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Abstract

In [2], Ginsburg and Spanier showed that the semilinear subsets of
Nn are exactly the sets that are definable in Presburger Arithmetic.
The proof relied on two results shown in [1]: (1) that linear equations
define semilinear sets, and (2) that the complement of a semilinear
set is and the intersection of semilinear sets is again semilinear. Here
we offer a much simpler proof of this fact. Basically, using quantifier
elimination for Presburger Arithmetic we avoid having to show closure
under negation. Instead, this will now follow from the results. Second,
closure under intersection will be shown using standard techniques
from linear algebra.

1 Preliminaries

Let Nn be the set of n–tuples of natural numbers. A tuple is denoted by an
arrow, eg ~v, whose coordinates are vi, i < n. Put ~0 := 〈0, 0, . . . , 0〉. Define
~v + ~w by

(~v + ~w)(i) = ~v(i) + ~w(i)
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Denote the structure 〈Nn, 0, +〉 also by Nn. The unit vector which is 0 except
at place number i, where it is 1, is denoted by ~ei. We define n~v inductively
as follows. 0~v := 0, (n+1)~v := n~v+~v. We write N~v for the set {n~v : n ∈ N}.
Finally, for two subsets V, W ⊆ NA write ~v + W := {~v + ~w : ~w ∈ W} and
V +W := {~v+ ~w : ~v ∈ V, ~w ∈ W}. A nonempty subset of Nn is called linear
if it can be written as

~v0 + N~v1 + N~v2 + · · ·+ N~vm

for some m (which may be zero, in which case we get the singleton {~v0}).
Likewise, a subset of Zn (Qn) is called linear if it has the form

~v0 + Z~v1 + Z~v2 + · · ·+ Z~vm

for subsets of Zn as well as

~v0 + Q~v1 + Q~v2 + · · ·+ Q~vm

for subsets of Qn. The linear subsets of Qn are nothing but the affine sub-
spaces.

A subset of Nn (Zn, Qn) is called semilinear if it is the finite union of
semilinear sets. We employ the following notation.

Definition 1.1 Let M and N be finite subsets of Nn. Then Σ(M ; N) denotes
the set of vectors of the form ~u +

∑
i<p ki~vi such that ~u ∈ M , ki ∈ N and

~vi ∈ N for all i < p.

Presburger Arithmetic is defined as follows. The basic symbols are 0, 1, +,
< and ≡m, m ∈ N − {0, 1}. Then Presburger Arithmetic is the first order
theory of the structure Z := 〈Z, 0, 1, +, <, 〈≡m: 1 < m ∈ N〉〉, where a ≡m b
iff a− b is divisible by m.

Negation can be eliminated.

¬(x
.
= y) ↔ x < y ∨ y < x

¬(x < y) ↔ x
.
= y ∨ y < x

¬(a ≡m b) ↔
∨

0<i<m a ≡m b + n

where n is defined by 0 := 0, n + 1 := n+1. We shall occasionally use x ≤ y
for x < y ∨ x

.
= y. Moreover, multiplication by a given natural number also

is definable: put 0t := 0, and (n + 1)t := nt + t. Every term in the variables
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xi, i < n, is equivalent to b +
∑

i<n aixi, where b, ai ∈ N, i < n. A subset S
of Zn is definable if there is a formula ϕ(x0, x1, . . . , xn−1) such that

S = {〈ki : i < n〉 ∈ Zn : Z � ϕ[k0, k1, . . . , kn−1]}

The definable subsets of Zn are closed under union, intersection and comple-
ment and permutation of the coordinated. Moreover, if S ⊆ Zn+1 is definable,
so is its projection

πn[S] := {〈ki : i < n〉 : there is kn ∈ Z : 〈ki : i < n + 1〉 ∈ S}

The same holds for definable subsets of Nn, which are simply those definable
subsets of Zn that are included in Nn. Clearly, if S ⊆ Zn is definable, so is
S ∩ Nn.

2 Linear Equations

Lemma 2.1 Suppose that a+
∑

i<n pixi = b+
∑

i<n qixi is a linear equation
with rational numbers a, b, pi and qi (i < n). Then there is an equivalent
equation g +

∑
i<n uixi = h+

∑
i<n vixi with positive integer coefficients such

that g · h = 0 and for every i < n: viui = 0.

