of the generalized frame. A generalized
model is a triple 〈F, β, x〉, where x ∈ f and β : var → F, a valuation. By
assumption on F, the set of all points at which φ holds is internal.

A generalized frame F = 〈f,F〉 uniquely determines a modal algebra F+ =
〈F, 1,−,∩, 〈�j |j < κ〉〉. Moreover, given a modal algebra A we can construct
a generalized frame A+ via Stone-representation, by taking f to be the set of
ultrafilters, and U Cj T iff for all �ja ∈ U we have a ∈ T ; and finally, the
field of sets is the field of sets of the form â = {U |a ∈ U}. It turns out that
(A+)+ ∼= A, while F is not necessarily isomorphic to (F+)+; both have the same
modal theory, however. Given a logic Λ and a cardinal α, FrΛ(α) denotes the
algebra freely generated by α many generators in the variety of all Λ-algebras.
Then CanΛ(α) := (FrΛ(α))+ denotes the canonical frame over α many sentence
letters. We call it the α-canonical frame for Λ.

A general frame F is differentiated if for two points x, y there exists an
internal set a such that x ∈ a but y ∈ −a; F is called tight if x Cj y iff for all
internal sets a we have y ∈ a if x ∈ �ia; F is compact if for any ultrafilter U
of the boolean algebra of internal sets there is a x ∈

⋂
U . A frame is refined if

it is differentiated and tight; and it is descriptive if it is refined and compact.
Furthermore, a frame is canonical if it is isomorphic to an α-canonical frame
of some logic Λ. A logic is g-persistent if for all generalized frames, if 〈f,F〉
is a frame for Λ, so is the underlying Kripke-frame f. A logic is r-persistent
if for every refined frame 〈f,F〉 for Λ the underlying Kripke-frame is a frame
for Λ as well. Analogously d-persistence is defined with respect to the class of
descriptive frames, and canonicity alias c-persistence with respect to the class
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of canonical frames. Johan van Benthem has proved in [2] that a logic is g-
persistent iff it is axiomatizable by constant axioms, and Sambin & Vaccaro
[37] that a logic is d-persistent iff it is canonical. A large class of canonical
logics is described by the theorem of Sahlqvist. We present it here in the
polymodal setting. Call a formula positive if it is built from constant formulae,
variables and the connectives, ∧, ∨, �j , ♦j . A formula is strongly positive if it
is composed form variables and constant formulae with the help of ∧ and �j

alone.

Theorem 2 (Sahlqvist [36]) Suppose that �(φ→ ψ) is a formula such that
(1.) � is a prefix of modal operators �j, (2.) ψ is positive and (3.) φ is
composed from strongly positive formulae with the help of ∧, ∨ and ♦j. Then
Kκ ⊕ �(φ → ψ) is canonical and the class of frames satisfying this axiom is
elementary.

The formulas falling under the conditions of Sahlqvist’s Theorem are called
Sahlqvist formulae. The elementary conditions expressed by them can be char-
acterized. Let the language Lκ consist of variables for worlds, a symbol .= for
equality, relational symbols Cj for each j < κ, and quantifiers ∃, ∀. Define from
that the restricted quantifiers

(∃y Bj x)α := (∃y)(xCj y .&. α)
(∀y Bj x)α := (∀y)(xCj y.→ .α),

as well as the generalized accessibility relations xCσ y, where σ is a sequence of
elements in κ. Namely, put xC〈〉y := x

.= y, and xC〈σ,j〉y := (∃z)(xCσ z.&.zCj

y). The language Rκ is the language obtained from Lκ be replacing the unre-
stricted quantifiers by restricted quantifiers, and admitting atomic subformulae
of the form xCσ y. Then the following is shown in [26].

Theorem 3 (Kracht [26]) An elementary condition is definable by means of
a Sahlqvist formula iff it is of the form (∀x)α(x), where α(x) ∈ Rκ is positive
and in every atomic formula x Cσ y either x or y is bound by a universal
quantifier not in the scope of an existential quantifier.

We define the Sahlqvist rank to be the maximum alternation of quantifiers in
which a nonconstant subformula is embedded. Thus, constant formulae and
those using only universal quantifier are of rank 0. (A note of caution. The
subformulae x Cσ y can hide existential quantifiers; this must be taken into
account when calculating the rank. Moreover, (∀y Bj x)α is defined to be
positive if α is. As an elementary formula however it is not positive.)

A logic is complete if it is the logic of its Kripke-frames. It is compact if
every consistent set has model based on a Kripke-frame, and weakly compact
if every consistent set based on a finite set of sentence letters has a model
based on a Kripke-frame. A logic has the finite model property (fmp) if it is
the logic of its finite Kripke-frames. Clearly, g-persistent, r-persistent, and d-
persistent logics are all complete, but there are logics which have the finite model
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property without being d-persistent. Completeness was originally believed to
be an abundant property, but it is not. For given Λ, let the Fine-spectrum be
the set of logics which have the same Kripke-frames as Λ, and let the degree of
incompleteness, δ(Λ), be the cardinality of the Fine-spectrum of Λ. Then the
following holds.

Theorem 4 (Blok [6]) For a monomodal logic Λ either δ(Λ) = 1 or δ(Λ) =
2ℵ0. The first obtains iff Λ is inconsistent or the (possibly infinite) join of
splitting logics of K1.

Theorem 5 (Blok [6]) A logic is a splitting of K1 iff it is of the form K1/Th f,
where f is a cycle-free Kripke-frame.

Let us note that it follows that no consistent tabular logic, no consistent ex-
tension of K4 and no consistent proper extension of K ⊕ ♦> is the (possibly
infinite) join of splitting logics. In other words, no standard system with the
exception of K⊕♦> is the join of splitting logics. Call Λ intrinsically complete
if it has degree of incompleteness 1. Define the co-covering number γ(Λ) to
be the cardinality of all logics immediately below Λ. Then γ(Λ) is finite or
countable iff δ(Λ) = 1, otherwise it is = 2ℵ0 . This has also been shown in
[6]. For the case of non-intrinsically complete logics this is a by-product of the
proof of the first of the theorems. In the case of intrinsically complete logics
it follows from the fact that such a logic if consistent is the countable union of
splitting logics. The exceptional case is the inconsistent logic. Here, we have
the following theorem.

