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Abstract

In this paper we will investigate the possibility of reducing derivability
in a modal consequence relation to consistency in unimodal and polymodal
K by means of so–called reduction functions. We will present new and easy
methods to prove standard results on decidability, complexity, finite model
property, interpolation and Halldén–completeness using only the reduction
functions. Some new results on complexity of modal logics will be estab-
lished. All proofs are in addition constructive.

1 Introduction
Proofs of the finite model property in modal logic typically proceed via the detour
of the canonical models or the weak canonical models, where the weak canoni-
cal models are based on finitely many sentence letters only. The alternatives to
this method, tableaux methods or normal forms, do not seem to be as flexible as
the methods designed to produce finite models from the canonical model. Yet,
canonical models too have disadvantages. They are highly abstract structures.
Moreover, even when it is finite (for example when the logic determines a locally
finite variety) it may be the case that the structure of a weak canonical model or
the structure of a finitely generated free algebra cannot be determined if the logic
is undecidable. So, this method of proof is highly inconstructive. This is not only
a theoretical disadvantage. Typically, explicit solutions are easier to understand.
Tableau systems can be used quite effectively for the standard systems. However,
tableau calculi for many logics extending K are often rather ad–hoc. They use a
mixture of closure rules (rules to be applied at a particular world) and step rules
(rules to be applied when moving to a successor).
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The present paper presents a combinatorial method that uses only the reduction
of provability in a stronger system into provability of a weaker system. Though
the proof of the success of the method typically involves model theoretic argu-
ments, it is nevertheless finitistic. Its advantages are manifold. It is constructive,
explicit, and yields proofs of the finite model property, decidability, complexity
and interpolation, to name a few. Once the reduction of one logic M to a weaker
logic L is shown, many properties of L are shown to transfer to M with no addi-
tional effort. The proof of interpolation, for example, is so simple that it reduces
interpolation of the standard systems to a mere corollary of the method. (Compare
this, for example, with the criterion developed in [14], which is difficult to state let
alone apply.) This method is not new. It has been used, for example, by Balbiani
and Herzig in [1] and De Giacomo in [5]. However, what is new is the systematic
study of the method, and the observation that it can be used for much more than
just the proof of finite model property.

I should say here that not everything presented here is new. In particular,
most of the results of Sections 3, 5 and 6 have been anticipated in [7], though
usually not in as general a form as they appear here. The results of Section 4
are, however, entirely new. Moreover, in an appendix we show how to give a
completely constructive proof of a well–known theorem by Kit Fine on subframe
logics. It is based on the ideas outlined here. Finally, I wish to thank Stefan Baier
for his help with number theory and an anonymous referee for useful comments.

2 Preliminaries
We consider the language of modal logic with any number of unary modal oper-
ators. The vocabulary consists of a set of variables, V := {pi : i ∈ ω}, and the
functors ⊥, ¬, ∧ and �i, i < κ. Here κ is a cardinal number. If κ = 1 we will write
� rather than �0. Formulae are built in the usual way; we use lower case Greek
letters (ϕ, ψ, . . .) to denote formulae, and upper case Greek letters (∆, Γ, . . .) to
denote sets of formulae. We use the standard notation ∆;ϕ to denote ∆ ∪ {ϕ} and
ϕ;ψ for {ϕ} ∪ {ψ}. The following symbols, also frequently used, are treated as
abbreviations:

> := ¬⊥

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)
ϕ→ ψ := ¬(ϕ ∧ ¬ψ)
ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ→ ϕ)
♦ jϕ := ¬� j¬ϕ
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var(ϕ) denotes the set of variables occurring in ϕ and sf (ϕ) the set of subformulae
of ϕ. The notation var[∆] and sf [∆] are self–explanatory. (We remark here that if
f is a function, and X a subset of the domain of f we write f [X] := { f (x) : x ∈ X}.)
The modal depth, dp(ϕ) is defined as follows.

dp(pi) := 0
dp(⊥) := 0
dp(¬ϕ) := dp(ϕ)
dp(ϕ ∧ ψ) := max{dp(ϕ), dp(ψ)}
dp(� jϕ) := 1 + dp(ϕ)

The set of all formulae is denoted by Fκ. A substitution is a function σ : V → Fκ.
The effect of applying σ to ϕ (∆) is denoted by ϕσ (∆σ).

A consequence relation is a relation ` ⊆ ℘(Fκ) × Fκ such that

1. If ϕ ∈ ∆ then ∆ ` ϕ.

2. If ∆ ` ϕ and ∆ ⊆ ∆′ then ∆′ ` ϕ.

3. If ∆ ` ϕ for all ϕ ∈ Σ and Σ ` ψ then ∆ ` ψ.

` is structural if ∆ ` ϕ implies ∆σ ` ϕσ for every substitution σ. ` is finitary
if ∆ ` ϕ implies that there exists a finite ∆0 ⊆ ∆ such that ∆0 ` ϕ. In sequel,
all consequence relations are finitary and structural. A rule is a pair ρ = 〈∆, ϕ〉,
where ∆ ⊆ Fκ and ϕ ∈ Fκ. ρ is finitary if ∆ is finite. Examples of rules are MP :=
〈{p0, p0 → p1}, p1〉 and MN j := 〈{p0},� j p0〉. Let R be a set of finitary rules. We
denote by `R the smallest finitary structural consequence relation containing R.
`R can be described as follows. Call an R–proof of ϕ from ∆ a finite sequence
〈δi : i < n〉 such that

1. δn−1 = ϕ.

2. For all i < n, δi ∈ ∆ or there exists a subset Σ ⊆ {δ j : j < i} such that 〈Σ, δi〉

is a substitution instance of some element of R.

The following is stated without proof (see [7] for a complete proof).

Proposition 1 ∆ `R ϕ iff there exists an R–proof of ϕ from ∆.

We define a modal logic as a set of formulae. We assume that A is a set of formulae
which together with MP axiomatises classical propositional logic.
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Definition 2 A normal κ–modal logic is a subset L of Fκ which contains A,
the formulae � j(p0 → p1) → (� j p0 → � j p1), and is closed under substitution,
and the rules MP and MN j, j < κ. The smallest κ–normal modal logic is denoted
by Kκ.

We shall denote modal logics in sequel by upper case Roman letters, for example
L, M etc. Moreover, we will often speak of the rule MN, by which we denote the
set of rules MN j, j < κ. Now let L be a normal logic and ∆ a set of formulae; the
smallest normal logic containing L and ∆ is denoted by L ⊕ ∆. (With particular
axioms such as 4, T etc. the notation L.∆ is also used.) The notions of frame and
general frame are as usual. A general frame is a triple F = 〈F,R,U〉, where F is
a set, R a function from κ into subsets of F2, and U ⊆ ℘(F) closed under relative
complement, intersection and the operations τ j(A) := {y : if y R( j) x then x ∈ A},
j < κ. We shall write C j or J j (with or without the index, when no confusion
arises) to denote R( j). If U = ℘(F) we call F a Kripke–frame and suppress men-
tioning U. A valuation into F is a function β : V → U. A triple M = 〈F, β, x〉
where F is a frame, β a valuation into F and x ∈ F is called a local model, the
pair N = 〈F, β〉 a global model. In case, where M = 〈F, β, x〉 and N = 〈F, β〉, M

is a local expansion of N. Given a local model M = 〈F, β, x〉 and a formula ϕ, we
define M |= ϕ as follows.

1. M 2 ⊥

2. M |= ¬ϕ iffM 2 ϕ.

3. M |= ϕ ∧ ϕ′ iffM |= ϕ and M |= ϕ′.

4. M |= � jϕ iff for all y such that x R( j) y: 〈F, β, y〉 |= ϕ.

M is a (local) L–model, if M |= L. We define N |= ϕ iff M |= ϕ for all local
extensions M of N.

Let ` be a consequence relation. Then we put Taut(`) := {ϕ : ∅ ` ϕ}. We call
` a normal modal consequence relation if Taut(`) is a normal modal logic. We
associate with a normal logic L two special consequence relations, denoted by `L

and 
L. The first is called the local consequence relation of L and is defined as
follows. ∆ `L ϕ iff ϕ is derivable from ∆ ∪ L by means of MP. 
L is called the
global consequence relation of L and ∆ 
L ϕ iff ϕ can be derived from ∆ ∪ L by
means of MP and MN. (These consequence relations are not necessarily distinct.
In fact, they are equal iff p0 → � j p0 ∈ L for all j < κ.) A (global) L–proof of ϕ
from ∆ is a proof of ϕ from ∆ ∪ L using MP (MP and MN).
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The following is a consequence of the general completeness theorem of modal
logic (with respect to general frames). We shall not prove it here, since it will not
be used in sequel.

Proposition 3 Let L be a normal modal logic. Then the following holds.

1. ∆ `L ϕ iff for all local L–models M: if M |= ∆ then M |= ϕ.

2. ∆ 
L ϕ iff for all global L–models N: if N |= ∆ then N |= ϕ.

We will also make use of the notion of a compound modality. A compound
modality is a term in one variable, built up using only ∧ and � j. Examples are
�0 p0, p0 ∧ �1 p0, �1�0 p1 etc. Compound modalities behave like unary modal
operators. We use � as a variable over compound modalities. Now let σ ∈ κ∗ be a
finite sequence of elements of κ. We define inductively the symbol �σ as follows.
(Here, ε is the empty sequence.)

�εϕ := ϕ
� j·σϕ := � j�σϕ

Finally, for a set S ⊆ κ∗ we put

�Sϕ := {�σϕ : σ ∈ S }

Generally, we use the convention that a finite set of formulae ∆ also denotes the
conjunction

∧
∆. Hence, if S is finite we also have

�Sϕ =
∧
〈�σϕ : σ ∈ S 〉

The following is easy to verify.

Proposition 4 Let � be a compound modality of Fκ. Then there exists a finite set
S ⊆ κ∗ such that �p↔ �S p ∈ Kκ.

Fix a normal modal logic L. Let ∆ be a set of formulae. We wish to describe the
sets ∆` := {ϕ : ∆ `L ϕ}, ∆
 := {ϕ : ∆ 
L ϕ} as well as the set L ⊕ ∆. In the
first case we have to close under MP, in the second under MP and MN and in the
third under MP, the rule MN and substitution. It turns out that these closures can
be obtained in a canonical and simple way. Denote by ∆s the closure of ∆ under
substitution, by ∆p the closure of ∆ under MP, and by ∆n the closure of ∆ under
MN.
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Proposition 5 The following holds.

1. ∆ `L ϕ iff ϕ ∈ (∆ ∪ L)p

2. ∆ 
L ϕ iff ϕ ∈ (∆n ∪ L)p

3. ϕ ∈ L ⊕ ∆ iff ϕ ∈ ((∆s)n ∪ L)p

Proof. The first is immediate from the definition. The second follows from the fact
that applications of MN j can be put before all applications of MP. Moreover, L is
closed under MN. The third fact follows from the fact that substitutions commute
with MN j and MP (and that L is closed under MN j and substitutions). We shall
show this now. The proof is based on the notion of a proof tree (rather than a
sequence).

Consider an application of MN j which follows an application of MP as in the
left hand side below. There is an alternative proof of � jψ in which the order is
reversed. This proof is shown to the right.

ϕ ϕ→ ψ
ψ

� jψ

ϕ→ ψ
ϕ � j(ϕ→ ψ) � j(ϕ→ ψ)→ � jϕ→ � jψ
� jϕ � jϕ.→ .� jψ

� jψ

It is readily computed that the depth of the application of MN j is reduced. A
proper inductive argument will establish that each proof can be transformed into
a proof where all applications of MN j precede all applications of MP. It follows
that we have ∆ `L ϕ iff ϕ ∈ ((∆ ∪ L)n)p = (∆n ∪ Ln)p = (∆n ∪ L)p. For the rules
MN are unary and so (∆ ∪ L)n = ∆n ∪ Ln. Ln = L, since L is normal.