Proof. First, multiply with the least common denominator to transform the
equation into an equation with integer coefficients. Next, for every i < n,
substract qixi from both sides pi > qi and pixi otherwise. 2

Call an equation reduced if it has the form

g +
∑
i<m

kixi =
∑

m≤i<n

kixi

with positive integer coefficients g and ki, i < n. Likewise for an inequation.
Evidently, modulo renaming of variables we can transform every rational
equation into reduced form.

Lemma 2.2 The set of solutions of a reduced equation is semilinear.

Proof. Let µ be the least common multiple of the ki. Consider a vector of
the form ~ci,j = (µ/ki)~ei + (µ/kj)~ej, where i < m and m ≤ j < n. Then if ~v
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is a solution, so is ~v +~ci,j and conversely. Put C := {~ci,j : i < m,m ≤ j < n}
and let

P :=

{
~u : g +

∑
i<m

ki~u(i) =
∑

m≤j<n

ki~u(i), for all i < n : ~u(i) < µ/ki

}

Both P and C are finite. Moreover, the set of solutions is exactly Σ(P ; C).

Lemma 2.3 The set of solutions of a reduced inequation is semilinear.

Proof. Assume that the inequation has the form

g +
∑
i<m

kixi ≤
∑

m≤i<n

kixi

Define C and P as before. Let E := {~ei : m ≤ i < n}. Then the set of
solutions is Σ(P ; C ∪ E). If the inequation has the form

g +
∑
i<m

kixi ≥
∑

m≤i<n

kixi

the set of solutions is Σ(P ; C ∪ F ) where F := {~ei : i < m}. 2

Lemma 2.4 Let M ⊆ Qn be an affine subspace. Then M∩Zn is a semilinear
subset of Zn.

Proof. Let ~vi, i < n + 1, be vectors such that

M = ~v0 + Q~v1 + Q~v2 + · · ·+ Q~vm−1

We can assume that the ~vi are linearly independent. Clearly, since Q~w =
Q(λ~w) for any nonzero rational number λ, we can assume that ~vi ∈ Zn,
i < m. Now, let V := {~v0 +

∑
0<i<m λi~vi : 0 ≤ λi < 1}. V ∩ Zn is finite.

Moreover, if ~v0 +
∑

0<i<m κi~vi ∈ Zn then also ~v0 +
∑

0<i<m κ′i~vi ∈ Zn if
κi − κ′i ∈ Z. Hence,

M =
⋃
~w∈V

~w + Z~v1 + . . . Z~vm

This is a semilinear set. 2
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Lemma 2.5 Let M ⊆ Zn be a semilinear subset of Zn. Then M ∩ Nn is
semilinear.

Proof. It suffices to show this for linear subsets. Let ~vi, i < n+1, be vectors
such that

M = ~v0 + Z~v1 + Z~v2 + · · ·+ Z~vm−1

Put ~wi := −~vi, 0 < i < m. Then

M = ~v0 + N~v1 + N~v2 + · · ·+ N~vm−1 + N~w1 + . . . + N~wm−1

Thus, we may without loss of generality assume that

M = ~v0 + N~v1 + N~v2 + · · ·+ N~vm−1

Notice, however, that these vectors are not necessarily in Nn. For i starting
at 1 until n we do the following.

Let xi
j := ~vj(i). Assume that for 0 < j < p, xi

j ≥ 0, and that for
p ≤ j < m, xi

j > 0. (A renaming of the variables can achieve this.) We
introduce new cyclic vectors ~cj,k for 0 < j < p and p ≤ k < m. Let µ the
least common multiple of the |xi

s|, for all 0 < s < m where xi
s 6= 0:

~ci,j := (µ/xi
j)~vj + (µ/xi

k)~vk

Notice that the s–coordinates of these vectors are positive for s < i, since this
is a positive sum of positive numbers. The ith coordinate of these vectors is
0. Suppose that the ith coordinate of