Theorem 6 (Makinson [31]) EK1 has exactly two co-atoms, namely the log-
ics of the one point frames.

3 Transfer Theorems

3.1 From Monomodal to Polymodal

The simplest kind of polymodal logics that one can think of are those in which
no axiom uses more than one kind of operator; in other words, the operators
are independent of each other. Let us explain this in the case of bimodal logic,
with operators � and �. Here, we are working in the language L(�,�), which
has the sublanguages L(�) and L(�), based each on a single operator. Suppose
we have a bimodal logic Λ = K2 ⊕ (X ∪ Y ), where formulae from X do not
contain � and formulae from Y do not contain �. Then we say that Λ is
independently axiomatized. In this case we can alternatively think of Λ as a
kind of join of two monomodal logics, one being Λ� = K1 ⊕X = Λ∩L(�) the
other being Λ� = K1⊕Y = Λ∩L(�). We say that Λ is the independent join or
fusion of Λ� and Λ�, denoted by Λ� ⊗ Λ�. Forming fusions of modal logics is
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the simplest way to construct new logics from old ones. They were studied by
Fine & Schurz [16] and Kracht & Wolter [28]. Fusions have the following
properties. The fusion − ⊗ − is a map from (EK1)2 into EK2 commuting
with (infinite) joins in both arguments. Also, given any bimodal logic Λ we can
define Λ� and Λ� to be intersection of Λ with the languages formed with the
operators � and �. These maps commute with (infinite) meets.

Theorem 7 (Thomason [45]) The logic Λ⊗Θ is a conservative extension of
Λ iff either Λ is inconsistent or else Θ is consistent.

Thomason’s proof is based on the fact that the class of atomless boolean
algebras is ℵ0-categorical. In order to be able to explain the method of transfer
we deliver here a proof based on Makinson’s theorem. If Θ is consistent
then it is contained in the logic of the one point reflexive frame ◦ , which is
K1 ⊕ p ↔ �p, or in the logic of the one point irreflexive frame • , which is
K1⊕�⊥. It is easy to see that Λ ⊆ (Λ⊗Θ)�, so it is actually enough if we show
that if Θ is one of these logics, then equality holds. Suppose Θ = K1⊕p↔ �p.
Let φ 6∈ Λ. Then there is a model 〈F, β, x〉 |= ¬φ based on a generalized frame
〈f,C,F〉 for Λ. Put F◦ = 〈f,C,J,F〉, with J = {〈x, x〉|x ∈ f}. Then this is
straightforwardly checked to be a generalized frame for Λ ⊗ Θ, and we have
〈F◦, β, x〉 |= ¬φ. In the other case we argue with F• = 〈f,C,J,F〉 instead,
where J = ∅.

A generalization of this construction is the key to the transfer results for
fusions. For suppose that we want to build a model for φ, φ 6∈ Λ. Then since
we only know how to build a model in the monomodal fragments, we build the
model in stages, alternating between the operators � and �. First we build
a model for the formula viewed as a formula of the language L(�), with each
subformula of the form �ψ replaced by a new variable q�ψ. These variables are
like promises. Whenever q�ψ is true at a point in a model, we are promising
to build a model for �ψ, and if that variable is not true, we are promising
to build a model for ¬�ψ. Thus, at each node of the model already built we
then still have to fulfill these subformulas �ψ. Now we build a model for them
in conjunction, that is, at each node we look which variables for �ψ are true
and which ones are false, and build a model accordingly. However, again we
will not do this in one step. Rather, this time we treat the �ψ as formulas of
the language L(�), with subformulas of the form �χ replaced by new variables
q�χ. We continue in this fashion, until we have consumed the formulas and
no complex formula remains to be fulfilled. This is the naive picture, building
the model like a tree. Unfortunately, this strategy can only work if great care
is taken. First of all, it does not work with generalized frames, and so almost
all the transfer results are conditional on the completeness of the logics. It is
possible to refine this technique in such a way that we need only completeness
with respect to atomic frames (see [27]; a general frame is atomic if the singleton
sets are internal). But this is still not a fully general result.
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In order to formulate the general transfer theorem for fusions we extend
the notion of fusions. For α ≤ ω consider a sequence 〈Λi|i < α〉 of normal
polymodal logics formulated in languages Li such that the modal operators of
Li, i < α, are mutually disjoint. Then the fusion

⊗
〈Λi|i < α〉 is the smallest

normal polymodal logic in the common language
⋃
{Li|i < α} containing all

Λi, i < α. It can be proved that the Lj-fragment, j < α, of this logic is Λj
again if all Λi, i < α, are consistent; otherwise the fusion is also inconsistent.

Theorem 8 (Fine & Schurz [16], Kracht & Wolter [28], Wolter [47])
Suppose 〈Λi|i < α〉 is a sequence of consistent normal polymodal logics and let
P be one of the following properties.

• g-, r-, d-, c-persistence

• being Sahlqvist of rank k

• completeness

• compactness

• finite model property

• completeness and decidability

• completeness and the interpolation property

• completeness and Halldén-completeness

Then
⊗
〈Λi|i < α〉 has P iff all Λi, i < α, have P.

(For the finite model property it is required that there is a number n such
that each logic has a model of size at most n. This is satisfied e. g. if all of
them are monomodal.) We have formulated a version of the theorem which
is a bit more general than the one proved in [16] or [28]. The proof of this
general version is basically the same – with the exception that the original
proof uses Makinson’s Theorem, which does not hold for polymodal logics.
A way to manage this difficulty can be found in [47]. Transfer of decidability
and interpolation for incomplete logics remains an open problem. Although
the reduction of decidability and interpolation of the fusion to its fragments
can be formulated in a purely syntactical way, the legitimacy of this reduction
relies (so far) on the completeness proof for the fusion. It is still open whether
this restriction can be dispensed with. Given that decidability transfers in
case of completeness the question arises whether the complexity of the decision
procedure transfers as well. The answer is negative as is shown in Spaan [41],
who gives a complete description of the increase of complexity under fusions.

