
On the Logic of LGB Type Structures. Part III: Minimalism

MARCUS KRACHT

A. In this paper we shall in detail at Minimalism in the sense of
[3]. We shall show how the structures can be formalised in modal logic.

1. I

This paper continues the series on the logic of LGB-type structures. The
idea is to provide tools that allow to decide the modal theory of logics aris-
ing within generative grammar. The principal reason why I use the term
”LGB-type” is that in contrast to earlier work in generative grammar, LGB
does away with deletion. It is important to realise that from LGB onwards
the structures that are being generated are rich enough that existence and
well–formedness of a derivation can be checked easily on the basis of the
final output (LF).

2. M ̀  S

We shall first discuss the codification of minimalism in [3]. We shall
simplify the mechanism somewhat in order not to generate confusion. The
exposition will also introduce our notation which will differ insignificantly
form Stabler’s. We shall return to the full program later.

2.1. Lexicon. There is an alphabet A of letters, and alphabet C := {�,�,�,�}
of control symbols as well as an alphabet B of basic features. Further-
more, for every b ∈ B

(1) CB = {� b,� b,� b,� b : b ∈ B}

This is the set of control features. For homogeneity, we use � b rather than
just b. Also the change from + to � and - to � is merely typographical (it
makes reading the formulae easier). Notice that the features =X, +X and -X
are absent since we do not deal with LF-movement in this paper, to make
matters not overly complicated. A lexical entry is a member of

(2) Lex := A∗(CB)∗

Not all of these sequences make sense, but the mechanism will see to it
that they cannot be used in a complete derivation. A lexicon L is a subset
of Lex. We assume that a lexicon is finite. Finally, there are two binary
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operators, > and <, from which terms are being formed, so that Struct is the
set of binary terms that can be formed over Lex. However, not all of them
are well-formed.

Given a lexicon, Term(L) is the smallest set such that
À L ⊆ Term(L).
Á If s, t ∈ Term(L) then also <(s, t) ∈ Term(L) and >(s, t) ∈ Term(L).

Term := Term(Lex). Terms are identified here with trees. The identification
is slightly different from Stabler’s own. In Stabler’s sense, the leaves of a
tree have labels in Lex, and complex trees are formed by bracketing two
trees into a single one. Intermediate leaves will be labelled only with < or
>. It will emerger that the operations merge and move defined below will
create not exactly trees over L but trees over

(3) P(L) := {~xa~y : ~x ∈ A∗, y ∈ (CB)∗, and there is ~z:~xa~ya~z ∈ L}

Thus, P(L) conists of all the prefixes of members of L that contain then
entire phonological matrix of that member.

Our trees look a little different. The leaves of the nodes have labels a ∈ A,
�,�,�,� as well as b ∈ B. All these labels are mutually incompatible. A
sequence is coded as a left-branching (ie ascending tree). Notice however
that the modal structures will have more relations in them, so that it is per-
haps not correct to speak of trees. Details will follow below.

2.2. Merge and Move. There are two functions, merge and move. The
operation merge is defined as follows. First, we have to define the notion of
a head. Consider t ∈ Term.

(1) If t ∈ Lex then hd(t) := t.
(2) If t = >(s, s′) then hd(t) := hd(s′).
(3) If t = <(s, s′) then hd(t) := hd(s).

Finally, ft(t) is the last member of hd(t), provided that it contains a member
of CB. It is undefined otherwise. Now, let us define the following operation.

(1) If t ∈ Lex and t = ~xa ft(t) then cut(t) := ~x.
(2) If t = >(s, t) then cut(s, t) = >(s, cut(t)).
(3) If t = <(s, t) then cut(s, t) = <(cut(s), t).

Now, merge(s, t) is defined in two cases.
À ft(s) = =b and ft(t) = � b. Then merge(s, t) := <(cut(s), cut(t)).
Á ft(t) = � b and ft(s) = � b. Then merge(s, t) := >(cut(s), cut(t)).

Notice that if defined, the result is unique.
Next we look at move. It is a unary operation. It is defined only when

ft(t) = � b for some b ∈ B. In that case, we define two operations, ext
and int, defined in the following way. int(t, b) is defined if there is exactly
one maximal subterm t such that ft(t) = � b. Then int(t, b) is that maximal
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subtree. If no such tree exists, int(t, b) is undefined. Furthermore, ext(t, b)
is the result of removing the occurrence of int(t, b) from t (that is, replacing
it by the empty featureless string ε ∈ Lex). Now,

(4) move(t) := >(cut(int(t, ft(t))), cut(ext(t, ft(t))))

Notice that movement is always to the left.