Next we look at substitution. It is easy to show that each application of sub-
stitution can be moved up in the proof tree, so that the proof can be arranged
in such a way that all applications of substitution precede all applications of
MN, which in turn precede all applications of MP. Therefore, ϕ ∈ L ⊕ ∆ iff
ϕ ∈ ((∆s)n ∪ (Ls)n)p = ((∆s)n ∪ L)p, by similar arguments. �

3 Global Reduction and Local Reduction
Let L and M be normal modal logics and L ⊆ M. Then also 
L ⊆ 
M. Moreover,
M = L ⊕ Σ for some set of formulae Σ. Then the following is easily shown.
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Lemma 6 Suppose that M = L ⊕ Σ and ∆ 
M ϕ. Then there exists a finite set
Ξ ⊆ Σs such that ∆;Ξ 
L ϕ.

Proof. We use Proposition 5. M = (L∪ (Σs)n)p. Now ∆ 
M ϕ iff ϕ ∈ (∆n∪M)p iff
ϕ ∈ (∆n ∪ (Σs)n ∪ L)p iff ϕ ∈ ((∆ ∪ Σs)n ∪ L)p iff ∆;Ξ 
L ϕ for some finite Ξ ⊆ Σs.
�

Of course, Ξ depends on ∆ and ϕ. Therefore, we regard Ξ as a function X
mapping sets of formulae to sets of theorems of M. (More precisely, we should
construct X as a function from pairs 〈∆, ϕ〉 to sets of formulae. However, in prac-
tice it is enough to assume X to be a function that takes the set ∆;ϕ rather than
the pair 〈∆, ϕ〉 as its argument. Nothing of substance is lost.) We can also assume
that the variables occurring in X(∆) are also variables of ∆. For let σ be a sub-
stitution such that σ(p) := p if p occurs in ∆ or ϕ and σ(p) := ⊥ else. Then if
∆; X(∆;ϕ) 
L ϕ then also ∆σ; X(∆;ϕ)σ 
L ϕ

σ, which is ∆; X(∆;ϕ)σ 
L ϕ. Since
X(∆) ⊆ Σs, also X(∆;ϕ)σ ⊆ Σs.

Proposition 7 Let M = L ⊕ Σ. Then there exists a function X : ℘(Fκ) → Σs such
that

1. X(∆;ϕ) is finite for any ∆.

2. var[X(∆)] ⊆ var[∆]

3. ∆ 
M ϕ iff ∆; X(∆;ϕ) 
L ϕ.

Such a function is called a global reduction function of M to L.

Definition 8 Let L be a normal modal logic. L is globally decidable if there is
an algorithm computing the answer of the problem ‘∆ 
L ϕ’. L has the global
finite model property if ∆ 
L ϕ iff for all finite global L–models N: if N |= ∆

then N |= ϕ.

The following is known as Harrop’s Theorem.

Proposition 9 Let L be a a finitely axiomatizable logic. If L has the (global) finite
model property is also (globally) decidable.

Proof. Since L is finitely axiomatizable, its set of theorems is recursively enumer-
able. Its set of nontheorems is enumerated as follows. Since L is finitely axiomati-
zable, there is a procedure to check whether a finite Kripke–frame is an L–frame.
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Thus the set of L–frames is also recursively enumerable. It is now straightforward
to see that the set of local models is r. e. and thus the set of nontheorems. �

For the purpose of the next definition a function from sets to finite sets is
computable if its restriction to the set of finite sets is a computable function.

Definition 10 Let M and L be normal modal logics. M is globally construc-
tively reducible to L if there exists a computable global reduction function of
M to L.

Proposition 11 Suppose that L is globally decidable and M is globally construc-
tively reducible to L. Then M is globally decidable as well.

Proof. Let ∆ and ϕ be given. We describe an algorithm for deciding ‘∆ 
M ϕ’.
First, compute X(∆;ϕ) and then compute the answer to the problem ‘∆; X(∆;ϕ) 
L

ϕ’. This is decidable by assumption. The answer to the latter is the answer to the
problem ‘∆ 
M ϕ’. �

From this theorem the following can be deduced.

Proposition 12 Suppose that L is globally decidable. Then there exists a com-
putable global reduction function to any logic contained in L.

Proof. Let M ⊆ L, ∆ and ϕ be given. We have an algorithm deciding whether or
not ∆ 
L ϕ. Suppose that ∆ 
L ϕ does not hold. Then put X(∆;ϕ) := ∅. Then
clearly ∆; X(∆;ϕ) 
M ϕ also does not hold. Suppose now that ∆ 
L ϕ holds.
Then start enumerating all global L–proofs starting with ∆. (This is possible since
L is decidable. For a global L–proof is a sequence such that every element is
either a member of ∆, which is decidable since ∆ is finite, a member of L, which
is decidable by the decidability of L, of follows from previous members of the
sequence by application of MN or MP.) There is a proof Π for ϕ in this list. Let
X(∆;ϕ) be the set of all χ ∈ L occurring in Π. Then Π is a proof of ϕ from
∆; X(∆;ϕ) using MN and MP. Hence ∆; X(∆;ϕ) 
M ϕ. �

Hence, the mere existence of computable global reduction functions is not an
exciting fact. More interesting are the upper bounds for the size of such sets.
Notice that in the previous theorem M could even be a globally undecidable logic.

Theorem 13 Let M be an extension of L by means of finitely many variable free
formulae. Then M is globally constructively reducible to L.

Proof. By assumption, M = L ⊕ Σ for some finite set Σ of constant formulae.
Notice that M = (L ∪ Σ)np = (L ∪ Σn)p, since Σ is closed under substitution. Put

8



X(∆;ψ) := Σ. Then we have ∆ 
M ψ iff there is a global proof of ψ from ∆ ∪ M
iff there is a global proof of ψ from ∆ ∪ L ∪ Σ iff there is a global proof of ψ from
∆ ∪ X(∆;ψ) ∪ L iff ∆; X(∆;ψ) 
L ψ. �

Notice that the theorem is false if Σ is infinite. For there exists an infinite set
C of independent constant formulae over K. Let Σ be a nonrecursive subset of C.
Then K ⊕ Σ is globally undecidable, as is easily seen.

Consider the following functions.

X4(∆) := {�χ→ ��χ : �χ ∈ sf [∆]}
XT (∆) := {�χ→ χ : �χ ∈ sf [∆]}
XB(∆) := {¬χ→ �¬�χ : �χ ∈ sf [∆]}
XG(∆) := {¬�χ→ ¬�(χ ∨ ¬�χ) : �χ ∈ sf [∆]}
XGrz(∆) := {¬�χ→ ¬�(χ ∨ ¬�(χ→ �χ)) : �χ ∈ sf [∆]}
Xalt1(∆) := {¬�χ→ �¬χ : �χ ∈ sf [∆]}

The reader may check that the formulae are indeed axioms. We give proofs of the
fact that these are reduction functions to K.

Theorem 14 Suppose that L has the global finite model property and that the
class of finite L–frames is closed under replacement of C by its transitive closure.
Then X4 is a global reduction function of L.4 to L. In particular, X4 is a global
reduction function of K4 to K.

Proof. We have to show that

∆ 
L.4 ϕ ⇔ ∆; X4(∆;ϕ) 
L ϕ

From right to left is straightforward. From left to right, assume ∆; X4(∆;ϕ) 
L ϕ
is not the case. Then there exists a finite L–model 〈F, β, x〉, F = 〈F,C〉 such that
〈F, β〉 |= ∆; X4(∆;ϕ) but 〈F, β, x〉 2 ϕ. Let J be the transitive closure of C and
F4 := 〈F,J〉. By assumption on L, F4 is a L–frame. 〈F,J〉 is transitive; therefore
F4 is a L.4–frame. We show that for all subformulae χ of ∆ or ϕ and all worlds y

(†) 〈F,J, β, y〉 |= χ ⇔ 〈F,C, β, y〉 |= χ

This then establishes 〈F,J, β〉 |= ∆ and 〈F,J, β, x〉 |= ¬ϕ. We show (†) by in-
duction on χ. For variables there is nothing to show. The steps for ¬ and ∧ are
straightforward. Now let χ = �χ′. Assume 〈F,J, β, y〉 2 �χ′. Then there is a z
such that y J z and 〈F,J, β, z〉 |= ¬χ′. By induction hypothesis, 〈F,C, β, z〉 |= ¬χ′.
By definition of J there is a chain y = y0 Cy1 C . . .Cyn = z. Now 〈F,C, β, yn−1〉 |=
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¬�χ′. If n − 1 > 0 then 〈F,C, β, yn−2〉 |= ¬��χ′. Since �χ′ → ��χ′ ∈ X4(∆;ϕ)
and 〈F,C, β, yn−2〉 |= X4(∆;ϕ) we must have 〈F,C, β, yn−2〉 |= ¬�χ′. Iterating
this argument we get 〈F,C, β, y〉 |= ¬�χ′. So, 〈F,C, β, y〉 2 �χ′. Clearly, if
〈F,C, β, y〉 2 �χ′ then 〈F,J, β, y〉 2 �χ′, since C ⊆J. �

Theorem 15 Suppose that L has the global finite model property and that the
class of finite L–frames is closed under replacement of C by its reflexive closure.
Then XT is a global reduction function of L.T to L. In particular, XT is a global
reduction function of K.T to K.

Proof. Suppose that we have an M–frame F = 〈F,C〉 and 〈F, β〉 |= XT (∆;ϕ). Let
FT be obtained by replacing C by its reflexive closure, J. By definition, FT |= M
and so FT |= M.T. By induction on the set sf [∆;ϕ] we show that for all w in the
transit of x

〈FT , β,w〉 |= χ ⇔ 〈F, β,w〉 |= χ

The only critical step is χ = �τ. From left to right this follows from the fact that
if x C y then also x J y. For the other direction, assume we have 〈FT , β,w〉 2 �τ.
Then there is a v such that w J v and 〈FT , β, v〉 |= ¬τ. If v , w, we are done
for then also w C v. So assume the only choice for v is v = w and that w 6 w.
Then we have 〈F, β,w〉 |= �τ. But 〈F, β,w〉 |= �τ→ τ, by choice of the reduction
function. Hence 〈F, β,w〉 |= τ, and so by induction hypothesis 〈FT , β,w〉 |= τ,
which is a contradiction. So there always is a successor v , w. �

The proof for B is as in Theorem 20, so we will omit it here. Clearly, the
reduction functions given above work also for polymodal logics under the condi-
tions stated for the logic and for C, where C is replaced by any of the operators.
Furthermore, if X2 is a reduction function from L2 to L1, and X1 is a reduction
function from L1 to L0 then X2 ◦ X1 is a reduction function from L2 to L0. So,
reductions may applied in succession. We apply this to the following theorem.

Definition 16 A κ–modal logic L is called an RST–logic if L = K ⊕ A for some
A ⊆ {p→ ♦ j p, p→ � j♦ j p,♦ j♦ j → ♦ j p : j < κ}.

Theorem 17 Let L be a finitely axiomatizable RST–logic Then L has the global
finite model property.