Given these results, the following seems a worthwile strategy for the analysis
of a polymodal logic Λ. First, study the monomodal fragments, and then think
of Λ as being obtained from the fusion of these logics via some interaction
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postulates. This may be practically a good strategy, but can be shown to lead
to no significant reduction (at least in principle). Let Λ for simplicity be a
bimodal logic. Define the independent kernel of Λ to be the fusion Λ� ⊗ Λ�.
This is the largest independently axiomatizable logic contained in Λ. Call the
independency spectrum of Λ the set of all bimodal logics with the the same
independent kernel as Λ. Let us note two results on independency spectra.

• There exist monomodal tabular logics Λ and Θ of codimension 2 and 3,
respectively, in EK1 such that the independency spectrum of Λ⊗Θ has
cardinality 2ℵ0 . (See [22].)

• There is a tabular monomodal logic Λ of codimension 2 such that the
lattice of extensions of T = K ⊕�p→ p can be embedded into the lattice
of extensions of S5 ⊗Λ in such a way that the range of the embedding is
a subset of the independency spectrum of S5 ⊗Λ. (See [50].)

It seems that the first result can be generalized. The specific conjecture is that if
both of the logics have codimension at least 2 then the independency spectrum
has cardinality 2ℵ0 .

3.2 Adding the Universal Modality

In [21] the universal modality (written here as �) is introduced. By itself, it
is just a standard S5-operator. However, this operator, if added to a modal
logic Λ, yields a new logic Λ� in the language of Λ expanded by the (new)
symbol �. Axioms are those of Λ, S5 for � and for each operator � and
axiom �p.→ .�p, which induces that the underlying relation for � contains all
other relations. Therefore, it is an equivalence relation, in which each block is
a set of components connected with respect to the old relations. In generated
subframes, this reduces to saying that this relation is just the total relation
on the frame, every point being accessible to every point. Whence the name
for that operator. The special interest in this modality derives from the fact
that it is tightly related to a special deducibility relation in modal logic, the
global consequence relation. Recall that the standard consequence for a logic
Θ, `Θ or ` (with Θ dropped if understood in the context), has only one rule
of inference, namely modus ponens; we call it the local consequence relation.
The global relation for Θ, 
Θ or simply 
, has in addition to modus ponens
also the rule p 
 �p, for all operators �. Concepts such as decidability, fmp
and completeness split into a local variant – which is the standard one – and a
global variant. For example, a logic is globally decidable if the problem ‘φ 
 ψ’ is
decidable, Likewise for the other properties. (Since both consequence relations
define the same theorems for a logic, the problems ‘
 φ’ and ‘` φ’ are identical.)
The following is proved in [21].

Theorem 9 (Goranko & Passy [21]) Let P be one of the following proper-
ties: decidability, canonicity, finite model property, Kripke-completeness. Λ has



10

P globally iff Λ� has P locally.

Given this equivalence, the properties of a logic with an added universal modal-
ity can be reduced to global properties of the logic itself. Hence it is equivalent
to say that a property is preserved under addition of the universal modality and
to say that a logic has the property globally if it has that property locally. Notice
in passing that for Λ� it is equivalent to say that it has a property locally and
that it has that property globally, by the fact that ‘φ 
 ψ’ is equivalent with
‘�φ ` ψ’.

It is clear that the global property implies the corresponding local property,
but what about the converse? [41] and [49] have proved that there are logics
which have fmp locally but not globally. [21] prove that if Λ admits filtration,
then so does Λ�, thus covering a number of significant logics.

Theorem 10 (Kracht & Wolter [29]) The following properties of logics are
undecidable for modal logics

• local decidability

• global decidability, given local decidability

• local fmp

• global fmp, given local fmp

Some of the results concerning local properties have been shown elsewhere, but
the proof method here is uniform and rather straightforward. It is interesting in
the present context for several reasons. The first is that it reflects the problems
of transferring properties of monomodal logics to logics which extend the fusion
by just a margin, namely in this case the axiom(s) �p→ �jp. So, we have par-
ticular cases in which specific properties of logics get lost when we add a single
axiom to the independent join of logics. Second, the proof is actually obtained
using a detour. The easiest examples by which this theorem can be proved are
word problems in semi–groups. It is known that one cannot decide whether a
finite presentation of a semi–group using two generators and finitely many rela-
tions presents the one element semi–group. A presentation can be written as an
axiomatic description of the semi–group viewed now as a Kripke frame with two
accessibility relations. Thus, each presentation gives rise to a logic, containing
the fusion of K.Alt1.D = K⊕♦p→ �p⊕♦> with itself. The decision problem
of the semigroup is directly translatable into a decision problem of the logic.
Fine-tuning this method, all the results above can be established for bimodal
logics. Using the results on Thomason simulation in § 4.1 we can show that
the same undecidability results hold even for monomodal logics. Moreover, [27]
shows that given local fmp, global completeness is undecidable. The proof is
based on logics with five operators, but again the simulation theorems establish
an analogous undecidability result for any number of operators. Thus also for
monomodal logics.
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3.3 From Modal to Tense Logic

For a normal monomodal logic Λ describing the class of frames Gfr(Λ) it is
natural to form the minimal tense extension Λ+.t of Λ, which is defined to be
the bimodal theory of the class of frames 〈g,C,B,G〉, with B = C` (i. e. B
is the relational converse of C), such that 〈g,C,G〉 ∈ Gfr(Λ). The syntactical
definition of Λ+.t is quite simple. If we denote the two modal operators of
Λ+.t by � and � then Λ+.t is the smallest normal bimodal logic containing
Λ formulated in � and both p → �♦p and p → �♦p. Tense logics are the
bimodal logics containing the two axioms above. If compared with lattices of
monomodal logics lattices of tense logics quite often behave differently. For
instance, it is shown in [25] that both the lattice of extensions of K.t and the
lattice of extensions of K4.t have only the trivial splitting. In contrast to fusions
and adding the universal modality Λ+.t is not always a conservative extension of
Λ. In [48] it is shown that there exist 2ℵ0 logics whose minimal tense extensions
coincide with K4+.t. Now define the tense indeterminacy spectrum of a logic Λ
to be the set {Θ|Θ+.t = Λ+.t} and call the cardinality of this set the degree of
tense indeterminacy of Λ. Applying the technique of [48] to the frames defined
in [6] yields the following classification.