2.3. Languages. Trees are coded as terms. Given a lexicon L, the tree
language T (L) is the set of all trees that can be generated from L using the
operations merge and move. The string language S (L), is the set

(5) Y[T (L)] := {Y(t) : t ∈ T (L)}

Here, Y(t) is defined inductively as follows.
À If t = ~xa~y ∈ Lex with ~x ∈ A∗ and ~y ∈ (CB)∗ then Y(t) := ~x.
Á Y(>(s, t)) = Y(s)aY(t).
Â Y(<(s, t)) = Y(s)aY(t).

3. C S

We shall code the above structures using modal logic. There will be ma-
jor changes to the way in which they look, and we shall discuss the ramifi-
cations of that later. Our language will be that of modal logic, with several
modal operators, O0 (left standard daughter), O1 (right standard daughter),
� and �. � is the head-feature relation and � its converse. For a given node
x � points to the head feature of the constituent headed by x. Finally, we
shall add the transitive closure of all of them, which will turn out to also
be the transitive closure of just the standard relations. So we write it as O+.
Also,

(6) �χ := χ ∧ [O+]χ

As usual, although technically we are moving inside a modal language, we
take advantage of the fact that PDL in full strength is available for us, so
we also use its notation. The relations above are actually programs, and for
a program α the modality is [α]. Also, recall that in certain cases we can
make use of the converse, namely when the converse is a partial function.
This is guaranteed here for the basic modalities. The set of variables is
{pi : i ∈ N}, and there will be a set of constants (to be determined).

Now we are going to zoom in on the minimalist program. We inter-
pret formulae in so-called pointed Kripke-frames. These are pairs 〈M, x〉,
where M = 〈M,R, I〉 is a Kripke-frame and x ∈ M. A Kripke-frame is
a structure 〈M,R, I〉 where M is a set, R a function from the modalities to
M2 and I a function from the constants to ℘(M). Thus, R(O0),R(O1),R(�),
R(�) and R(O+) are binary relations on M, while the interpretation of the
constants are subsets of M.
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For the constants we put for every f ∈ F:

(7) I′′( f ) := I( f ) ∪ I′( f )

Next we turn to the encoding of terms. For each a ∈ A and each b ∈ B we
assume a constant, denoted for simplicity by the element itself. Likewise,
there will be constants �,�,� and �. All these constants are mutually
exclusive. This means that we have an axiom of the form

(8)
∧
〈 f → ¬ f ′ : f , f ′ ∈ F, f , f ′〉

where F is the set of constants. We put

(9) alph :=
∨
〈a : a ∈ A〉

Further, for each of these symbols we add the axiom

(10) u→ [O]⊥

This makes sure that these constants are true only at leaves. Next we add
to F a pair of constants, 5 and 4. It follows that they are mutually in-
comparable, and also incomparable with any of the previous. Further, we
set

(11) lex := ¬(5∨4)

The following shall be an axiom:

(12) lex→ [O] lex

We are now ready for the first step, the encoding of the lexicon. A sequence
is generally encoded as an ascending tree. So, if we have the sequence
x1x2x3 · · · then this will correspond to the tree with leftmost daughter la-
belled x1. The mother of that daughter, n1, has a right daughter labelled x2.
The mother of that daughter, n2, has a right daughter labelled x3, and so on.

We show how to construct the trees for the lexical entries. A single letter
a ∈ A is coded by the structure Pa = 〈{0},R, I〉 such that R(2) := ∅ for
all basic modalities 2 and I(a) := {0}, I(c) := ∅ for all constants c , a.
Similarly for Pb, b ∈ B and Ps, s ∈ {�,�,�,�}. So, O(x) := 〈Px, 0〉.
Next, we shall define the code of sb. This shall be based on the frame
Psb := 〈{0, 1, 2},R, I〉, where R(O0) := {〈0, 1〉}, R(O1) := {〈0, 2〉}, R(O+) :=
{〈0, 1〉, 〈0, 2〉}, I(b) := {1}, I(s) := {0}, everything else being assigned to
the empty set. Osb := 〈Psb, 0〉. The coding of strings works as follows.
Suppose that O(~x) := 〈M, x〉 codes ~x and O(c) := 〈Pc, y〉 codes c. Assume
for simplicity that the frame have disjoint carrier sets. Then O(~xac) :=
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〈M ∪ N ∪ {∗},R′′, I′′〉 where