Proof. Apply the constructive reduction in iteration. Since there are no interaction
postulates for the operators, we may add the axioms for each operator indepen-
dently. For a single operator the result follows from the following observations.
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Let R be a relation. If R is reflexive, so is its symmetric closure and also its tran-
sitive closure. If R is reflexive and symmetric, so is its transitive closure. �

This result actually follow from the general transfer results of [8], but the
proof offered here is much simpler. Now we turn to G, Grz and alt1. Both G and
Grz are transitive logics. We will now show that the functions above establish a
reduction from L.G to L.K4 under certain conditions and a reduction from L.Grz
to L.S4 under certain analogous conditions. The first result is a generalization of
a theorem by Balbiani and Herzig in [1]. To state it in full generality, we shall
introduce the notion of a subframe logic. Let 〈F,R,U〉 be a κ–frame, and G ∈ U.
Then put S ( j) := R( j) ∩ F2, V := {A ⊆ F : A ⊆ U}. The pair 〈G, S ,V〉 is called a
subframe of F. A logic L is a subframe logic if its class of frames is closed unter
taking subframes. By a well–known theorem of Fine [3], L has the finite model
property (but see also the appendix for a proof using constructive reduction). The
following is proved without this assumption, however.

Theorem 18 Let L ⊇ K4 be a subframe logic with the finite model property.
Assume that the class of finite L–Kripke frames is closed under replacement of a
reflexive point by an irreflexive point. Then XG is a global constructive reduction
of L.G to L. In particular, it is a global constructive construction of G to K4.

Proof. Notice that L is transitive, so we only need to consider reductions where
the antecedent is identical to >. From this follows the global finite model property
of L. Put �+ϕ := ϕ ∧�ϕ. Now let F be a finite transitive frame and

〈F, β,w0〉 |= ϕ; �+{¬�χ→ ¬�(χ ∨ ¬�χ) : �χ ∈ sf (ϕ)} .

Now, pick points from the frame as follows. Put S 0 := {w0}. The sets S n are now
defined inductively. Let x ∈ S n and �χ ∈ sf (ϕ) such that 〈F, β, x〉 2 �χ, and no
successor of x in S n − {w0} exists such that 〈F, β, y〉 |= ¬χ. Then, by assumption
on the reduction function, 〈F, β, x〉 |= ♦(¬χ ∧ �χ). Hence there exists an x̂ such
that x̂ |= ¬χ; �χ. (Moreover, if x = w0, then x̂ , w0. For x̂ is irreflexive, and
so w0 C x̂ implies w0 , x̂.) It follows that x̂ is irreflexive. Put S n+1 := S n ∪ {x̂}.
The selection ends after some steps, since F is finite. Call the resulting set G.
Let CG := C ∩ (G × G) − {〈w0,w0〉}. Then put G := 〈G,CG〉. (Alternatively,
we might simply take G to be the subframe consisting of w0 and all irreflexive
points from F, with the transition w0 → w0 being removed.) G is transitive and
irreflexive, hence it is a frame for G. Since L is a subframe logic and closed under
changing a reflexive point into an irreflexive point, G is also a frame for L. Put
γ(p) := β(p) ∩G. We now show that for every subformula ψ of ϕ and every point
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y ∈ G, 〈G, γ, y〉 |= ψ iff 〈F, β, y〉 |= ψ. This holds for variables by construction,
and the steps ¬, ∧ are straightforward. Now suppose 〈G, γ, y〉 2 �χ. Then also
〈F, β, y〉 2 �χ. Conversely, suppose that 〈F, β, y〉 2 �χ, for some �χ ∈ sf (ϕ).
Then also 〈G, β, y〉 2 �χ, since a successor z for y has been chosen such that
〈F, β, z〉 |= χ; �¬χ. By induction hypothesis, 〈G, γ, z〉 |= χ. Moreover, y CG z. For
if y , w0 this holds by definition of CG. For y = w0 observe that either w0 CF w0,
and then z , w0, since z 6 z. From this follows w0 CG z. Or else, w0 6F w0, in
which case w0 CG z anyway. And so 〈G, γ, y〉 2 �χ, as required. �

Theorem 19 Let L be a subframe logic containing S4. Assume that L has the
finite model property. Then XGrz is a constructive global reduction function of
L.Grz to L.

Proof. L has the (global) finite model property. Let 〈F, β,w0〉 a finite S4–model
such that

〈F, β,w0〉 |= ϕ; �+{¬�χ→ ¬�(χ ∨ ¬�(χ→ �χ)) : �χ ∈ sf (ϕ)} .

(Here, again �+ϕ := ϕ∧�ϕ.) We select a subset G of F in the following way. We
start with the set S 0 := {w0}. S n+1 is defined inductively as follows. Suppose x ∈
S n and 〈F, β, x〉 |= ¬�χ, but no y exists in S n such that xCy and 〈F, β, y〉 |= ¬χ. We
choose a successor y of x such that y |= ¬χ; �(χ→ �χ) and put S n+1 := S n ∪ {y}.
y exists by choice of the reduction function. Now the following holds. (Recall
that in S4–frames, sets of the form C(x) := {y : x C y C x} are called clusters. See
also Section 8.) (a) The entire cluster C(y) satisfies ¬χ, (b) no point in a cluster
succeeding C(y) and different from C(y) satisfies χ. This procedure comes to a halt
after finitely many steps. The resulting set is called G, and the subframe based on
it G. It is directly verified that G contains at most one point from each cluster.
(Moreover, the selection procedure produces a model whose depth is bounded by
the number of formulae in sf (ϕ) of the form �χ as can easily be seen.) So all
clusters have size 1. G is reflexive and transitive, being a subframe of F. So,
G is a Grz–frame. Since L is a subframe logic, G is a L–frame as well. Let
γ(p) := β(p) ∩ G. It is shown as in the previous proof that for every subformula
χ of ϕ and every x ∈ G, 〈G, γ, x〉 |= χ exactly when 〈F, β, x〉 |= χ. In particular,
〈G, γ,w0〉 |= ϕ. This concludes the proof. �

So far all the axioms have been unimodal. Here now is an example of a bi-
modal axiom. Axioms of this form are used to axiomatize tense logic. The axiom
of symmetry is also of this form (except that there is only one modality, not two).
If R is a binary relation, we shall write R` to denote the converse of R, i. e. the set
{〈y, x〉 : x R y}.
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Theorem 20 Let L be a bimodal logic that has the global finite model property.
Assume that the class of finite L–Kripke frames is closed under passing from
〈F,C0,C1〉 to 〈F,C0,C1 ∪C`

0 〉. Put

X01(∆) := {¬χ→ �0¬�1χ : �0χ ∈ sf [∆]}

Then X01 globally reduces L ⊕ p→ �0♦1 p to L.

Proof. Let L(01) := L ⊕ p→ �0♦1 p. We show that

(‡) ∆ 
L(01) ϕ ⇔ ϕ; X01(∆;ψ) 
L ϕ

Let M = 〈F, β,w0〉 be a local model where F = 〈F, /0, /1〉 is a finite K2–frame such
that 〈F, β〉 |= ∆; X01(∆;ϕ) and 〈F, β,w0〉 |= ¬ϕ. Let J0 := /0 and J1 := /1 ∪ /

`
0 .

Then 〈F,J0,J1〉 is a L(01)–frame, for it is a L–frame by assumption on L; and
J1⊇J

`
0 . For all χ ∈ sf [∆;ϕ] we have

(†) 〈F,J0,J1, β, y〉 |= χ ⇔ 〈F, /0, /1, β, y〉 |= χ .

This is clear for variables; the steps for ¬ and ∧ are straightforward. Likewise
the step for χ = �0τ. Now let χ = �1τ. From left to right is clear. Now right
to left; assume 〈F,J0,J1, β, y〉 2 �1τ. Then there is a w such that y J1 w
and 〈F,J0,J1, β,w〉 |= ¬τ. By induction hypothesis, 〈F, /0, /1, β,w〉 |= ¬τ. If
y /1 w, we are done; for then 〈F, /0, /1, β, y〉 2 �0τ (= χ). Otherwise w /0 y. Now,
〈F, /0, /1, β,w〉 |= �0¬�1τ, since 〈F, /0, /1, β,w〉 |= X01(∆;ϕ). Thus 〈F, /0, /1, y〉 |=
¬�1τ. So, 〈F, /0, /1, β, y〉 2 �1τ. �

Before we prove some more results in this vein, let us indicate something
about the scope and the limits of this technique. Suppose that we have a postulate
that is elementary on all finite frames, and that the condition on finite frames is
a universal, positive restricted sentence. That is, it is of the form ∀x.α(x) where
α(x) is made from statements x C j y, j < κ, and x .

= y, using the connectives ∧
and ∨ and

(∀y B j x)β := (∀y)(x C j y→ β)

Then α is a Sahlqvist condition and corresponds to a modal formula ϕα. More
precisely, if α = Q~x.Φ(~x), where Φ is quantifier free, we can define for each
disjunct δ of Φ a formula µδ such that

ϕα = σ→
∨

µδ

Here, σ and the µδ are formulae made from of variables using ∧, ∨ and ♦ j, j < κ.
Let α not contain any occurrences of x .

= y. Then we can view the elementary
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property α as a closure condition on the accessibility relations. If a certain tree
can be mapped homomorphically into the frame, then some more relations must
hold. The tree is actually defined by the variables of the restricted quantifiers plus
the restrictions that apply to them. We call this the carrier tree of α. For example,
transitivity is (∀x)(∀yBx)(∀zBy)(xCz). So, if the tree xCyCz can be mapped into
the frame (not necessarily injectively) then x C z must obtain as well. Likewise
for alt1, which is (∀x)(∀y B x)(∀z B x)(y .

= z). If F and G are frame such that
F = G and CF

j ⊆ CG
j for all j < κ then we say that G is an arrow extension of

F. We may define for a frame F the set Cα(F) to be the set of all minimal arrow
extensions G of F such that G |= (∀x)α(x). Then if L has the finite model property
and α is elementary on the finite frames, and it holds that for all finite L–frames
F, Cα(F) is a set of L–frames it seems that L ⊕ ϕα has the finite model property,
and that this can be shown by means of the global reduction sets.

We are not able to provide a proof for that claim, in fact we are not sure
whether the claim holds in full generality. However, it might be worthwile to
explain the idea of a proof that works quite well in many concrete cases. It is
roughly as follows. Take ∆ and ϕ such that ϕ does not follow globally from ∆
in L ⊕ ϕα. Define Y(∆) to be the set of those instances of ϕα, where conjunction
of subformulae of ∆ or their negations are substituted for the variables. This is a
finite set, and var[Y(∆)] ⊆ var[∆]. We need to show that if there is a L–model
M = 〈F, β〉 such that M |= ∆; Y(ϕ;∆) but M 2 ϕ, then we define a closure
G ∈ Cα(F) in the following way. Suppose that the carrier tree of α is embeddable,
say x 7→ wx. Then σ can be made true at the root of the tree. Substitute for the
variable px the conjunction of all subformulae of ∆;ϕ that are true at wx and the
conjunction of all negations of such formulae which are false at wx. (We call this
the atom of wx.) By force of Y(ϕ;∆) there must be a disjunct µδ of ϕα, which
is true. It corresponds to a disjunct δ of the matrix of α. Hence, we add those
relations wx C j wy for which x C j y is a conjunct of δ. After having done so, we
need to show that for this newly created model M1 we have M1 |= ∆; Y(ϕ;∆), but
M1 2 ϕ. (It is here that some more is needed to show this. We do not know how
to supply the details in the general case, but for many specific cases it works.) If
that is so, we continue the process so long as the α is still not satisfied. When we
are done, however, the resulting frame is a member of Cα(F) and so a model for
L ⊕ ϕα, by assumption. Hence, it defines a global model form ∆ in which ϕ is not
satisfied.