Theorem 11 If Λ 6= K is consistent and is not a join of splitting logics, then
the degree of tense indeterminacy of Λ is 2ℵ0. Otherwise it is 1.

Note that for complete logics the minimal tense extension is readily seen to be
a conservative extension. So the phenomenon that minimal tense extensions
are not always conservative extensions is closely related to the phenomenon
of incompleteness in monomodal logic. In fact, the theorem above states that
the degree of incompleteness of a logic Λ coincides with the degree of tense
indeterminacy of Λ.

Let us look again at the transfer of properties from Λ to Λ+.t. Here we
restrict our attention to logics above K4. Again the hope for a general re-
sult is destroyed by an example of a logic above K4 with fmp such that the
minimal tense extension is not complete with respect to Kripke semantics (see
[53]). Nevertheless, such an example is as complicated as the construction of
incomplete logics above K4 as is shown by the following transfer results.

Theorem 12 (Wolter [51]) Let Λ be a logic above K4.

• If Λ has finite depth, then Λ+.t has the fmp.

• If Λ has finite width (in the sense of [15]), then Λ+.t is complete.

• If Λ is a cofinal subframe logic (in the sense of [56]), then Λ+.t is complete.

For the class of cofinal subframe logics there is a remarkable connection between
first order definability and completeness.
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Theorem 13 (Wolter [52]) For a cofinal subframe logic Λ the following are
equivalent.

• The Λ-frames are first order definable.

• Λ is d-persistent.

• Λ+.t has the fmp.

• Λ is compact.

It is an open problem whether decidability transfers from Λ to Λ+.t, in general.
We note, however, the following general positive result, which covers all natural
logics containing K4.

Theorem 14 (Wolter [51]) Λ+.t is decidable, for all finitely axiomatizable
cofinal subframe logics Λ.

4 Simulation

4.1 From Polymodal to Monomodal Logic

For simplicity, we will show how to simulate two operators, � and �, by a
single operator, �. The idea goes back to Thomason [42]. Let a bimodal
Kripke-frame f = 〈f,C,J〉 be given. Then define fsim = {∞} ∪ f◦ ∪ f•, where
f◦ and f• are disjoint sets, each of cardinality equal to the cardinality of f .
Any point x ∈ f is associated with two twins, x◦ ∈ f◦ and x• ∈ f•. We have
a relation corresponding to �, denoted by <. It is defined as follows. (i.) We
have x◦ < ∞ for all x ∈ f , but x• ≮ ∞. (ii.) We have x◦ < x• < x◦ for all
x ∈ f , but for distinct x, y we have that both x◦ ≮ y• and y• ≮ x◦. (iii.) We
have x◦ < y◦ exactly when xC y and x• < y• exactly when x J y. This defines
the frame fsim = 〈fsim, <〉. If a set S ⊆ f is given, we let S◦ = {x◦|x ∈ S},
and likewise S• = {x•|x ∈ f}. Notice that no matter what f looks like, both
f◦ and f• can be defined by constant formulae, namely f◦ by white = ♦ � ⊥
and f• by black = ¬♦ � ⊥ ∧ ¬ � ⊥. Also, {∞} is defined by �⊥. Now
given a (generalized) frame F = 〈f,C,J,F〉 with F closed under the usual
operations, Fsim = 〈fsim, <,Fsim〉 is a (generalized) frame, where Fsim consists
of sets of the form Ω ∪ S◦ ∪ T •, for Ω ⊆ {∞} and S, T ⊆ f . When given
a bimodal logic Λ, we let Λsim be the logic of the simulations of Λ-frames.
Thus, Λsim = Th(Gfr Λ)sim. Alternatively, suppose Λ = (K ⊗K) ⊕ X, which
denotes the smallest normal logic containing X, X a set of formulae. Then
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Λsim = K⊕Xsim with φsim = white → φs. φs is defined inductively as follows.

ps = p ∧ white
(¬φ)s = white ∧ ¬(φs)
(φ ∧ ψ)s = φs ∧ ψs

(♦φ)s = white ∧ ♦φs

(�φ)s = white ∧ ♦(black ∧ ♦(black ∧ ♦(white ∧ φs)))

As it turns out, the logic of all simulation frames Fsim can be finitely axioma-
tized; let us call it Sim. If we denote by 2∅ the logic of the irreflexive singleton,
we have the following theorem.

Theorem 15 (Kracht [27]) The map Λ 7→ Λsim is an isomorphism from the
lattice E(K⊗K) onto the interval [Sim,2∅] reflecting and preserving

• g-, r-, d- and c-persistence

• being Sahlqvist of rank k

• elementarity

• (local/global) completeness

• compactness, weak compactness

• (local/global) finite model property

• (local/global) decidability

• interpolation

The proof is similar to the one in [29] and is given in full generality in [27]. The
improvement consists in the fact that the simulation of a variety of bimodal al-
gebras (defined analogously) is again a variety, and that unsimulating a variety
of monomodal algebras we get a variety of bimodal algebras. The simulation
map is then easily shown to be bijective on the varieties, and therefore an order
isomorphism of the lattices, whence also an isomorphism of the lattices. Using
the method of unsimulating in the quoted manuscript we find that decidability
is preserved both ways, completeness and persistence properties likewise. No-
tice that we have to add 2∅ as a top element and not the inconsistent logic.
This follows if we define Λsim syntactically, since ⊥sim = white → ⊥, which is
consistent and has the one point irreflexive frame as a model. Based on sim-
ulations of the models we get the same effect if we accept as a frame also the
frame on the empty set, for then ∅sim = {∞}.