R′′(O0) := R(O0) ∪ R′(O0) ∪ {〈∗, x〉}
R′′(O1) := R(O1) ∪ R′(O1) ∪ {〈∗, y〉}
R′′(�) := ∅

(13)

For the constants we put for every f ∈ F:

(14) I′′( f ) := I( f ) ∪ I′( f )

Next we turn to the encoding of terms. Suppose O(s) = 〈M, x〉 encodes the
term s andO(t) = 〈M′, x′〉 the term t. We shall assume that M∩M′ = ∅ and
that they do not contain the symbol ∗. Then O(<(s, t)) = 〈M′′, x′′〉 where
M′′ := M ∪ M′ ∪ {∗},

R′′(O0) := R(O0) ∪ R′(O0) ∪ {〈∗, x〉}
R′′(O1) := R(O1) ∪ R′(O1) ∪ {〈∗, y〉}
R′′(�) := ∅

(15)

For the constants we put for every f ∈ F − {4}:

I′′(4) := I(4) ∪ I′(4) ∪ {∗}(16)
I′′( f ) := I( f ) ∪ I′( f )(17)

x′′ := ∗. The code for >(s, t) is the same except for that the sets I′′(5) and
I′′(4) are interchanged.

It is perhaps useful to observe that we can define a few formulae that will
single out our lexical entries. We define the translation into a modal formula
as follows. Put Y := {�,�,�,�}.

µ(a) := a (a ∈ A)(18)
µ(yb) := 〈O0〉y ∧ 〈O1〉b (y ∈ Y, b ∈ B)(19)

µ(~xau) := 〈O0〉µ(x) ∧ 〈O1〉µ(u) (u ∈ A ∪CB)(20)

There will be a few auxiliary constants that we need. First, let

(21) σ := 〈O1;O0〉(�∨�∨�∨�)

This constant is true at all nodes that dominate a feature, where by a feature
we understand a tree of the form µ(x), x ∈ CB. It is easy to see that we can
write down a formula that exactly codes the structure of any given term.

3.1. The Lexicon. Finally, the code of a lexical entry is this. It will be the
code 〈M, x〉 of the sequence ~y ∈ L.
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3.2. Merge and Move. The principal difference between the present en-
coding and the one in [3] lies in the fact that derivations do not result in
the destruction of labels; rather, they result in the addition of a link. It fol-
lows that the structures that they generate are actually different from the
structures of minimalism.

Now, when merge or move apply, they use the head-feature. It addition,
they shall define a head-feature for the newly created node. Suppose that
O(s) := 〈M, x〉 is the modal structure associated with s (with x its root), and
〈M′, x′〉 the structure associated with t (with x′ its root). We shall construct
O(merge(s, t)) := 〈M′′, x′′〉 (if defined). For simplicity we assume both
structures to be over disjoint sets and none contains ∗. The new structure is
formed over the set M′′ := M ∪ M′ ∪ {∗}. The operation is defined if and
only if there is b ∈ B such that

〈M, x〉 �〈�;O1〉� b

〈M′, x′〉 �〈�;O1〉� b
(22)

In that case, let y be the unique node such that for some z: x; R(�) z R(O0) y.

R′′(O0) := R(O0) ∪ R′(O0) ∪ {〈∗, x〉}
R′′(O1) := R(O1) ∪ R′(O1) ∪ {〈∗, x′〉}
R′′(�) := R(�) ∪ R′(�) ∪ {〈∗, y〉}

(23)

For f ∈ F − {4}:

I′′(4) := I(4) ∪ I′(4) ∪ {∗}
I′′( f ) := I( f ) ∪ I′( f )

(24)

Finally, x′′ := ∗. This finishes the definition of O(merge(s, t)) for this case.
It is also defined if there is b ∈ B such that

〈M, x〉 �〈�;O1〉� b

〈M′, x′〉 �〈�;O1〉� b
(25)

In that case, y will be chosen such that x′ R′(�) z R′(O0) y, and the constants
are defined thus. For f ∈ F − {5}:

I′′(5) := I(5) ∪ I′(5) ∪ {∗}
I′′( f ) := I( f ) ∪ I′( f )

(26)

Next we come to move. Suppose that O(s) = 〈M, x〉. Suppose further
that 〈M, x〉 � 〈�;O1〉� b for some b. Then O(move(s)) will be defined just
in case there is a unique maximal y such that 〈M, y〉 � 〈�;O1〉� b. We fix
this y. Assume that ∗ < M. Put O(move(s)) := 〈M′, ∗〉. Furthermore, let u
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be the unique node such that there is a v and x R(�) v R(O0) u.