A case in point are in addition to 4, T, X(01) and B also the formulae (∀x)(∀yBi

x)(x C j y), corresponding to ♦i p → ♦ j p. Furthermore, we may add to a κ–modal
logic a new modality whose relation includes a given set S ⊆ κ of relations and
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that is either transitive (we call it an S –master) or an equivalence relation (then it
is an S –universal modality, see [6]). Constructive reduction can be applied there
as well. Notice that the commutation axioms ♦i♦ j p → ♦ j♦i p do not fall into
this class since they do not correspond to a universal formula. The just mentioned
axiom corresponds to (∀x)(∀y Bi y)(∀z B j y)(∃u B j x)(u Ci z). Indeed, it is known
that the logic of three commuting S5–modalities is undecidable (this follows from
results in Gabbay and Shehtman [4]). Hence, since the logic S5 ⊗ S5 ⊗ S5 is an
RST–logic and therefore has the finite model property, it must be the commutation
axioms that lead to undecidability.

Another technique, that works especially well with subframe axioms is that of
dropping points from a model. In fact, we show in the Appending to this paper
that such a procedure can be used to show that all subframe logics containing
K4 have the finite model property. This constitutes a constructive proof of the
theorem by Fine ([3]). The proof is in fact quite involved, but not more complex
than the original one. Likewise, it is possible to show that altn, if added to a
subframe logic with the (global) finite model property then the resulting logic has
the finite model property again and is a subframe logic. It is well known that all
subframe logics containing K.altn have the local finite model property. Our result
is a strengthening for some logics. However, these techniques need to be handled
with care. We give the following negative example. Consider the monomodal
logic corresponding to the following first–order properties:

(∀x, y, zBw)(x .
= y∨ x .

= z∨ y .
= z), (∀x, yBw)(∀zBw)(zB x∨ zB y∨ x .

= y)

This logic is an extension of K.alt2. Its frame are such that any point has at most
two direct successors and at most three two–step successors. By encoding a tiling
problem, [15] has shown that this logic is globally undecidable. This shows that
we cannot strengthen the methods to all subframe logics.

4 Complexity
In this section we will discuss upper bounds on complexity of modal logics that
can be derived using the reduction functions. We will mainly deal with the global
complexity, since this is the easiest point of attack. From the global complexity,
one can also establish results on the local complexity (using the gl–reduction of
next section), but they tend to be far worse than the known bounds. For the results
on modal logic complexity we refer here generally to [15] and [2] and references
therein, though some specific references are also given below.
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Before we start, we have to discuss the notion of the length of a formula.
Standardly, the length of a formula is the number of symbols occurring in it. This
length is denoted here by |ϕ|. It is defined inductively as follows.

|⊥| := 1
|pi| := 1
|¬ϕ| := 1 + |ϕ|
|ϕ ∧ ψ| := 1 + |ϕ| + |ψ|
|� jϕ| := 1 + |ϕ|

(The variable pi counts as one symbol, even though it would be more appropriate
to code the index by a bit sequence. However, we shall ignore this detail here.)
For a set ∆, put |∆| :=

∑
ϕ∈∆ |ϕ|. The symbol count is however not always the

most economical way of writing down a formula, especially when ∆ contains few
subformulae. This is the case with the formula sets we are dealing with here.
Therefore, we shall work with a different measure, in line with [2]. Namely, for a
set ∆ of formulae we put

](∆) := card(sf [∆])

To get acquainted with this measure, we shall note a few of its properties. The
following is proved by induction.

Lemma 21 Suppose that no formula occurs more than once in∆. Then |∆| = ](∆).

Proposition 22 log2(|∆| + 1) ≤ ](∆) ≤ |∆|. These bounds are sharp.

Proof. Clearly, ](∆) ≤ |∆|. Now suppose that ∆ is a set of formulae such that every
variable and ⊥ occur at most once. Then it is not hard to see that each formula
occurs in ∆ at most once, and in this case |∆| = ](∆) by the previous lemma. Now
we turn to the other inequality. It is clear that the maximum depth of the formulae
in ∆ (in terms of their tree structure) provides a lower bound on the number of
subformulae, since no two formulae of different depth can be equal. A formula of
depth n can have up to 2n − 1 symbols, as is easily shown. So, n ≥ log2(|∆| − 1).
Now define the following formulae.

χ1 := ⊥

χn+1 := χn ∧ χn

Then ](χn) = n, but |χn| = 2n − 1. Thus, log2(|χn| + 1) = n = ](χn). �

Proposition 23 The following holds.
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1. If ϕ ∧ ϕ ∈ ∆ then ](∆;ϕ ∧ ψ) = ](∆;ϕ;ψ).

2. If ∗ϕ ∈ ∆, ∗ ∈ {� j : j < κ} ∪ {¬}, then ](∆; ∗ϕ) = ](∆;ϕ).

3. ](ϕ→ ψ) = ](¬(ϕ ∧ ¬ψ)) = 3 + ](ϕ;ψ).

4. ](ϕ↔ ψ) = ]((ϕ→ ψ) ∧ (ψ→ ϕ)) = 7 + ](ϕ;ψ).

5. ](∆;∆′) = ](∆) + ](∆′) − card(sf [∆] ∩ sf [∆′]).

These claims are easy to prove, and we shall make tacit use of them in sequel. We
note now the following.

Proposition 24 Let Y be any of the reduction functions of the previous section.
Then for any set ∆, ](Y(∆)) ≤ cY](∆), where cY > 0 is a constant depending only
on Y.

We verify this with X4. Take ∆. For any �χ ∈ sf [∆], X4(∆) contains the additional
formula �χ→ ��χ, which is in fact ¬(�χ ∧ ¬��χ). Now

sf (�χ→ ��χ) = sf (χ) ∪ {¬(�χ ∧ ¬��χ),�χ ∧ ¬��χ,¬��χ,��χ,�χ}

It follows that for each subformula of ∆, X(∆) adds 5 more formulae. Hence
](X4(∆)) ≤ 6](∆). (The reader may verify that |X4(∆)| is quadratic in |∆|.)

Definition 25 Let X is a function from finite sets of formulae to finite sets of for-
mulae. We say that X is linear (polynomial, exponential) if ](X(∆)) ≤ f (](∆))
for some linear (polynomial, exponential) function f : ω→ ω.

Definition 26 A logic L is globally NP (PSPACE, EXPTIME) if there ex-
ists a nondeterministic algorithm taking time polynomial in ](∆;ϕ) (a determinis-
tic algorithm taking space polynomial/exponential in ](∆;ϕ)) which computes the
answer to the problem ‘∆ 
L ϕ’.

Similarly, L is globally NP–hard (globally PSPACE–hard etc.) if some problem
that is NP–complete (PSPACE–complete etc.) can be polynomially reduced to a
problem of the form ‘∆ 
L ϕ’.

Now suppose that we have a logic L which is Q–hard, where Q is any of
the three complexity classes. Let M be globally reducible to L by a linear re-
duction function X. Then the problem ‘∆ 
M ϕ’ is equivalent to the problem
‘∆; X(∆;ϕ) 
L ϕ’. The latter takes O(](∆;ϕ; X(∆;ϕ))) = O(∆;ϕ) time (space).
Hence, the space and time complexity does not rise.
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Theorem 27 Suppose that X is a linear global reduction function from L to M.
Then if M is globally NP (PSPACE, EXPTIME), so is L.

This method only gives an upper bound. In general, L can have much lower
complexity than M. A trivial example is the inconsistent logic. A more instructive
example is the following. S5 is globally linearly reducible to K, by the results of
the preceding section. Yet, K is globally EXPTIME–complete while S5 is NP–
complete.

Corollary 28 The systems KB, KT, KBT, K4, G, S4, Grz are globally in
EXPTIME. Moreover, tense logic and RST–logics are in EXPTIME.

This is for the transitive logics mentioned in the theorem not the best possible
result. They are all PSPACE–complete. However, such a result would follow by
the same techniques, if only it is established that K4 is PSPACE–complete. This
last statement, however, has to be established independently. There is a possibility
to show this, namely using tableaux. It is known that K has a tableau calculus (for
local consistency) in which the branches have a linear length. Using this tableau
calculus one can establish the same property for K4. This means that validity can
be checked in polynomial space. The reduction sets can be used to show this. We
will not go into the details here. Suffice it to say that the length of branches in a
tableau can be bounded from above by a polynomial function (see [14] for some
tableau calculi for modal logics).

Now consider again the case where M is globally linearly reducible to L. Let
L′ be a logic such that L ⊆ L′ ( M. Then M is globally linearly reducible to
L′ as well. Hence, the complexity class of M is also bounded from above by the
complexity class of L′. It follows that the complexity class of M is the minimum
over all complexity classes over the logics containing L and properly contained
in M. Moreover, if M is C–hard for some complexity class C, then all logics in
the interval [L,M] are C–hard. This allows to establish lower bounds for entire
intervals of logics, analogous to the result of Ladner ([10]) that all logics in [K,S4]
are locally PSPACE–hard. Unfortunately, using our methods we obtain the same
lower bound for global complexity of these logics, since S4 is globally PSPACE–
complete.

In analogy to Chagrov and Zakharyaschev we define the global complexity
function of a logic as follows.

Definition 29 Let M be a modal logic with the global finite model property. Let
fM be the following function. fM(n) = max{µ(∆;ϕ) : ](∆;ϕ) ≤ n}, where µ(∆;ϕ) is
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0 if ∆ 
M ϕ and else it is the least number p such that there exists a global model
N based on p worlds such that N |= ∆ and N 2 ϕ.

The local complexity function is defined analogously, where the maximum is
taken only over µ(∅;ϕ). Chagrov and Zakharyaschev show that the local com-
plexity function can be extremely complex, for example the k–fold iteration of
the exponential function. However, here we are interested only in whether the
complexity function is polynomial or exponential. The following is now clear.

Theorem 30 Suppose that L has a polynomial (exponential) global complexity
function and that M is globally reducible to L by means of a linear complexity
function. Then M has a polynomial (exponential) global compexity function as
well.

Proof. Let fL be the global complexity function of L and X the reduction function
of M to L. Let p be defined by p(n) := max{](X(∆)) : ](∆) ≤ n}. Suppose that
∆ 1M ϕ and ](∆;ϕ) ≤ n. Then ∆; X(∆;ϕ) 1L ϕ. By assumption there is a model
of size ≤ fL(](∆;ϕ; X(∆;ϕ)) ≤ fL(p(n) + 1). So, fM := fL(p(n) + 1) is a global
complexity function for M. If fL and p are both polynomial (exponential), so is
fM. �

Again, these results establish only upper bounds. K does not have a polyno-
mial local complexity function and hence also not a polynomial global complexity
function as we shall show below. However, for S5 the global complexity function
is polynomial. Incidentally, we may use a result of Chagrov and Zakharyaschev
to derive a lower bound for the global complexity function for K. Namely, it is
shown that for the local complexity function for K4, f4, it holds that log2 f4(n) is
linear in the limit. Hence the local complexity function is exponential. It is an
easy matter to show that the global complexity function, g4, is then also exponen-
tial. For ∆ 
K4 ϕ iff ∆; �∆ `K4 ϕ, where g4(n) ≤ f4(2n). Moreover, f4(n) ≤ g4(n).
Now, since K4 can be reduced globally to K, we obtain that the global complex-
ity function for K cannot be less than exponential. We denote by k] the global
complexity function of Kκ, and kg the local complexity function.

Lemma 31 k](n) ≤ 2n.

Proof. Let ∆ 1 ϕ, ∆ finite. Then by Theorem 42 there exists a global model
N = 〈F, β〉 based on a Kripke–frame F such that N |= ∆ but N 2 ϕ. Now filtrate
this model with respect to the set A := sf [∆;ϕ]. That means the following. Write
x ≈A y if 〈F, β, x〉 |= χ is equivalent to 〈F, β, y〉 |= χ for all χ ∈ A. Now let
[x]A := {y : x ≈A y}. Put [x]A C j [y]A iff there exist x′ ≈A x and y′ ≈A y such that
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Figure 1: The branching Tree
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x′ C j y′. This defines the frame F/A. Next we put β/A(p) := {[x]A : x ∈ β(p)}.
Then it is shown by induction that 〈F/A, β/A, [x]A〉 |= χ iff 〈F, β, x〉 |= χ for all
χ ∈ A. Clearly, F/A has at most 2n elements, where n = ](∆;ϕ). �

Theorem 32 The logics Kκ have the global finite model property and are globally
decidable. Furthermore, the following holds in the limit:

1. 2n/16 < k](n) ≤ 2n.