This theorem has numerous consequences. Let us mention a few. Recall
from § 3.2 the logics based on word problems for semi–groups. These logics are
axiomatizable by single letter axioms of Sahlqvist rank 0. The same holds of
their simulations. Hence, we have plenty examples of undecidable, elementary
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logics which determine a class of Kripke frames of very low complexity, almost
universal. We moreover know that the decidability and the finite model prop-
erty of such logics is undecidable, even if we restrict ourselves to single–letter
axioms. Using a result of [22] that the inconsistent bimodal logic has 2ℵ0 co-
covers, we have derived once again the fact that the theory of the irreflexive
singleton has 2ℵ0 many co-covers. What is interesting is of course not the result
per se but the new way in which it can be obtained. Moreover, with a little bit
of sophistication it can be shown that it is undecidable for a (finitely axioma-
tized) bimodal logic whether or not it is inconsistent. Thus it is undecidable
whether or not a (finitely axiomatized) monomodal logic is the logic of 2∅. By
Makinson’s theorem, consistency is decidable, so this result is the best possi-
ble. In this way the simulation theorems allow in a natural way to see why the
lattice of monomodal logics is so complex – because it has in it also the lattices
EKn for any n.

4.2 Nominals and the Difference Operator

The variables in modal logics are variables over sets of worlds and not worlds.
In many applications it is desirable to have in addition to the standard vari-
ables also variables which range exclusively over worlds. Such an approach
has been offered by Solomon Passy and Tinko Tinchev [34] and Patrick
Blackburn [3]. They introduce special variables, called nominals, whose in-
terpretation must be singleton sets, that is, sets of the form {x}, x a world in
the frame. Nominals are denoted by i, j etc. They add expressive power to
modal logic. For example, the property that the relation C is irreflexive can
now be defined, using the formula i → �¬i. For if the value of i can only
be a singleton then this formula is refutable iff the relation is not irreflexive.
[12] uses a different tool to define the difference. Namely, he introduces the
difference operator. It is written here [6=]. The accessibility relation underlying
[6=] shall always be the inequality between worlds. So, [6=]φ is true at w iff at
all worlds v 6= w φ is true at v. Since this relation is evidently not closed under
p-morphisms, the theory of the difference operator is not a normal modal logic.
Both nominals and the difference are rather nonstandard devices which work
fine on Kripke-structure but present special problems for generalized frames.
We will not pursue this theme, however. Notice that with the difference opera-
tor the universal modality becomes definable. Namely, we have �φ ≡ φ∧ [6=]φ.
On the other hand, given the universal modality and nominals, we can also de-
fine the difference operator by taking [ 6=]φ ≡ i∧�(¬i→ φ), for i not occurring
in φ. Finally, if a formula φ contains a nominal i, then we can replace i by a
standard variable p not already occurring in φ, using the following equivalence

φ(i) ≡ (p ∧ [6=]¬p) ∨ 〈6=〉(p ∧ [6=]¬p) → φ(p).

Theorem 16 (Goranko & Gargov [20]) The language of the difference op-
erator and the language of the universal operator together with nominals are
intertranslatable (with respect to Kripke–frames).
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The effects of both the nominals and the difference operator can be achieved
using normal operators as follows. We add two operators, � and �, which are
tense duals. The logic of these operators is WOrd := K4.3+.t.G.3−. That
is to say, the relation on which both are based is linear and transitive in both
directions and is conversely well-founded. In other words, it is a well-order. So,
suppose a Kripke-frame satisfies the logic WOrd. Then it is well-ordered by
the relation for �. The difference operator is then definable by 〈6=〉φ := ♦φ∨♦φ.
The language of WOrd is expressively stronger than either the language of the
difference operator or that of the universal modality and nominals, so no exact
correspondence should be expected. Also, WOrd is not canonical.

Nevertheless, even though all of the three logics above are in some way not
canonical, it is possible to establish some Sahlqvist type results. The interesting
situation is when we have more than one relation, in fact a whole collection of
them and the difference operator is added merely for increasing the definability
strength of the other operators, such as defining their intransitivity or the like.
Then the relation underlying the difference is used for an extraneous purpose.
Suppose therefore we let the relations underlying 〈6=〉 or ♦ be just auxiliary re-
lations, that is, we only need to achieve that a property holds for the relations
other than 6= or <. Then it is possible to use part of the definability hierarchy.
Call the operators 〈6=〉 and ♦, ♦ as well the relations on which they are based
auxiliary while the other operators and relations are called main operators (re-
lations). One can show that every first-order condition (∀~x)φ(~x), where φ is
built using restricted quantifiers over main relations and basic formulae u = v,
u 6= v, uCσ v, where σ uses main relations only, is Sahlqvist on condition that
u is quantified universally by a quantifier not in the scope of an existential
quantifier. Notice that there is a certain asymmetry in that negations u 6σ v
are not generally admitted. Only inequations may be used. One way to show
this is using the method of [26]. There internal descriptions are built using
an asymmetric sequent like calculus, pairing elementary and modal formulae.
Another tool that is needed is that of substitutions or decisive sets. We will
not go into the details. Suffice the following indication. To show that a point is
different from another we only need to make a formula p true at one point and
false at another. To show that they are equal, we must be sure that p is only
true at a single world, and that it is true at both worlds under consideration.
Since ordinary variables are variables over sets, the latter cannot be achieved.
If they are nominals, however, then it can be achieved by definition of nominals.
This is the deeper reason for the fact that the addition of nominals (and the
universal modality) allows to define properties which are not necessarily posi-
tive, but contain inequations, subject to the condition on variables in atomic
subformulas that the Sahlqvist theorem makes. Similar considerations can be
made for the difference operator and the well-ordering operators.
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4.3 From Monotonic Modal Logics to Normal Logics

A monotonic (mono-)modal logic is a set of modal formulas containing all clas-
sical tautologies and which is closed under substitutions, modus ponens and
p → q/ � p → �q. These logics are known to be complete with respect to
general neighbourhood-frames (see e.g. [11]). As compared with normal modal
logics monotonic logics have been investigated only fragmentarily. Neverthe-
les, there are well known applications which require the weakness of monotonic
systems, e.g. in deontic logic. Recall that a neighbourhood frame for a mono-
tonic logic is a pair 〈g,N〉 where g is a set and N is a function assigning a set
N(x) ⊆ ℘(g) of so-called neighbourhoods to every point x ∈ g. Valuations are
as in Kripke-frames. �φ is accepted at w ∈ g given a valuation if there is a
neighbourhood S ∈ N(x) such that φ is accepted throughout S. A general-
ized neighbourhood frame is a triple 〈g,N,G〉, where 〈g,N〉 is a neighbourhood
frame and G ⊆ ℘(g) a system of subsets of g closed under intersection, com-
plement and �. We will use two modal operators to simulate �. The bimodal
frame simulating 〈g,N〉 will contain points representing both the points of g as
well as the neighbourhoods. Thus, N is turned into a relation between points
representing members of g and points representing neighbourhoods. One oper-
ator will represent this relation. To recover the membership relation between
points and neighbourhoods we need the second operator. Define a translation
t from the monomodal language with � into the bimodal language with � and
� as follows:

pt = p

(φ ∧ ψ)t = φt ∧ ψt

(¬φ)t = ¬φt

(�φ)t = ♦�φt

Denote by M the smallest monotonic logic and denote by M + Γ the smallest
monotonic logic containing (M and) Γ.