R′′(O0) := R(O0) ∪ {〈∗, y〉}
R′′(O1) := R(O1) ∪ {〈∗, x〉}
R′′(�) := R(�) ∪ {〈∗, u〉}

(27)

For the constants: For f ∈ F − {5} put

I′′(5) := I(5) ∪ I′(5) ∪ {∗}
I′′( f ) := I( f ) ∪ I′( f )

(28)

In movement, the site is added on the left and the head is always to the right.

4. A

4.1. The Basic System. The basic axiom system is that axiomatises the
class of structures with the following properties:

Proposition 1. The structures O(s) for a term s have the following proper-
ties:

(1) 〈M,R(O0),R(O1)〉 is a binary branching tree;
(2) R(O+) = (R(O0) ∪ R(O1))+;
(3) R(�) ⊆ R(O+);
(4) If x R(�) y then y has no R(�)-successor.
(5) R(�) is the converse of R(�).
(6) the relations R(O0), R(O1) and R(�), and their converses are partial

functions;
(7) x has a successor via R(O0) iff it has a successor via R(O1).
(8) x has a R(�)-successor iff x is not lexical;
(9) If x has a R(�)-successor, then x is lexical and if y R(O0) x is lexical

then y has a R(�)-successor too.

The proof is by induction on s. Perhaps the least straightforward part
is the fact that R(�) and its converse are partical functions. It is clear by
the definition of R(�) that it is a partial function. At each step, the newly
added root is linked to exactly one node via R(�). Now, to see that also
the converse R(�) := R(�)` is a partial function, let us start with a lexical
entry. There it is clear by construction. Notice that the root is self-accessible
via R(�). By induction we verify that for every skeletal node x (ie a node
satisfying σ): if there is R(�)-successor v, and if y R(O0) x also is skeletal
then y has a R(�)-successor w and moreover v R(O+) w. So, as we go up
the skeleton then R(�)-successors move down. (This follows in the Stabler
framework from the process of ‘nibbling off’ features.) Hence, when we
merge two structures or when we move it is the skeletal daughter of the
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head of the constituents that is R(�)-related to the new root. This node has
not yet been assigned any successor.

Proposition 2. The logic of structures satisfying the properties listed in
Proposition 1 is axiomatisable over K6 by the following axioms (with [O]χ :=
[O0]χ ∧ [O1]χ).

À 3p→ 2p, 3 ∈ {〈O0〉, 〈O1〉, 〈�〉, 〈�〉};
Á 3p→ 〈O+〉p, 3 ∈ {〈O0〉, 〈O1〉, 〈�〉, 〈�〉};
Â [O+]([O+]p→ p)→ [O+]p;
Ã [O]p ∧ [O+](p→ [O]p)→ [O+]p;
Ä p→ [�]〈�〉p;
Å p→ [�]〈�〉p;
Æ [�2]⊥;
Ç ¬ lex↔ 〈�〉>;
È lex∧〈O0; �〉> → 〈�〉>.

Notice that the class of structures for this logic is slightly wider than the
one admitted by Proposition 1. It is admitted that isomorphic constituents
are collapsed into a single constituent. This is however a harmless compli-
cation.

4.2. Merge and Move. In particular, we need to establish the peculiar
structure that the operations merge and move establish. Let us first notice
that for each node x that is not lexical we can read off whether or not it has
been formed through merge or through move. It has been formed through
left-headed merge if:

(29) 〈M, x〉 � χ` :=
∨
b∈B

〈O0; �〉� b ∧ 〈O1; �〉� b

It has been formed through right-headed merge if

(30) 〈M, x〉 � χr :=
∨
b∈B

〈O1; �〉� b ∧ 〈O0; �〉� b

It has been formed through move iff

(31) 〈M, x〉 � χm :=
∨
b∈B

〈O1; �〉� b ∧ 〈O0; �〉� b

To make sure that each intermediate node has been formed in this way we
issue the following axiom:

(32) ¬ lex→ χ` ∨ χr ∨ χm

We shall have to write axioms for these three cases. For left-headed merge
the formula is this.