2. 2
√

n < kg(n) ≤ 2n.

Proof. Let m be a natural number. Consider the formulae

ϕi := ¬�m−i⊥.↔ .¬�pi ∧ ¬�¬pi

We claim that

(†) �m+1⊥; {ϕi : i < m} 1 �m⊥ ∨ ♦m−1�⊥

A countermodel is constructed as follows. Let F be the set of at most m–long
sequences from {0, 1}. Put ~x C~y iff ~y = ~xa for a ∈ {0, 1}. This defines the frame F.
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It is rooted at ε (the empty sequence) and has 2m+1 − 1 elements. Furthermore, let
β(pi) consist of those ~x such that either (a) ~x has length at least i+1 and ~x = ~u1~v for
some ~u of length i, or (b) ~x = ε, or (c) ~x , ε, ~x has length ≤ i and ~x = ~u1 for some
~u. (Figure 1 illustrates the model for m = 2.) Then 〈F, β, ε〉 2 ♦m−1�⊥; �m⊥.
However, 〈F, β〉 |= �m+1⊥. Further, if ~x |= ♦m−i>, then ~x has length at most i.
Hence ~x0 |= ¬pi and ~x1 |= pi, from which follows ~x |= ♦pi ∧ ♦¬pi. If however
~x 2 ♦m−i+1> then ~x has length at least i + 1, and then either (a) ~x = ~u0~v for some
~u of length i or (b) ~x = ~u1~v for some ~u of length i. Then ~x |= �¬pi in Case (a) and
~x |= �pi in Case (b), as is easily seen. Hence 〈F, β〉 |= ϕi for every i < m. This
establishes (†).

Now we show that any model witnessing (†) must have at least 2m+1−1 points.
Suppose that 〈G, γ〉 is such a model. Then 〈G, γ〉 |= ∆, where ∆ := �m+1⊥; {ϕi : <
m} and 〈G, γ〉 2 �m⊥∨♦m−1�⊥. Then there is an x ∈ G satisfying ♦m>∧�m−1♦>.
Furthermore, x |= �m+1⊥, so any maximal path from x has length m, and there
exists a path of length m. Now, consider a point x of depth m − i + 1. Then
x |= ♦m−i>. If pi holds at x, it will hold at every successor of x; and if ¬pi holds,
it holds at every successor of x. However, pi−1 holds at one successor and fails
at another. So, x has at least two successors. It follows easily that G has least
1 + 2 + 22 + 2n = 2m+1 − 1 points.

This allows to prove the upper complexity bound. Let n be given. Then

](ϕi) = ](¬�m−i> ↔ (¬�pi ∧ ¬�¬pi))
= 7 + ](¬�m−i⊥;¬�pi ∧ ¬�¬pi)
= 14 + ](¬�m−i⊥)
= 16 + (m − i)

Put ∆ := �m+1⊥; {ϕi : i < n}. Then

](∆;¬(�m⊥ ∧�m−1¬�⊥)) = 14m + ](�m+1⊥;¬(�m⊥ ∧�m−1¬�⊥)) − ](¬�⊥; �m⊥)
= 14m + ((m + 2) + (2m + 1)) − (3 + m)
= 16m

Hence, with n := 16m we get the desired lower bound. For there exist ∆ and ϕ
such that ](∆;ϕ) = n, ∆ 1 ϕ, and the smallest model witnessing this is of size
2m+1 − 1 > 2n/16.

Now derive the local complexity bounds we take a modified version of the
previous example. We have

�m⊥; {� jϕi : i, j < m} 0 �m> ∨ ♦m−1�⊥
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The model constructed earlier serves here as well. Furthermore, a countermodel
has at least 2m+1 − 1 points, by the same argument. However, the number of
subformulae is now 10m+m(m− 1) = m2 + 9m = (m+ 9/2)2 − (9/2)2. This gives
the lower bound, assuming that n = m2 + 9m. �

As we have remarked with the complexity class, these results can be used
to derive bounds for the size of models for entire intervals of logics. We will
give an example. The logic K.D.alt1 has a linear local complexity function, as is
easily seen. However, the global complexity function is not even polynomial. For
consider the following formulae

γn(p) := p↔

�n p ∧
∧

0<i<n

�i¬p


](γn(p)) = 7 + ](p; �n p ∧

∧
0<i<n �i¬p))

= 7 + n + ](
∧

0<i<n �i¬p)
= 6 + 2n + ]({�i¬p : 0 < i < n})
= 6 + 2n + ](�n−1¬p)
= 7 + 3n

Now let qi, i < s, be the first n prime numbers. Put ∆n := {γqi(pi) : i < n}∪{�pi ↔

¬�¬pi : i < n}.

Lemma 33 Let L be a modal logic in the interval [K,K.D.alt1]. Then ¬�⊥;∆n

is globally L–consistent. Moreover, any L–model witnessing this has size≥
∏

i<n qi.

Proof. Suppose that 〈F, β〉 is a global L–model such that 〈F, β〉 |= ¬�⊥;∆n. Let
〈wi : i < ω〉 be a sequence of points such that wiCwi+1 for all i ∈ ω. Such sequence
exists, by the fact that the model satisfies ¬�⊥. Then it follows by choice of the
formulae γqi(pi) that (1) wk ∈ β(qi) iff wk+qi ∈ β(qi), (2) wk ∈ β(qi) iff wk+s < β(qi)
for all s < qi. It follows easily that there is a k such that wk |= pi for all i < n. Then
the smallest number k′ > k such that wk′ |= pi for all i < n is k +

∏
i<n qi. This

is independent of the chosen sequence. It follows that all w j for k ≤ j < k′ must
be distinct. So, there are at least

∏
i<n qi many points in this frame. It is easy to

construct a K.D.alt1–model with exactly that many points. This shows the global
consistency of this set. �

Let g(n) be the product of all primes ≤ n, and let L(n) := ](∆n;¬�⊥). Since
the formulae in ∆n use pairwise distinct variables, we have

L(n) =
∑

i<n ](γqi(pi)) + 3 + 7n
= 7n +

∑
i<n(8 + 3qi)

= 15n + 3
∑

i<n qi

22



Then f (n) := g(L−1(n)) is the function measuring the size of the models for these
formulae in terms of their length. So, f is a lower bound on the global complexity
of K.D.alt1. We prove that f grows faster than any polynomial. The proof uses
some number theory.

To give a lower bound for f , we will establish lower bounds for L−1 and g. This
is sufficient, since g is monotonously increasing. First we will deal with L−1. Us-
ing the asymptotic formula qn ∼ n log n for the nth prime number, where log is the
logarithm to the base e, we get that

∑
i<n qi is asymptotically equal to n2

2 log n . (See

[9].) Namely, taking the integral
∫ n/ log n

1
x log xdx we get x2 log x/2 − x/2

∣∣∣n/ log n

1
,

which is asymptotically equal to n2

2 log n . The latter is eventually < n2

c , where c
is any given positive real number. This allows to conclude that asymptotically
L(n) < n2/c for any given c > 0. Putting n = L−1(m), we get m < L−1(m)2/c from
which

√
mc < L−1(m). Hence, changing m back to n, L−1(n) >

√
cL(n).

Now
∏

p≤n p ∼ en. (Namely, ϑ(n) is defined to be the sum of the log p, where
p is a prime number ≤ n. It can be shown that ϑ(n) ∼ n. For [9] on Page 108,
Theorem 5.16 gives π(n) ∼ ϑ(n)

log n and on Page 112, we have π(n) ∼ n
log n , showing

ϑ(n)
log n ∼

n
log n .) Hence, for any ε > 0,

∏
p≤n p is eventually larger than e(1−ε)n.

Now, given positive real numbers c and εwe get f (n) = g(L−1(n)) > e
√

cL(n)(1−ε).
Since we may choose c2/(1 − ε) rather than c we have that eventually also f (n) >
ec
√

n. Now, from Lemma 33 we immediately the following result.

Theorem 34 Let K ⊆ L ⊆ K.D.alt1. Then the global complexity function of L
is in the limit at least 2c

√
n for any given c.

Let U be a set of worlds in a frame. Let

T (U) := U ∪ {y : x C j y, x ∈ U, j < κ}
T n+1(U) := T (T n(U))

T n(U) is the set of all points reachable in at most n steps from a point in U. Now
say that a frame F is of depth δ if there is a point x such that T δ({x}) is the entire
set of worlds from F.

Definition 35 Let M be a modal logic with the global finite model property. Let
fM be the following function. fM(n) = max{λ(∆;ϕ) : ](∆;ϕ) ≤ n}, where λ(∆;ϕ) is
0 if ∆ 
M ϕ and else it is the least number δ such that there exists a global model
N of depth δ such that N |= ∆ and N 2 ϕ.

The local complexity function is defined analogously, where the maximum is
taken only over λ(∅;ϕ).
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Theorem 36 Let dg and d] be the global and local depth complexity functions of
Kκ. Then the following holds asymptotically, for all c > 0:

1. 2c
√

n < dg(n) < 2n.

2. d](n) = n − 2.

The local complexity bound is rather trivial to establish, using the fact that the
depth of the models can be chosen to be at most the modal depth of the formulae,
which in turn is at most half of the number of subformulae. The upper bound is
reached by ¬�n−1⊥; �n⊥. This formula has length n + 2 and needs a model of
depth exactly n. The global results follow from (the proof of) Theorem 34 and
the fact that the depth complexity function never exceeds the global complexity
function. It is clear that the theorem does not reveal mucht about transitive logics;
here the depth complexity is ≤ 2. Finally, it is clear that there is an analogue of
Theorem 30 with respect to the depth functions.

5 The Reduction from Global to Local
Now let ` and `′ be two consequence relations. We call X a reduction function
from ` to `′ if

1. X(∆) is finite,

2. var[X(∆)] ⊆ var[∆],

3. X(∆) ⊆ Taut(`),

4. ∆ ` ϕ iff ∆; X(∆;ϕ) `′ ϕ.

In the previous section we have discussed the case where ` and `′ are both global
consequence relations. Analogously we can reduce the local consequence relation
of M to the local consequence relation of L.

Now notice that there is the following connection between local and global
consequence relations.

Proposition 37 ∆ 
L ϕ iff for some compound modality �: �∆ `L ϕ.
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Moreover, we can simplify the choices for � somewhat. Define for finite κ:

�0ϕ := ϕ
�1ϕ :=

∧
j<κ ϕ

�k+1ϕ := �1�kϕ
�≤kϕ :=

∧
i≤k �iϕ

Definition 38 Assume that κ is finite. Let f be a function from finite sets of for-
mulae to ω. f is a global–to–local reduction function or gl–reduction
function for L if for all finite sets ∆ and ϕ

∆ 
L ϕ ⇔ �≤k∆ `L ϕ

where k := f (∆;ϕ).

The following theorem is easy to show.

Proposition 39 Suppose that L is locally decidable and that there is a computable
gl–reduction function for L. Then L is globally decidable.

To put it negatively: if a logic is locally decidable but globally undecidable, then
no computable gl–reduction function for L exists. [15] has proved the existence
of such logics. A logic is weakly transitive if it has a theorem of the form �k p→
�k+1 p. Clearly, weakly transitive logics have computable reduction functions:
simply put f (∆) := k. Furthermore, observe the following.