Theorem 17 (Kracht & Wolter [29]) For all formulas φ, φ ∈ M + Γ iff
φt ∈ (K⊗K)⊕ Γt.

The proof from left to right is easy. We give the basic idea of the proof of
the other direction as given in [29], where general neighbourhood frames are
simulated as general bimodal frames. Define for a neighbourhood frame 〈g,N〉
the bimodal frame 〈g,N〉ms = 〈h,C,J〉 by

h = g ∪ C where C = {C ⊆ g|(∃x ∈ g)(C ∈ N(x))},

xC y iff x ∈ N(y),

y J x iff x ∈ y.

This simulation of frames corresponds in the obvious way to the translation
of formulas. Let us note that there are some technical difficulties with the
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new points in C and with simulations of general neighbourhood frames. The
interested reader is referred to the proof in [29]. For a monotonic logic Λ =
M + Γ denote by Λms the logic K2 ⊕ Γt. The following is shown in [29].

Theorem 18 (Kracht & Wolter [29]) The map Λ 7→ Λms reflects complete-
ness w.r.t. neighbourhood semantics, the finite model property and decidability.

This result can be used in order to derive completeness results (for neighbour-
hood semantics) for most of the monotonic standard systems by establishing
the completeness of the bimodal simulation via Sahlqvist’s Theorem, e.g. for
M + �p→ ��p and M + �p→ p.

In contrast to the simulation of the previous section we encounter a dif-
ficulty in axiomatizing the logic of the frames 〈g,N〉ms. The problem lies in
the fact that we see no way to secure by way of an axiomatization the exten-
sionality of neighbourhoods. For, since neighbourhoods are sets of worlds, two
neighbourhoods are equal if they contain the same worlds. In the simulating
frame, elementhood is an accessibility relation, and to our knowledge there is
no formula with which to define extensionality for this relation. Furthermore,
the simulating logics are rather awkward, and we know of no property which
is preserved under simulation. This may also be due to the fact that the sim-
ulated logic may admit unintended structures, unlike in the case of polymodal
logics. Notice finally that the translation contains an unhealthy combination of
diamonds and boxes which is known to be a limit for Sahlqvist’s Theorem.

4.4 From Polyadic Operators to Monadic Operators

In the extensive study [19], Robert Goldblatt has shown that any algebra
gives rise to an algebra of complexes alias subsets and that each n-ary function
gives rise to an n-ary function of complexes. These new functions behave like
modal operators, more exactly like diamonds, since they distribute over unions
of sets in any of their arguments. These are called polyadic operators to empha-
size that they may take more than one argument. Goldblatt has extended
standard duality theory and correspondence theory to arbitrary polymodal,
polyadic languages.

For our simulation of polyadic normal modal logics as polymodal logics we
assume that the polyadic logic is formulated in the language L(�) with one
operator �, corresponding to the diamond operator. For simplicity we have
chosen � to be a dyadic operator, written in infix notation. The smallest dyadic
logic in L(�) is denoted by Dy. All results established here for extensions of Dy
hold for polyadic logics with several operators of arbitrary adicity. A frame for
L(�) is a pair 〈g, S〉 where S is a ternary relation on g. Valuations are defined
as usual. The acceptance clauses for boolean connectives are also standard. A
world w accepts φ �ψ under a valuation if there are worlds x, y with S(w, x, y)
such that x accepts φ and y accepts ψ under that valuation. We propose the
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following simulation. Take the original set of worlds and add worlds for all pairs
of worlds in g. S can then be analysed as a binary relation, between worlds
standing for g-worlds and worlds for pairs of g-worlds. To make this work,
we add the two projections as relations, thus ending up with a total of three
operators.

To implement this idea, we define translations from generalized frames with
a ternary relation to generalized frames with three binary relations and vica
versa. For G = 〈g, S,A〉 put σG = 〈σg,C,C1,C2, σA〉, where

σg = g ∪ (g × g)
C1 = {〈〈x, y〉, x〉| x, y ∈ g}
C2 = {〈〈x, y〉, y〉| x, y ∈ g}
C = {〈x, 〈y, z〉〉| x, y, z ∈ g, S(x, y, z)}

and σA is the closure of A under the boolean operations, �, �1 and �2. It is
not difficult to show that

{g ∩ b|b ∈ σA} = A.

Conversely we shall first find some axioms valid in the generalized frames σG.
Notice that the relations C, C1 and C2 allow no iteration beyond the first suc-
cessor, and that C1 and C2 are partial functions. Thus we have the postulates

st = {�1�1⊥, �2�2⊥, ��⊥} and par = {♦1p→ �1p, ♦2p→ �2p}.

The points which denote the singleton worlds are definable by ¬♦1>, or alter-
natively by ¬♦2>. Since one projection is defined iff the other is as well, we
must have the axiom

eq = ♦1> ↔ ♦2>.
We shall also need the following postulates.

qe = {♦> → ¬♦1>, �♦1>}.