~w = ~v0 +
∑

0<j<m

λj~vj

is ≥ 0, where λj ∈ N for all 0 < j < m. Suppose further that for some
k ≥ p we have λk ≥ vi

0 + m(µ/|xi
k|). Then there must be a j < p such

that λj ≥ (µ/xi
j). Then put λ′r := λr for r 6= j, k, λ′j := λj − (µ/xi

j) and
λ′k := λk + (µ/xi

k). Then

~w = ~cj,k +
∑

0<j<m

λ′j~vj

Moreover, λ′j ≤ λj for all j < p, and λ′k < λk. Thus, by adding these cyclic
vectors we can see to it that the coefficients of the ~vk for p ≤ k < m are
bounded. Now define P to be the set of

~w = ~v0 +
∑

0<j<m

λj~vj ∈ Nn
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where λj < vj
0 + m|µ/xi

j| for all 0 < j < m. Then

M ∩ Nn =
⋃
~u∈P

~u +
∑

0<j<p

λj~vj +
∑

0<j<p≤k<m

κj,k~cj,k

with all λj, κj,k ≥ 0. Now we have achieved that all jth coordinates of vectors
are positive. 2

The following is now immediate.

Lemma 2.6 Let M ⊆ Qn be an affine subspace. Then M∩Nn is a semilinear
subset of Nn.

Lemma 2.7 The intersection of two semilinear sets is again semilinear.

Proof. It is enough to show the claim for linear sets. So, let C0 = {~ui : i <
m}, C1 = {~vi : i < n} and S0 := Σ({~v0}; C0) and S1 := Σ({~v1}; C1) be linear.
We will show that S0 ∩ S1 is semilinear. To see this, notice that ~w ∈ S0 ∩ S1

iff there are natural numbers κi (i < m) and λj (j < n) such that

~w = ~c +
∑
i<m

κi~ui = ~e +
∑
i<n

λi~vi

So, we have to show that the set of these ~w is semilinear.
The equations are now taken as linear equations with κi, i < m and λi, i <

n, as variables. Thus we have equations for m + n variables. We solve these
equations first in Qm+n. They form an affine subspace of Qm+n ∼= Qm ⊕Qn.
By the Lemma 2.6, the intersection of the set with Nm+n is semilinear, and
so is its projection onto Nm (or to Nn for that matter). Let it be

⋃
i<p Li,

where for each i < p, Li ⊆ Nm is linear. Thus there is a representation of Li

as
Li = ~θ + N~η0 + . . . N~ηγ−1

Now put

Wi := {~v0 +
∑
i<m

~κ(i)~ui : ~κ ∈ Li}

From the construction we get that

S0 ∩ S1 =
⋃
i<p

Wi
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Define vectors ~qi :=
∑

j<m ~η(j)i~ui, i < γ and ~r := ~c +
∑

j<m
~θ(j)~ui. Then

Wi = ~r + N~q0 + . . . + N~qγ−1

So, Wi is linear. This shows the claim. 2

Lemma 2.8 If S ⊆ Nn is semilinear, so is its projection πn[S].

2.1 The Theorem

We need one more prerequisite. Say that a first–order theory T has quan-
tifier elimination if for every formula ϕ(~x) there exists a quantifier free
formula χ(~x) such that T ` ϕ(~x) ↔ χ(~x). We follow the proof of [3].

Theorem 2.9 (Presburger) Presburger Arithmetic has quantifier elimina-
tion.

Proof. It is enough to show that for every formula (∃x)ϕ(~y, x) with ϕ(~y, x)
quantifier free there exists a quantifier free formula χ(~y) such that

Z � (∀~y)((∃x)ϕ(~y, x) ↔ χ(~y))

Now, we may further eliminate negation (see the remarks above) and dis-
junctions inside ϕ(~y, x) (since (∃x)(α ∨ β) ↔ (∃x)α ∨ (∃x)β)). Finally, we
may assume that all conjuncts contain x. For if α does not contain x free,
(∃x)(α ∧ β) is equivalent to α ∧ (∃x)β. So, ϕ can be assumed to be a con-
junction of atomic formulae of the following form:

(∃x)(
∧
i<p

nix
.
= ti ∧

∧
i<q

n′ix < t′i ∧
∧
i<r

n′′i x > t′′i ∧
∧
i<s

n′′′i x ≡mi
t′′′i )

Now, s ≡ t is equivalent with ns ≡ nt, so after suitable multiplication we
may see to it that all the ni, n′i, n′′i and n′′′i are the same number ν.