Proposition 40 Suppose that M has a (computable) global reduction function to
L and that L has a (computable) gl–reduction function. Then M has a (com-
putable) gl–reduction function.

Proof. Let X be a reduction function from M to L, and f a gl–reduction function
for L. Then

∆ 
M ϕ ⇒ ∆; X(∆;ϕ) 
L ϕ
⇒ �≤k∆; �≤kX(∆;ϕ) `L ϕ
⇒ �≤k∆; �≤kX(∆;ϕ) `M ϕ
⇒ �≤k∆ `M ϕ

where k := f (∆;ϕ; X(∆;ϕ)). Hence put g(∆) := f (∆; X(∆)). This is a gl–reduction
function for M. If both f and X are computable, then so is g. �

A logic M is called weakly transitive if there exists a compound modality �
such that �p → p, �p → � � p, �p → � j p and �p → � j � p are theorems
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of M for all modal operators � j. We call � a master modality. If M is weakly
transitive with master modality � then

∆ 
M ϕ ⇔ �∆ `M ϕ

Moreover, ](�∆) ≤ c · ](∆) for some constant c. Hence, the global derivability is
linearly recodable as a local derivability problem. So we have the

Proposition 41 Suppose that M is weakly transitive. Then there exists a linear
gl–reduction function for M.

It follows that in the weakly transitive case the local and the global complexity
coincide. For we generally have

∆ `M ϕ ⇔ 
M

∧
∆→ ϕ

Moreover, ](
∧
∆ → ϕ) ≤ 2 + 2](∆;ϕ). So, the local derivability problem is

linearly recodable into a global derivability problem.
We will discuss a special case to solve, and that is the gl–reduction of Kκ. In

[7] the following is proved. (We reproduce the proof here.)

Theorem 42 Let ∆ be a finite set of formulae and ϕ a formula. Put k := 2](∆)+](ϕ).
Then

∆ 
Kκ
ϕ ⇔ �≤k∆ `Kκ

ϕ

Proof. Assume �≤kϕ 0Kκ
ψ. Then there exists a finite model 〈F, β,w0〉 |=

�≤kϕ;¬ψ. Moreover, we may assume that F is cycle–free, and that between any
pair of points there exists at most one path. Let ∆ := sf (ϕ) ∪ sf (ψ) and put
S (y) = {χ ∈ ∆ : 〈F, β, y〉 |= χ}. Let G be the set of all y in F such that along any
path from w0 to y there are no two distinct points v and w such that S (v) = S (w).
Then any path from w0 to y ∈ G has length ≤ k, because there are at most k subsets
of ∆. Now define J j on G as follows. y J j z iff (1) y C j z or (2) for some u < G
we have y C j u and S (z) = S (u). Put γ(p) := β(p)∩G. We will now show that for
every y ∈ G and χ ∈ ∆

〈G, γ, y〉 |= χ ⇔ 〈F, β, y〉 |= χ .

This is true for variables by construction. The steps for negation and conjunction
are clear. Now let χ = ♦ jδ. If 〈F, β, y〉 |= ♦ jδ then for some z such that y C j z
we have 〈F, β, z〉 |= δ. There are two cases. Case 1. z ∈ G. Then by induction
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hypothesis, 〈G, γ, z〉 |= δ. From this we conclude 〈G, γ, y〉 |= ♦ jδ, since y J j z.
Case 2. z < G. Then there is a u ∈ G such that S (u) = S (z). Therefore, by
construction of G, y J j u. Furthermore, 〈F, β, u〉 |= δ by definition of S (−).
So, 〈G, γ, u〉 |= δ by induction hypothesis. From this follows 〈G, γ, y〉 |= ♦ jδ,
since y J j u. This exhausts the two cases. Now suppose 〈G, γ, y〉 |= ♦ jδ. Then
〈G, γ, z〉 |= δ for some z such that y J j z. By induction hypothesis, 〈F, β, z〉 |= δ.
If y C j z, then also 〈F, β, y〉 |= ♦ jδ. If, however, y 6 j z, then there is a u such
that y C j u and S (u) = S (z). By definition of S (−), 〈F, β, u〉 |= δ, from which
〈F, β, y〉 |= ♦ jδ as well. Now since from w0 there is always a path of length ≤ 2k

to any point y ∈ G, we have 〈F, β, y〉 |= ϕ for all y ∈ G, and so 〈G, β, y〉 |= ϕ for all
y. Consequently, 〈G, β,w0〉 |= �ωϕ;¬ψ, as required. �

6 Interpolation and Beth Theorems
Definition 43 A modal logic L has local interpolation if for every pair ϕ and
ψ of formulae with ϕ `L ψ there is a χ such that var(χ) ⊆ var(ϕ) ∩ var(ψ) and
ϕ `L χ as well as χ `L ψ. L has global interpolation if for every pair ϕ, ψ of
formulae with ϕ 
L ψ there is a χ such that var(χ) ⊆ var(ϕ) ∩ var(ψ) and ϕ 
L χ
as well as χ 
L ψ.

Since we have a deduction theorem for local deducibility, we can reformulate local
interpolation in such a way that it depends only on the set of theorems. L has the
Craig Interpolation Property if whenever ϕ → ψ ∈ L there exists a χ which is
based on the common variables of ϕ and ψ such that ϕ → χ; χ → ψ ∈ L. A logic
has the Craig Interpolation Property iff it has local interpolation.

Proposition 44 If L has local interpolation it also has global interpolation.

Proof. Suppose that L has local interpolation. Let ϕ 
L ψ. Then for some
compound modality � we have �ϕ `L ψ. Whence by local interpolation there is
a χ with var(χ) ⊆ var(ϕ) ∩ var(ψ) such that �ϕ `L χ and χ `L ψ. Hence ϕ 
L χ
as well as χ 
L ψ. �
The converse implication does not hold, as has been shown in [12]. Interpolation
is closely connected with the so–called Beth property. It says, in intuitive terms,
that if we have defined p implicitly, then there also is an explicit definition of p.
An explicit definition is a statement of the form χ ↔ p where p < var(χ). An im-
plicit definition is a formula ψ(p, ~q), such that the value of p in a model is uniquely
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defined by the values of the variables ~q. The latter can be reformulated syntacti-
cally. Given a consequence relation `, we say that ϕ(p, ~q) implicitly defines p (in
`) if ϕ(p, ~q);ϕ(r, ~q) ` p ↔ r. Given L, we may choose ` to be either `L or 
L.
This gives rise to the notions of local and global implicit definitions.

Definition 45 L is said to have the local Beth Property if the following holds.
Suppose ϕ(p, ~q) is a formula and

ϕ(p, ~q);ϕ(r, ~q) `L p↔ r.

Then there exists a formula χ(~q) not containing p as a variable such that

ϕ(p, ~q) `L p↔ χ(~q) .

Analogously, the global Beth property is defined by replacing `L by 
L.

The lack of the deduction theorem for the global consequence makes the global
Beth property somewhat more difficult to handle than the local equivalent. For
the local Beth property we can actually prove that it is equivalent to the Craig
Interpolation Property. The following two results were shown in [12].

Theorem 46 (Maksimova) Let L be a modal logic. Then L has local interpola-
tion iff it has the local Beth property.

Theorem 47 (Maksimova) A modal logic with local interpolation also has the
global Beth–property.

Proof. Assume that ϕ(p, ~q);ϕ(r, ~q) 
L p↔ r. Then for some compound modality
� we have

�ϕ(p, ~q); �ϕ(r, ~q) `L p↔ r.

This can now be rearranged to

�ϕ(p, ~q); p `L �ϕ(r, ~q)→ r.

We get an interpolant χ(~q) and so we have �ϕ(p, ~q); p `L χ(~q), from which
�ϕ(p, ~q) `L p→ χ(~q). So ϕ(p, ~q) `L p→ χ(~q). And we have χ(~q) `L �ϕ(r, ~q)→
r from which we get �ϕ(r, ~q) `L χ(~q)→ r, and so ϕ(r, ~q) `L χ(~q)→ r. Replacing
r by p we get the desired result. �

The picture obtained thus far is the following.
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local interpolation

local Beth Property

global interpolation

global Beth Property

-

-

6

?

It can be shown that there exist logics without global interpolation while having
the global Beth Property and that there exist logics with global interpolation with-
out the global Beth Property. An example of the first kind is the logic G.3. (See
[11].)

Definition 48 Let L be a modal logic. L is locally Halldén–complete if when-
ever ϕ `L ψ and var(ϕ) ∩ var(ψ) = ∅ we have ϕ `L ⊥ or `L ψ. L is globally
Halldén–complete if whenever ϕ 
L ψ and var(ϕ) ∩ var(ψ) = ∅ we have
ϕ 
L ⊥ or 
L ψ.

Global Halldén–completeness is called the Pseudo Relevance Property in [13].
In the literature, a logic L is called Halldén–complete if for ϕ and ψ disjoint in
variables, if ϕ ∨ ψ ∈ L then also ϕ ∈ L or ψ ∈ L. Clearly, this latter notion of
Halldén–completeness coincides with local Halldén–completeness. This follows
from the deduction theorem, since ϕ `L ψ is equivalent to `L ¬ϕ ∨ ψ. If a logic
is locally Halldén–complete it is also globally Halldén–complete. For if ϕ 
L ψ
then �ϕ `L ψ. If ϕ and ψ have no variable in common, this holds for �ϕ and ψ as
well. Hence, ϕ `L ⊥ or else `L ψ, from which we get ϕ 
L ⊥ or 
L ψ. Further, if
L logic is locally Halldén–complete then any constant formula must be equivalent
to ⊥ or >. This is the case, for example, when all modal operators are reflexive.

Proposition 49 Suppose that L is a logic such that every constant formula is lo-
cally equivalent to ⊥ or >. Then if L has local (global) interpolation, it is locally
(globally) Halldén–complete.

For a proof note that if ϕ `L ψ with ϕ and ψ disjoint in variables, then there exists
a constant formula χ such that ϕ `L χ and ψ `L ψ. By assumption on L, χ is
equivalent to > or ⊥. If the first holds then > `L ψ and if the second holds then
ϕ `L ψ. Similarly for the global case.

Finally, we will establish some criteria for interpolation. Assume that we have
logics L and L′ with L ⊆ L and global reduction sets for L′ with respect to L. Let
us say that the reduction sets split if there exists a reduction function X such that
X(ϕ;ψ) = X(ϕ→ ψ) = X(ϕ) ∪ X(ψ).
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Theorem 50 Suppose that L′ can be globally reduced to L with splitting reduction
sets. Then L′ has local (global) interpolation if L has local (global) interpolation.
Moreover, L′ is locally (globally) Halldén–complete if L is.

Proof. Assume ϕ `L′ ψ. Using the deduction theorem we get `L′ ϕ → ψ. Then

L′ ϕ → ψ. By global reduction we get X(ϕ → ψ) 
L ϕ → ψ and so for some
compound modality �

�X(ϕ→ ψ) `L ϕ→ ψ .

This is the same as
�X(ϕ); �X(ψ) `L ϕ→ ψ ,

by the assumption that the reduction sets split. We can rearrange this into

�X(ϕ);ϕ `L �X(ψ)→ ψ.

(We allow ourselves to write �X(ψ) in place of
∧

�X(ψ).) By assumption on
X, var[X(ϕ)] ⊆ var(ϕ) and var[X(ψ)] ⊆ var(ψ). By local interpolation for L we
obtain a τ in the common variables of ϕ and ψ such that

ϕ; �X(ϕ) `L τ `L �X(ψ)→ ψ.

From this follows that ϕ `L′ τ `L′ ψ, by the fact that the reduction sets only contain
instances of theorems. Moreover, var(τ) ⊆ var(ϕ) ∩ var(ψ). Pushing up global
interpolation works essentially in the same way. Now, for Halldén–completeness,
assume that ϕ `L′ ψ for ϕ and ψ disjoint in variables. Then

ϕ; �X(ϕ) `L �X(ψ)→ ψ.