χ` → (〈�〉p↔ 〈O0; �;O0〉p)(33)
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This says that the head-feature of the root is equal to the R(O0)-daughter of
the head-feature of the left-hand daughter. For right-headed merge we do
this:

χr → (〈�〉p↔ 〈O1; �;O0〉p)(34)

This leaves us to account for movement. Before we can begin to define
it, we need a few tools. Let

(35) con(p) := [O∗](p→ [O]p) ∧ [O∗](¬p→ ¬(〈O0〉p ∧ 〈O1〉p))

It is easy to see that if con(p) is true at a the root, then the set of values of p
is a constituent. Let us pick a node x and assume that the variable p is true
at the constituent headed by y, where y is the right hand daughter of x. We
can achieve this if we have

(36) x � ¬p; con(p); 〈O1〉p

Then the formula 〈�〉p is true at all nodes that contain a checked feature as
last element within the constituent headed by y. The head-daughter of x is
not of that form:

(37) x � 〈�〉¬〈�〉p

We should also encode the fact that the head daughter chooses the nearest
constituent that has an unchecked feature. This can be said as follows.

(38) 〈�〉q→ 〈((¬ lex∨σ ∧ 〈�〉p);O)∗〉q

This formula declares that if q is true at least at the head daughter of x then
we can reach q by going down all nonlexical nodes or all lexical nodes that
do not contain unchecked features. Let

(39) α(b) := ((¬ lex?;O) ∪ (σ ∧ 〈�〉p ∧ ¬〈O1〉� b)?;O0)∗;
(〈O1〉� b ∧ ¬〈�〉p)?

So, the formula we seek is

(40) 〈O1; �〉� b ∧ con(p) ∧ ¬p ∧ 〈O1〉p ∧ 〈�〉q→ 〈α(b)〉q

Notice that the formula does not imply that the element we are looking for
is unique. For clearly, the nodes that can be reached following only checked
features until we reach an unchecked feature must be incomparable but if
they are, nothing contradicts the formula. To ensure uniqueness, we add
this axiom:

(41) 〈O1; �〉� b ∧ con(p) ∧ ¬p ∧ 〈O1〉p ∧ 〈α(b)〉q→ [α(b)]q

Definition 3. Min(A, B) is the logic obtained by adding to the logic defined
in Proposition 2 the axioms (8), (10), (12), (32), (33), (34), (40), and (41).
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4.3. Structures à la Stabler. We need to address the fact that we gener-
ate structures that are different. The structures defined here leave a lot of
material intact; it is not removed. The question that arises is whether we
can actually find the generated Stabler-trees inside our structures. This is
the case. Let 〈M,R, I〉 be a structure in our sense with root x. Notice first
that the relations R(O0) and R(O1) define a tree, and the Stabler-trees are
simply a subtree. We need to skip all the empty material. A skeletal node
x is checked if x � 〈�〉>. This means that the feature of this node has been
checked off. These nodes (and their R(O1)-daughter constituents) must be
skipped. However, this is not all that needs to be skipped. Basically, ev-
erything that is below a node that has been moved needs to be skipped. For
that, call a constituent below a node satisfying 〈O1〉� b ∧ 〈�〉> displaced.
Now, the displaced node is really moved in a Stabler-structure, while here
we just add links. Now, the idea is that it is pronounced only if one is going
down using R(O0)-moves.

This is not easy to eliminate empty stuff. Again, a lot of details need to
be considered. The best approach is this. We are changing the structures
slightly in the following way. In the move step, we actually copy the moved
constituent, and mark the lower copy as empty. Let’s perform this operation.
In the beginning, I(∅) and merge will not add any empty nodes. However,
let’s look again at the move-step.

Suppose that O(s) = 〈M, x〉. Suppose further that 〈M, x〉 � 〈�;O1〉� b
for some b. Then O(move(s)) will be defined just in case there is a unique
maximal y such that 〈M, y〉 � 〈�;O1〉� b. We produce a copy 〈M′, y′〉which
is isomorphic to 〈M, y〉 (in particular, y′ is the root ofM′, as y is the root of
M). Assume that ∗ < M. Put O(move(s)) := 〈M′′, ∗〉. Furthermore, let u be
the unique node such that there is a v and x R(�) v R(O0) u.