(∃x)(
∧
i<p

νx
.
= τi ∧

∧
i<q

νx < τ ′i ∧
∧
i<r

νx > τ ′′i ∧
∧
i<s

νx ≡mi
τ ′′′i )

We may rewrite the formula in the following way (replacing νx by x and the
condition that x is divisible by ν).

(∃x)(x ≡ν 0 ∧
∧
i<p

x
.
= τi ∧

∧
i<q

x < τ ′i ∧
∧
i<r

x > τ ′′i ∧
∧
i<s

x ≡mi
τ ′′′i )
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Assume that p > 0. Then the first set of conjunctions is equivalent with the
conjunction of

∧
i<j<p τi ≡ τj (which does not contain x) and x

.
= τ0. We

may therefore eliminate all occurrences of x by τ0 in the formula.
Thus, from now on we may assume that p = 0. Also, notice that x <

σ ∧ x < τ is equivalent to (x < σ ∧ σ ≤ τ) ∨ (x < τ ∧ τ < σ). This means
that we can assume q ≤ 1, and likewise that r ≤ 1. Next we show that we
can actually have s ≤ 1. To see this, notice the following.

Let u, v, w, x be integers, w, x > 1, and let p be the least common
multiple of w and x. Then gcd(p/w, p/x) = 1, and so there exist
integers m,n such that 1 = m · p/w + n · p/x. It follows that the
following are equivalent.

1. y ≡ u (mod w) and y ≡ v (mod x)

2. u ≡ v (mod gcd(w, x)) and y ≡ m(p/w)u+n(p/x)v (mod p).

Using this equivalence we can reduce the congruence statements to a con-
junction of congruences where only one involves x.

This leaves us with 8 possibilities. If r = 0 or s = 0 the formula is actually
trivially true. That is to say, (∃x)(x < τ), (∃x)(υ < x), (∃x)(x ≡m ξ),
(∃x)(x < τ ∧x ≡m ξ) and (∃x)(υ < x∧x ≡m ξ) are equivalent to >. Finally,
it is verified that

(∃x)(x < τ ∧ υ < x) ↔ υ+1 < τ
(∃x)(x < τ ∧ υ < x ∧ x ≡m ξ) ↔

∨
i<m(τ+1+i < υ ∧ τ+1+i ≡m ξ)

2

Theorem 2.10 (Ginsburg & Spanier) A subset of Nn is semilinear iff it
is definable in Presburger Arithmetic.

Proof. (⇒) Every semilinear set is definable in Presburger Arithmetic. To
see this it is enough to show that linear sets are definable. For if M is a union
of Ni, i < p, and each Ni is linear and hence definable by a formula ϕi(~x),
then M is definable by

∨
i<p ϕi(~x). Now let M = ~v + N~v0 + . . . + N~vm−1 be

linear. Then put

ϕ(~x) := (∃y0)(∃y1) . . . (∃ym−1)

(∧
i<m

0 ≤ yi ∧
∧
i<n

(~v(i) +
∑
j<m

yi~v(i)j
.
= xi)

)
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ϕ(~x) defines M . (⇒) Let ϕ(~x) be a formula defining S. By Theorem 2.9,
there exists a quantifier free formula χ(~x) defining S. Moreover, as we have
remarked above, χ can be assumed to be negation free. Thus, χ is a disjunc-
tion of conjunctions of atomic formulae. By Lemma 2.7, the set of semilinear
subsets of Nn is closed under intersection of members, and it is also closed
under union. Thus, all we need to show is that atomic formulae define semi-
linear sets. Now, observe that x0 ≡m x1 is equivalent to (∃x2)(x0

.
= x1+mx2),

which is semilinear, as it is the projection of x0
.
= x1+mx2 onto the first two

components. 2

Corollary 2.11 The complement of a semilinear set is again semilinear.
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