The left hand side is disjoint in variables from the right hand side, and so either
the left hand side is inconsistent or the right hand side is a theorem. In the first
case, ϕ `L′ ⊥. In the second case `L′ ψ, as required. The proof for global Halldén–
completeness is analogous. �
We conclude from that the following theorem.

Corollary 51 The monomodal logics K.alt1, K4, K.B, K.T, K.BT, S4, S5,
G and Grz have local interpolation. Moreover, K.T, K.BT, S4, S5 and Grz
are Halldén–complete.

This is so since the reduction functions given earlier split, as an easy inspection
reveals. The second claim follows from Proposition 49. The following has been
observed first in [14]
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Corollary 52 (Rautenberg) Let L have local (global) interpolation and let Ψ be
a set of constant formulae. Then L ⊕ Ψ has local (global) interpolation.

By considerations analogous to Theorem 13, XΨ(∆;ψ) := Ψ is a global reduction
function. Obviously, X splits. An analogous theorem holds for local and global
Halldén–completeness; however it is of no use. For if a logic is Halldén–complete,
any constant formula is equivalent to either ⊥ or >.

We close with a remark on interpolation. Say that L has constructible local
interpolants if for given ϕ and ψ such that ϕ `L ψ we can construct a local inter-
polant χ. It can be shown that if M can be locally constructively reduced to L and
L has constructible local interpolants, then this holds for M as well. Similarly for
global interpolation. 1

7 Conclusion
We have introduced the notion of a reduction function and shown how to use
reduction functions to prove certain standard and some new results about decid-
ability, finite model property, interpolation etc. of logical systems. All methods
are constructive: the reduction functions are shown to be constructible if the logic
is decidable. Moreover, if we are given reduction function, we assume that the
base logic L has the finite model property and construct an M–model on the basis
of a suitably defined L–model. The only handicap of the method is the fact that
we use a global reduction function instead of a local one, even though we show
also that the global consequence relation is reducible in the same way to the local
reducibility. Yet, the bounds obtained in this way for the time and space complex-
ity are sometimes far off the mark. However, our results are — so we think —
only the beginning. It is conceivable that they can be improved to establish the
bounds known from the literature.

8 Appendix: Subframe Logics containing K4
In this appendix, all frames and logics are assumed to be transitive. A subframe G

is cofinal in F if every point in the subframe generated by G in F is covered by a
point of G. That means, if x ∈ G and x C y then either y ∈ G or else yC z for some
z ∈ G. A logic is called a cofinal subframe logic if its class of frames is closed

1I owe this observation to Oliver Kutz.
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under taking cofinal subframes. Obviously, a subframe logic is a cofinal subframe
logic; the converse need not hold, e. g. S4.2. Examples of subframe logics are S4,
S5, G, Grz, K4.3 and many more.

We will prove in this appendix the following theorem, proved in [3] for sub-
frame logics and in [16] for cofinal subframe logics.

Theorem 53 (Fine, Zakharyaschev) Every cofinal subframe logic containing K4
has the finite model property.

For subframe logics this is due to Kit Fine; the generalization to cofinal subframe
logics (as well as Fine’s result independently) has been obtained by Michael Za-
kharyaschev. Before we enter the proof let us introduce some useful terminology
and draw important consequences. If L is a logic and F rooted and finite then
denote by L/F F the smallest subframe logic containing L not having F as a frame,
and call L/F F the Fine–splitting of L by F. It turns out that L/F F = L⊕CF where
CF = �+SF(F).→ .¬po with o a root

SF(F) :=
∧
〈px → ¬py : x , y〉

∧
∧
〈px → ♦py : x C y〉

∧
∧
〈px → ¬♦py : x 6 y〉

Any subframe logic L is a Fine–splitting K4/F G with G = {F : F < Fr(L),G rooted}.
Analogously, a Zakharyaschev–splitting of L by F is the least cofinal subframe
logic containing L for which F is not a frame. It is axiomatizable by L⊕�+CSF(F).→
¬po. We write L/Z F.

CSF(F) :=
∧
〈px → ¬py : x , y〉

∧
∧
〈px → ♦py : x C y〉

∧
∧
〈px → ¬♦py : x 6 y〉

∧ �♦
∨
〈px : x ∈ f 〉

Put F ≺F G if G is a p–morphic image of a subframe of F, and F ≺Z G if G is a
p–morphic image of a cofinal subframe of F. Then ≺Z ⊆≺F . If F is a K4–frame
and x, y ∈ f then y is called a weak successor of x, in symbols x E y, if x C y
or x = y. y is a strong successor of x, in symbols x~Cy, if x C x but y 6 x. The
cluster C(x) of x is the set of weak successors which are not strong, that is the set
of y such that x E y E x. The depth of a point x, d(x), is the maximum number
n such that there is a sequence x = x0~Cx1~C . . . ~Cxn−2~Cxn. In the sequel we fix a
formula ϕ, and let S := sf (ϕ). Let M = 〈F, β〉 be a model. We make the crucial
assumption from now on that the β(p), p ∈ var(ϕ), generate the algebra of sets of
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F. We say in that case that the model is ϕ–refined. In a model, the characteristic
set of a point x, X(x), is the set of all formulae of S = sf (ϕ) true at x. The atom
or characteristic formula is

At(x) :=
∧
ψ∈X(x)

ψ ∧
∧
ψ<X(x)

¬ψ

The set of all conjunctions of this type, i. e. the set of all characteristic formulae,
is denoted by A(ϕ) or simply A. Call x ∈ F maximal (with respect to ϕ) in
M if no strong successor of x has the same characteristic set (or formula) as x.
The subframe of all maximal points of M = 〈F, β〉 is denoted by Fµ. In a finite
model, every point x has a weak successor which is maximal for the atom of x.
This weak successor is denoted by xµ. Then x = xµ iff x is maximal (by ϕ–
refinement). Hence, Fµ is actually cofinal in F. It is useful to observe that if xCyµ

and x |= ♦At(yµ) then there is a weak successor xµ such that xµ C yµ. We now have
the following

Proposition 54 Let Fµ ⊆ G ⊆ F and x ∈ G. Then for all ϕ ∈ S :

〈F, β, x〉 |= ϕ ⇔ 〈G, β, x〉 |= ϕ

The proof of this theorem is straightforward. As a consequence, there is no dis-
tinction whether we choose maximal points in F or in G. They will be the same
set. And so xµ does not depend on G as long as G ⊇ Fµ. Let R be the refinement
of the frame Fµ, where the internal sets are those generated by β(pi), pi ∈ var(ϕ).
(That is to say, we consider the general frame based on Fµ, in which the algebra
of sets is generated by the values of the variables pi.) Write β for the valuation
induced on R. Let dµ(x) be the depth of x in R.

Fact 55 For all x ∈ G, dµ(x) is the maximum number n such that there is a chain
〈xi : i ∈ n〉 with x0 = x, xi~Cxi+1, and xi+1 |= ¬At(xi) ∧ ¬♦At(xi), i ∈ n − 1. By
consequence, dµ(x) ≤ 2]S .

Proof. This is seen by first noting that if there is a chain 〈xi : i ∈ n〉 such that xi+1 |=

¬At(xi) ∧ ¬♦At(xi), then xi+1 6 xi, and, starting with xn−1, one can successively
replace the xi by a maximal weak successor xµi so that xµi ~Cxµi+1. Conversely, if
there is a chain 〈xi : i ∈ n〉 of maximal points such that xi~Cxi+1 then xi+1 |=

¬At(xi) ∧ ¬♦At(xi). So there is a chain of points with xi+1 |= ¬At(xi) ∧ ¬♦At(xi)
iff there is a chain of maximal points of the same length satisfying xi~Cxi+1 iff
dµ(x0) ≥ n. �
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For x ∈ F define

suc+(x) := {y ∈ Fµ : x~Cy},
cl(x) := {y ∈ Fµ : x C y C x},
CL(x) := {At(y) : y ∈ cl(x), y maximal}

By induction on dµ(x) we will now define formulae εx, λx. The formulae εx will
encode the structure of the refined submodel of maximal points. The formulas λx

define the layers of that model, that is, the set of all points y in the submodel of
maximal points with dµ(y) < dµ(x). The induction starts with dµ(x) = −1, where
there is nothing to do, except to let λ−1 := ⊥. Now let dµ(x) := d + 1 with d ≥ −1.
(We write ♦+ϕ for ϕ ∨ ♦ϕ and �+ϕ for ϕ ∧�ϕ.)

λx := ζd

αx := At(x) ∧ ¬λx ∧�(λx → ¬♦+At(x))

βx :=


�¬At(x) if cl(x) = ∅∧
〈♦α : α ∈ CL(x)〉

∧
∧
〈�(α1 → ♦α2) : α1, α2 ∈ CL(x)〉

∧
∧
〈�(α→ ♦+(α ∧ λx)) : α ∈ A(ϕ) − CL(x)〉 otherwise

γx :=


∧
〈♦εy ∧�(♦+At(x)→ ♦εy) : y ∈ suc+(x)〉

∧
∧
〈�¬εy : y < suc+(x), dµ(y) ≤ d〉

∧
∧
〈�(�¬εy →

∨
α∈A(ϕ)−CL(x) ♦

+(α ∧ λx)) : y ∈ suc+(x)〉

εx := αx ∧ βx ∧ γx

ζd+1 := := ζd ∨
∨
〈εx : dµ(x) = d + 1〉

Define SUC+(x) := {εy : y ∈ suc+(x)}. Then if ≡ denotes equivalence in K it is
calculated that εx ≡ εy iff either (α) SUC+(x) = SUC+(y), or (β) CL(x) = CL(y)
and At(x) = At(y). Define the frame des = 〈δ,C〉 with δ = {εx/≡ : x ∈ F}
and εx C εy iff either εy ∈ SUC+(x) or SUC+(x) = SUC+(y), CL(x) = CL(y) and
At(y) ∈ CL(x). (Henceforth we will not distinguish between εx and its equivalence
class εx/≡.) Our aim is to show that des is nothing but R, and that the natural
valuation on des is β. The first lemma shows that the definition of the εs is sound
for the maximal points:
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Lemma 56 Let Fµ ⊆ G ⊆ F and x ∈ Gµ. Then x ∈ f µ and 〈G, β, s〉 |= εx.

Proof. If x ∈ Gµ, then its maximal successor xµ is in G, since G ⊇ Fµ. Hence,
x = xµ, since x is maximal in G and it follows that x is maximal in F as well. By
induction on d := dµ(x) we show

(‡) 〈G, β, x〉 |= εx; moreover, if 〈G, β, x〉 |= λd then dµ(x) ≤ d.

To begin with dµ(x) = −1, there is nothing to show. Thus let dµ(x) = d + 1. The
proof is broken down into four parts:

(i) x |= αx

This is so because y |= λx implies yµ |= λx(= ζd) by Proposition 54, from
which dµ(yµ) ≤ d. But no maximal successor of x of depth ≤ d can satisfy At(x)
or ♦At(x).

(ii) x |= βx

The case CL(x) = ∅ is straightforward. Let therefore CL(x) , ∅. By definition
of CL(x) and the fact that G ⊇ Fµ we get x |= ♦α1; �(α1 → ♦α2) for all α1, α2 ∈

CL(x). Also x |= �(α̂. → .♦+(α̂ ∧ λx)) for α̂ < CL(x), for if for a successor y:
y |= α̂, then yµ |= α̂ and by induction hypothesis and the fact that dµ(yµ) ≤ d,
yµ |= λx. Thus if y = yµ we have y |= λx and if y C yµ we have yµ |= ♦(α̂ ∧ λx).