R′′(O0) := R(O0) ∪ R′(O0) ∪ {〈∗, y′〉}
R′′(O1) := R(O1) ∪ R′(O1) ∪ {〈∗, x〉}
R′′(�) := R(�) ∪ R′(�) ∪ {〈∗, u〉}

(42)

For the constants: For f ∈ F − {5} put

I′′(5) := I(5) ∪ I′(5) ∪ {∗}
I′′( f ) := I( f ) ∪ I′( f )

(43)

In movement, the site is added on the left and the head is always to the right.
The axiomatisation of these structures is not different in that the R(�)-

daughter of the constituent is not reachable via R(O0). This is an axiom that
we have not written down yet, so we let matters stand as they are. The logic
is Mov(A, B). Instead, we refer to Part I for details on how to enforce a true
tree structure on 〈M,R(O0),R(O1)〉. One way is to add converses M0 and M1,
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and add the following axioms.

〈M0〉p→ [M0]p(44)
〈M1〉p→ [M1]p(45)
〈M0〉> → [M1]⊥(46)
〈M1〉> → [M0]⊥(47)

This turns them into real trees. I have noted however that the first two are
not needed (if the relations are not functions they point to structure that we
do not need) and the last two are constant, so we can safely ignore all of
this for decidability.

Now let us first see how we can define those nodes that exist in a Stabler-
tree. These are the nonempty nodes and the nodes such that there is no node
u � 〈�;O1〉� b above them.

(48) ξ :=
∨
a∈A

a ∨
∨
a∈A

〈O〉a

So, let m be a variable and put

(49)

d(m) := ¬m
∧ �(m→ �m)
∧ �(¬m ∧ (χ` ∨ χr)→ [O]¬m)
∧ �(¬m ∧ χm → [O]¬m ∧ [O1; �;O∗]m)
∧ �(σ ∧ ¬m→ [O∗]¬m)
∧ �(ξ ∧ ¬m→ [O]¬m)

Lemma 4. Let 〈M, x〉 be a tree wrt R(O) and assume that 〈M, β, x〉 � d(m).
Then β(m) is the set of displaced constituents.

Proof. The clauses are correct. They also lead to a unique assignment.
To see this, take a node and assume that all the nodes y such that y R(O+) x
have a unique assignment. Then show that x has unique assignment. This
is clear if the mother is lexical or has assignment m. If it is nonlexical and
¬m, it is either χ`, χr or χm. All these cases are cared for. Thus, after
uniqueness we see the correctness. We do induction over the depth of a
node. The root is not displaced, as required. The daughters of a displaced
constituent member is itself a member of a displaced constituent. Next,
the daughters of a merged node are not displaced provided that the node
itself is not displaced. If x is lexical and not in a displaced constituent,
so is the entire constituent that it heads. This leaves only a few cases to
consider. Next, when we consider a constituent formed through movement,
there are three types of daughters to be considered. Empty is the R(�)-
daughter constituent, while the R(Oi)-daughters are not displaced. In the
latter case we cannot yet say that the entire constituent is of that kind. 2
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Next set p(n) to be

(50)

p(n) := ¬n
∧ �(〈�〉> → n)
∧ �(n→ [O1;O∗]n)
∧ �(¬ lex→ [O]¬n)
∧ �(ξ → ¬n)
∧ �(¬ξ ∧ σ ∧ [�]⊥ → (¬n ∧ [O1;O∗]¬n)

Lemma 5. Let 〈M, x〉 be a tree wrt R(O) and assume that 〈M, β, x〉 � p(n).
Then β(n) is the set of empty nodes.

Finally, given that the root satisfies d(m) and p(n), the set of nonempty
nodes is defined by

(51) υ := ¬m ∧ ¬n

(52) N := {y : 〈M, β, y〉 � υ}

We shall define the new relations as follows. x S (O0) y shall hold if either
x R(O0) y and y � ¬ lex∨ξ, or else if y � σ then y is the largest σ-node
below x such that x ∈ N. x S (O1) y iff x R(O1) y. Likewise, x S (�) y iff
x R(�) y. J(c) := N ∩ I(c). This defines the structure Stb(M). Now we
define the Stabler-transform of a formula as follows:

(53)

p† := p ∧ υ
(¬χ)† := ¬(χ†) ∧ υ
(χ ∧ χ′)† := χ† ∧ χ′†

(〈O1〉χ)† := 〈O1; υ?〉χ†)
(〈�〉χ)† := 〈�〉; υ?〉χ†)
(〈O0〉χ)† := 〈O0; (¬υ?;O0); υ?〉χ†

The Stabler transform allows to interpret the structures of the Stabler-structures
in the structures from which they are “stripped”. Notice that this transla-
tion extends to all the other PDL-constructs, so every PDL-query for the
Stabler-trees can be translated into a PDL-query about our structures. What
connects the two is the following

Theorem 6. 〈Stb(M), x〉 � χ iff 〈M, x〉 � d(m) ∧ p(n)→ χ†

The proof is done by induction on the structure of χ and is routine.

4.4. Languages. Let L ⊆ A∗(CB)∗ be a lexicon and K the class of frames
associated with the words of the lexicon. Set

(54) λ :=
∨
〈µ(~x) : ~x is a prefix of some ~y ∈ L〉

Then the class of structures created by L is the one that satisfies

(55) lex→ λ
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Notice that this is a constant formula. This means that everything is just a
matter of showing the base logic decidable. Everything else follows right
away using the fact that constant axioms preserve decidability and complex-
ity.

Now, suppose we want to know whether a certain sentence is grammati-
cal. For that we have to ask whether it is the yield of a complete tree. Let c
be a basic feature. A tree is complete iff there is exactly one occurrence of
an unchecked feature in T , which happens to be the head feature, and it is
� c. We use the elsewhere modality

(56) [,]χ := [O+ ∪ (M∗;M0;O1;O∗) ∪ (M∗;M1;O0;O∗)]χ

Now put

(57) κ := 〈O0;O1〉(� c ∧ [,; �]⊥ ∨ ∨〈O1;O0〉(� c ∧ [,; �]⊥

It then turns out that 〈M, x〉 is complete iff

(58) 〈M, x〉 � κ

We remark that the addition of converse modalities introduces variables into
the formula; however, their value is completely fixed. Technically, we have
to read the above as saying: for all valuations for the variables the formula
contains the above holds good. Computationally, this does not increase the
complexity since there is only one valuation that satisfies the antecedent that
fixes the valuation for the variables, and computing this valuation is done in
linear time.

5. D

In view of the previous discussion it is apparent that we have to solve only
the decidability of the basic logic Mov(A, B), probably with the addition of
the converses so at to be able to express the fact that the structures are really
trees. Moreover, we may remove any constant formulae that blurs the view.

We shall retrace the proof of decidability of Part II. Details will be only
sketched if they have been proved already in that paper.

The first issue we shall have to take up is that of the upward looking
modalities. There is a way to eliminate them, but this elmination process
turns out to be circular. (It yields an implicit definition, which is why we
cannot eliminate them directly. But we can effectively do an elimination
based on implicit definitions.) Thus, we propose the following method.

Let ∆ be a set of formulae closed under subformulae. Let A(∆) be the
set of ∆-atoms. Let H(∆) be the set of nonrepeating sequences over A(∆).
For every h ∈ H we introduce variables ph and qh plus the the following
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formulae:
X(∆) :={ph → [O]ph : h ∈ H}

∪ {qh → 〈O
∗〉ph : h ∈ H}

∪ {ph ∧ 〈O
+〉a→ [O]¬ph;a : h; a ∈ H}

∪ {ph ∧ 〈O0;O∗〉a→ [O1;O∗]¬qh;a : h; a ∈ H}

∪ {ph ∧ a ∧ qh;a ∧ [O+]¬a→ ph;a : h; a ∈ H}

(59)

Suppose 〈M, β, x〉 � �X(∆) valuation such that 〈M, β, x〉 � [O∗]X(∆); p∅.
Then the set β(ph) is a constituent for every h ∈ H. Moreover, it is the
constituent headed by the egregious point with address h.

The construction now proceeds as follows. We shall require a model for
ϕ; �X((ϕ); �Π(ϕ) where Π(ϕ) consists of instances of the axioms where in
place of p we have inserted all possible ph, h ∈ H. Now we create the model
of all egregious points. It satisfies ϕ, and the variables ph now identify all
possible constituents of this new model. It needs to be shown that the newly
defined relations establish a structure for the logic.

(To be continued.)
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