The first one says that no world in g has a projection (thus only pairs of worlds
do) while the second one says that all C-successors of worlds in g have projec-
tions. Denote by Bin the normal logic axiomatized by the collection of all those
axioms. Certainly Bin is d-persistent, by Sahlqvist’s Theorem. However, one
easily constructs frames for Bin which are not of the form σG. We shall come
back to this point later. Now consider a frame H = 〈h,C,C1,C2, B〉 validating
Bin. Put ρH = 〈ρh, S, ρB〉, where

ρh = �1∅,

S(x, y, z) ⇔ (∃z′ ∈ h)(xC z′ ∧ z′ C1 y ∧ z′ C2 z),

ρB = {b ∩ ρh|b ∈ B}.
Using the axioms above it is a bit tedious but straightforward to show that ρH
is a frame by proving that

a � b = ♦(♦1a ∩ ♦2b) ∈ ρB,
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for all a, b ∈ ρB. Using the equation A = {g∩b|b ∈ σA} it is clear that ρσG = G,
for all generalized frames G for Dy. The translation t of formulas in L(�) is
defined by putting

pt = p

(φ ∧ ψ)t = φt ∧ ψt

(¬φ)t = ¬φt

(φ � ψ)t = ♦(♦1φ
t ∧ ♦2ψ

t)

The following Lemma follows by induction.

Lemma 19 For all φ ∈ L(�), generalized ternary frames G and generalized
Bin-frames H,

G |= φ⇔ σG |= �1⊥ → φt,

ρH |= φ⇔ H |= �1⊥ → φt.

With the help of this lemma we immediately obtain

Theorem 20 For all formulas φ,

φ ∈ Dy⊕ Γ iff �1⊥ → φt ∈ Bin⊕ {�1⊥ → φt|φ ∈ Γ}

Define for Λ = Dy + Γ the logic

Λσ = Bin⊕ {�1⊥ → φt|φ ∈ Γ}

Obviously the map Λ 7→ Λσ reflects decidability, completeness w.r.t. Kripke
semantics and the finite model property. Some more work has do be done in
order to prove that it reflects d-persistency.

Theorem 21 If Λσ is d-persistent then so is Λ. If the Λσ-frames are first order
definable then so are the Λ-frames.

Proof. Suppose that Λσ is d-persistent and that G = 〈g, S,A〉 is a descriptive
Λ-frame. Consider the Λσ-frame σG. Unfortunately, σG is not descriptive, in
general. However, it is readily checked that the underlying Kripke-frame of
ρ((σG)+)+ is isomorphic to 〈g, S〉. Hence, by Lemma 19 above and since Λσ is
d-persistent it follows that 〈g, S〉 is a frame validating Λ. The second statement
is clear. �

With this result at hand we can translate Sahlqvist’s Theorem to polyadic
logics. Note however, that the syntactic characterization in Sahlqvist’s Theo-
rem cannot be carried over blindly. A counterexample due to Maarten de
Rijke can be found in [46]. Define the dual operator p q = ¬(¬p � ¬q) whose
translation is equivalent to �(�1p ∨ �2q). Since in this translation we find a
disjunction in the scope a box, only those formulae not containing a dyadic
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box in the antecedent translate into Sahlqvist formulae. Notice that there is a
better behaved dyadic box (with a different interpretation), namely

p ◦ q = p q ∧ ¬(¬p � q) ∧ ¬(p � ¬q)

whose translation is equivalent to �(�1p ∧ �2q). Thus we get the following
theorem.

Theorem 22 Suppose φ → ψ ∈ L(�, , ◦) and (a.) ψ is composed from vari-
ables and constants with the help of ∧, ∨, �, and ◦ and (b.) φ is composed
form variables and constants in such a way that no positive occurrence of a
variable is

1. in a subformula of the form χ1 χ2 and

2. in a subformula of the form χ1 ∨ χ2 or χ1 � χ2 in the scope of ◦.

Then Dy ⊕ φ → ψ is d-persistent and φ → ψ is effectively equivalent to a
first-order formula.

This allows to deduce some useful facts about modalities for the categorial
analysis of language. If concatenation • is viewed as a ternary relation on
strings, we get a dyadic modal operator � (see [35]). Any algebraic equation
involving • translates straightforwardly into a modal axiom for �, by replacing
= by ↔, • by � and variables for elements by variables for propositions. For
example, associativity of this operator is captured by

p � (q � r).↔ .(p � q) � r

(See [32].) Likewise for any other algebraic signature. It is seen immediately
that these formulae are Sahlqvist in the general sense, since they involve only
diamond-like modalities. It follows that they are canonical and determine first-
order properties on frames. This has been claimed in [32] but without any
proof. Notice also that undecidability results of rather strong form can easily
be obtained with dyadic operators. For example, if this operator is associative
and there are ‘enough’ algebras then [30] have shown the logic to be undecidable.
(See Corollary 0.12 in the quoted paper.)

As mentioned above, frames for the logic Bin are not necessarily of the form
σG. The reason is that there is no axiom expressing existence and uniqueness of
the pair 〈x, y〉 given x and y. However, using the results of §4.2 we can axioma-
tize these frames using alternatively nominals with the universal modality, the
difference operator or a well-ordering. Namely, the existence and uniqueness of
the pairing function are expressed by the first-order sentences

(∀x1, x2)(∃y)(y C1 x1 & y C2 y2)

(∀x1, x2)(∀y, y′)(y, y′ C1 x1 & y, y′ C2 x2.→ .y = y′).

Both are expressible e. g. if nominals are added.
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4.5 From Intuitionistic Modal Logic to Bimodal Logic

Gödel’s translation of intuitionistic formulas into modal formulae gives a well-
known simulation of intermediate logics as extensions of S4. This simulation
can be extended to a simulation of intuitionistic modal logics by normal bimodal
logics. Denote by IntK� the smallest logic in the propositional language L�

with primitive symbols ∧,¬,∨,→,�, which contains all intuitionistic tautolo-
gies and �(p→ q) → �p→ �q and is closed under modus ponens, substitutions
and p/�p. This logic has been introduced by Bosić & Došen in [7]. We call an
extension of IntK� which is closed under those rules a IM�-logic. Extensions
of IntK� are investigated in [33], [13] and [54]. In L� the operator � is the only
primitive modal operator. ♦ may be defined as ¬�¬, but note that ♦p↔ ¬�¬p
does not hold in intuitionistic logic under the standard interpretation of � and
♦ as ∀ and ∃, respectively.