(iii) x |= γx

x |= ♦εy ∧ �(♦+At(x). → .♦εy) for all εy ∈ SUC+(x) by the fact that x is
At(x)–maximal and x |= ♦εy for all εy ∈ SUC+(x). Furthermore, x |= ¬♦εy for
all y < suc+(s) and dµ(y) ≤ d. Finally, suppose for x C z that z |= ¬♦εy for some
y ∈ suc+(x). By definition of depth, dµ(zµ) ≤ d. Hence, by induction hypothesis
zµ |= λx. If z = zµ then z |= λx ∧ α, if z C zµ then z |= ♦(α ∧ λx) for α = At(z) ∈ A.
And so

z |= ζ :=
∨
〈♦+(α ∧ λx) : α ∈ A〉

from which x |= �(�¬εy → ζ). This shows (iii). We have shown that x |= εx.
(iv) Now suppose y |= λd+1. If also y |= λd then dµ(y) ≤ d, by induction

hypothesis. Hence let y |= ¬λd. Then y |= εz for some maximal z with dµ(z) = d+1
and so y |= ♦εx for some maximal x with dµ(x) = d. So, dµ(y) > d. But y |= βz,
implying that if yCv |= �+¬At(y), then At(v) < CL(z) and so v |= ♦+(At(v)∧λd). If
v |= λd, dµ(v) ≤ d; but if v |= ♦(At(v) ∧ λd) then vµ |= λd and so dµ(v) = dµ(vµ) ≤ d
as well. This proves dµ(y) = d + 1. �
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Lemma 57 For all x, y ∈ F:

(a) εx ≡ εy ⇔ `K4 εx ↔ εy

(b) εx . εy ⇔ `K4 εx → ¬εy

(c) εx C εy ⇔ `K4 εx → ♦εy

(d) εx 6 εy ⇔ `K4 εx → ¬♦εy

Proof. It is enough to show only (⇒) in each case. (a) holds by definition of ≡
and εx.

(b) If SUC+(x) , SUC+(y), for example εw ∈ SUC+(x) − SUC+(y), then `K4
εx → ♦εw; εy → ¬♦εw, whence `K4 εx → ¬εy; likewise for εw ∈ SUC+(y) −
SUC+(x). Let us now suppose SUC+(x) = SUC+(y). If At(x) , At(y), the case
is clear. Thus if At(x) = At(y), we must have CL(x) , CL(y). Without loss of
generality we can assume that α ∈ CL(x) − CL(y). We have `K4 εx → ♦α; εx →

�(♦+At(x) → ¬λx) (by `K4 αx → �(♦+At(x). → .¬λx) and `K4 εx → αx).
Furthermore, from `K4 εx → �(α→ ♦At(x)) we get `K4 εx → ♦(α ∧ ¬λx). Also,
εx `K4 �(α→ ♦At(x)) (this is a conjunct of βx), and ε `K4 �(♦At(x)→ ¬λx) (this
follows from the last conjunct of αx). Together this gives εx `K4 �(α → ¬λx).
But

`K4 εy → �(α→ ♦+(α ∧ λy)) .

By definition of βy and since SUC+(x) = SUC+(y) we have λx ≡ λy. Consequently
`K4 εy → �(α→ ♦+(α ∧ λx)). Now

εx ∧ εy `K4 ♦(α ∧ ¬λx); �(α→ ¬λx); �(α→ ♦+(α ∧ λx)) `K4 ⊥.

(The last two formulae give �(α → ♦+(α ∧ λx ∧ ¬λx)), by transitivity; therefore,
�(α → �+⊥) is derivable, which gives �¬α. ♦α is derivable from the first
formula. Hence, ⊥ is derivable.) So, `K4 εx → ¬εy.

(c) If εy ∈ SUC+(x), the case is trivial. So let us suppose the contrary. Then
x C y C x and so cl(x) = cl(y) as well as suc+(x) = suc+(y). Hence SUC+(x) =
SUC+(y) and CL(x) = CL(y) , ∅. Since εy is a conjunction of formulae ψi, i < n,
in order to show `K4 εx → ♦εy it is enough to show `K4 εx → ♦ψ0 and `K4 εx →

�(ψ0 → ψi), 0 < i < n. We take ψ0 := At(y). Furthermore, βx = βy and γx = γy,
from which it easily follows with the help of `K4 εx → �(At(y) → ♦+At(x)) that
`K4 εx → �(At(y).→ .βy ∧ γy). Now

(i) `K4 εx → ♦At(y), since At(y) ∈ CL(x).
(ii) `K4 εx → �(At(y) → ¬λy) follows from `K4 εx → �(At(y) → ♦At(x)),

`K4 εx → �(♦At(x)→ ¬λx) and λx ≡ λy.
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(iii) `K4 εx → �(At(y) → �(λy → ¬♦+At(y))). For `K4 εx → �(λx →

¬♦+At(x)), whence `K4 εx → �(λy → ♦+At(y)). For λx = λy, and furthermore
`K4 εx → �(At(y)→ ♦+At(x)). The claim now easily follows.

(i), (ii) and (iii) together give `K4 εx → ♦αy. Thus `K4 εx → ♦εy, as required.
(d) Case 1. If dµ(y) < dµ(x), then ¬♦εy is a conjunct of εx.
Case 2. dµ(x) = dµ(y). Then λx ≡ λy. Suppose εu ∈ SUC+(x) − SUC+(y) for

some εu. If `K4 εx → ♦εy then we have

`K4 εy.→ .¬♦εu ∧ ¬λx ∧
∧
〈α→ ¬♦+(α ∧ λx) : α ∈ A(ϕ) − CL(x)〉

So we get

`K4 εx → ♦(�¬εu. ∧ .¬λx ∧
∧
〈α→ ♦+(α ∧ λx) : α ∈ A(ϕ) − CL(x)〉) .

But this is a contradiction to `K4 εx → γx. Now suppose εu ∈ SUC+(y)−SUC+(x).
Then `K4 εx → ♦εy yields `K4 εx → ♦εu in contradiction to `K4 εx → �¬εu.
Thus the case SUC+(x) = SUC+(y) is left. Then we must have CL(x) , CL(y)
or CL(x) = CL(y) = ∅. The latter case is dealt with as follows. `K4 εx → ♦εy

implies `K4 εx → ♦At(y); and since εx `K4 �(At(y) → ♦+(At(y) ∧ λy)) (for
At(y) < CL(x)) we have `K4 εx → ♦(εy ∧ ♦+(At(y) ∧ λy)), in contradiction to
εy `K4 ¬λy ∧�(λy → ¬At(y)). Thus CL(x) , CL(y). Now let α ∈ CL(y) − CL(x).
Then `K4 εx → �(α → ♦+(α ∧ λx)) and `K4 εy → �(α → ¬λx) and if `K4
εx → ♦εy we get `K4 εx → ♦(α ∧ λx) ∧ �(α → ¬λx), again a contradiction.
Assume finally γ ∈ CL(x) − CL(y). Then `K4 εx → �(At(y)→ ♦γ) and `K4 εy →

�(γ → ♦+(γ ∧ λx)). We arrive at a contradiction with `K4 εx → ♦εy because
`K4 εx → �(γ → ¬λx).

Case 3. dµ(y) > dµ(x). If there is a z with dµ(z) = dµ(x), εy / εz and εz 6 εx 6
εz, then `K4 εx → ♦εy would imply `K4 εx → ♦εz, which is contradiction because
of Case 2. But in the other case εy C εx and since `K4 εy → �(λy → �¬At(y))
and `K4 εx → λy we get `K4 εy → �(εx → �¬At(y)) showing `K4 εx → ¬♦εy. �

Since the depth of a point in R is bounded we have a bounded number of
formulae εx no matter what the frame F is we started with. This number we
denote by c(ϕ). It can be computed from ϕ, but we will not do that here. Another
consequence of Lemma 57 is

Proposition 58 Let G be a finite frame and Fµ be subreducible to G, that is,
Fµ ⊇ H

π
� G, and let χy :=

∨
〈εw : w ∈ h, π(w) = y〉, for y ∈ G. Then

`K4 SF(G)[χy/py]
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where ϕ[χy/py] is the result of replacing χy for all occurrences of py for all y in
ϕ.

Proof. It is easily seen that `K4 χv → ¬χw if v , w, `K4 χv → ♦χw if v C w and
`K4 χv → ¬♦χw if v 6 w. �

Proposition 59 The map ρ : Fµ � R given by ρ : x 7→ εx is a p–morphism
admissible for β. Moreover, let D be the algebra of sets generated by the sets
ρ[β(p)] = {α ∈ δ : α `K4 p}. Then 〈des,D〉 is refined.

Proof. Let x C y. Then either y C x or y 6 x. y 6 x implies εx C εy by
definition, since ♦εy is a conjunct of εx; if yCx then we have SUC+(x) = SUC+(y),
CL(x) = CL(y) and At(y) ∈ CL(x). Thus εx C εy as in the proof for Lemma 57(c).
Hence x C y implies εx C εy. Furthermore, if ρ(x) C εy then since 〈Fµ, β, x〉 |=
εx and `K4 εx → ♦εy, 〈Fµ, β, z〉 |= εy for some x C z. Then εy ≡ εz, that is,
ρ(z) = εy. This shows that ρ is a p–morphism. ρ is clearly admissible; let γ be the
induced valuation on R. Because of 〈Fµ, β, z〉 |= εx, we have 〈R, γ, ρ(z)〉 |= εx but
〈R, γ, ρ(z)〉 |= ¬εy for εx , εy and consequently 〈R, γ〉 is refined. �

We have now constructed formulas εx which completely describe the structure
of the refined submodel of maximal points of any given finite model.

Theorem 60 Let L ⊇ K4 be a subframe logic, F a finite, rooted frame. If L has
the finite model property, L/F F has the finite model property as well. Moreover, if
ϕ is consistent with L/F F then it has a model of size ≤ c(ϕ).

Proof. By constructive reduction. Suppose ϕ is consistent with L/F F. Then
define ϕ] to be the union of the sets F(〈R, β〉) where R is of cardinality ≤ c(ϕ), β
a valuation from var(ϕ) into R and

F(〈R, β〉) := {�+Cg[εS (x)/px] : S : G → 2r}, εS (x) :=
∨
〈εw : w ∈ S (x)〉

So ϕ;ϕ] is LF–consistent and a fortiori L–consistent. Therefore 〈Z, ζ,w〉 |= ϕ;ϕ]

for some L–model 〈Z, ζ,w〉. Let R be the reduced subframe of maximal points.
We have 〈R, ζ, εw〉 |= ϕ, by Proposition 59. Now suppose R ⊇ H

π
� F. Then let

S : y 7→ π−1(y). If v ∈ π−1(x) with x generating F then 〈Zµ, ζ, v〉 |= ¬Cg[εS (y)/py]
since 〈Zµ, ζ, v〉 |= εS (s) and 〈Zµ, ζ〉 |= SF(F)[εS (x)/px], by Proposition 58. Thus
v < z. Consequently, R is not subreducible to F. 〈R, ζ,w〉 is an LF–model for ϕ
and card(Rw) ≤ c(ϕ). �
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Analogously the same theorem for cofinal subframe logics is proved. By in-
duction one can now show that all Fine–splittings K4/F G (and all Zakharyaschev–
splittings K/Z H for finite H) have the finite model property. But this is all we need
to show the full theorem. Let ϕ be K4/F G–consistent. Define Gϕ := {G ∈ G :
card(G) ≤ c(ϕ)}. Then ϕ is K4/F Gϕ–consistent and has a finite model of size
≤ c(ϕ) by the preceding theorem. But this already is a K4/F G–model. This com-
pletes the proof of Theorem 53
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