Another type of modal intuitionistic logics with two primitive modal oper-
ators � and ♦ and weaker connecting axioms was introduced by G. Fischer
Servi in [17] and [18]. Denote by L�♦ the language L� extended by ♦. A
IM�♦-logic is a subset Λ of L�♦ which contains IntK� and

♦(p ∨ q) ↔ ♦p ∨ ♦q and ¬♦(p ∧ ¬p),

and the connecting axioms

♦(p→ q) → (�p→ ♦q) and (♦p→ �q) → �(p→ q)

and which is closed under the rules for IM�-logics and p → q/♦p → ♦q. See
also [1] and [14] for a motivation as well as results on IM�♦-logics.

As concerns simulations by normal bimodal logics we start with IM�-logics.
For a set Γ of formulas in L�-let IntK� + Γ denote the smallest IM�-logic
containing Γ. Shehtman in [39] extends the Gödel translation to a translation
t from L� into the bimodal language with �I and �M as follows

pt = �Ip

(φ ◦ ψ)t = �I(φt ◦ ψt)
(¬φ)t = �I¬φt

(�φ)t = �I�Mφ
t,

for ◦ ∈ {∧,∨,→}, and shows

Theorem 23 (Shehtman [39]) For all φ ∈ L�,

φ ∈ IntK� + Γ ⇔ φt ∈ (S4⊗K)⊕ Γt ⇔ φt ∈ (Grz⊗K)⊕ Γt ⊕Mix

where Mix := �I�M�Ip↔ �Mp.

Using this result and the results on fusions the following can be shown.
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Theorem 24 (Wolter & Zakharyaschev [54]) If an intermediate logic Int+
Γ has one of the properties

• the finite model property;

• decidability and Kripke completeness;

• Kripke completeness,

then the IM�-logics IntK� + Γ, IntK� + Γ + �p→ p and IntK� + Γ + ♦>
also have the same property.

In [4] it is shown that the lattice of intermediate logics is isomorphic to the
lattice EGrz of extensions of Grzegorczyk’s logics. This isomorphism is
known as the Blok-Esakia isomorphism. [55] extend this isomorphism to an
isomorphism between the lattice of IM�-logics onto the lattice of extensions of
Grz⊗K⊕Mix. Namely, for Λ = IntK� + Γ put Λis = (Grz⊗K)⊕Mix⊕Γt.

Theorem 25 (Wolter & Zakharyaschev [55]) The map Λ 7→ Λis is an iso-
morphism from the lattice of IM�-logics onto the lattice of normal extensions
of (Grz⊗K)⊕Mix preserving the fmp and reflecting decidability and fmp.

Given this result several transfer problems arise, e.g. let Λ = Int + Γ be an
intermediate logic with fmp.

1. Does IntK� + Γ + �p→ ��p have the fmp?

2. Does IntK� + Γ + �p→ ��p+ �p→ p have the fmp?

A partial answer is given in [54], where it is shown that 1. and 2. hold if no
formula in Γ contains disjunction or negation.

Now we come to the simulation of IM�♦-logics, as described in [17] and [18].
Denote by IntK�♦ the smallest IM�♦-logic. Extend the translation t defined
above to L�♦ by putting (♦φ)t = ♦Mφt. Now consider the normal bimodal
logic

FS = (S4⊗K)⊕ ♦I�Mp→ �M♦Ip⊕ ♦M♦Ip→ ♦I♦Mp.

We call a IM�♦-logic Λ = IntK�♦ + Γ simulatedFS if, for all φ ∈ L�♦,

φt ∈ FS⊕ Γt ⇔ φ ∈ Λ.

Contrary to the simulations described so far it is not known whether all IM�♦-
logics are simulatedFS. So, the technical use of this simulation is limited so
far. However, many natural IM�♦-logics are known to be simulatedFS, consult
[18], [1], and [14], and the interpretation of the modal connectives under this
simulation is quite natural.
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5 Conclusion

We would like to close with some remarks on the overall philosophy behind
these transfer results. First of all, the reduction of theories to others is quite a
standard technique, also referred to as interpretation of theories. The general
emphasis here is not in effecting such an interpretation from one logic to another
but in maximizing two things: (i) the algebraic properties of the map this
interpretation induces from the extension lattice of the interpreted logic into the
lattice of extensions of the interpreting logic, and (ii) the properties preserved
and reflected by this map. Only with such results in hand the method will give
significant insights. For example, it is S. Thomason who has discovered that
there is a simulation of polymodal logics by monomodal logics and that this
simulation reflects completeness of various kinds and decidability, and this was
enough to prove his point. However, for more sophisticated counterexamples in
modal logic, more was needed, namely also the fact that in addition it preserved
these properties as well. This is far less easy to see, but in effect it led to a
great simplification in the study of modal logic. If it is negative examples one
wants to produce, one can now start with any number of operators and produce
such an example. The undecidability of properties of logics, questions about
the cardinality of certain intervals etc. can in many cases decided by making
a detour into the land of polymodal logics. We also see that it is next to
hopeless to expect any significant, global result on decidability and completeness
for logics extending K analogous to the situation above K4. A posteriori we
learn that transitivity is a very strong restriction, and why progress has been
relatively easy when compared with the study of all extensions.

Furthermore, there is a certain trade-off between the ease with which a
translation is defined and the use it will have in discovering new facts. It is
straightforward to see how monomodal logic can be embedded into bimodal
logic, or tense logic but it is rather hard to gain any new insights from such
an embedding. In fact, one would expect the minimal tense extension to have
similar properties than the original logic; but this turns out to be false, as was
described in § 3.3. So, the embedding is obvious, but the properties transferred
under that embedding are quite hard to discover. In contrast to that, take
the simulation of bimodal logic in monomodal logic. It is not obvious that it
can be done at all, and to understand the method requires some sophistication.
Yet, this is balanced by the ease with which it allows to transfer properties
back and forth. In a similar light one may also see correspondence theory. It
is obvious that modal logic can be seen as second-order predicate logic, but
very little is gained, even though recent trends seem to suggest the contrary.
Intuitively, we would simply expect (monadic) second-order logic to be harder if
the translation is so easy – and indeed it is. On the other hand, correspondence
with first-order properties is difficult to establish (and sometimes false) but the
gain from this is considerable and has led to a rich theory.
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