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The Semantics of Modal Predicate

Logic. Part 1: Completeness
Marcus Kracht and Oliver Kutz

abstract. We introduce a new semantics for modal predicate
logic, with respect to which a rich class of first–order modal logics
is complete, namely all normal first–order modal logics that are
extensions of free quantified K. This logic is defined by combin-
ing positive free logic with equality PFL

.
= and the propositional

modal logic K. We then uniformly construct—for each modal
predicate logic L—a canonical model whose theory is exactly
L. This proves completeness with respect to so–called modal–
structures. We add some remarks on canonicity and frame–com-
pleteness and finally show that if suitable modal algebras of ‘ad-
missible interpretations’ are added to modal predicate frames,
general frame–completeness is gained.

1 Introduction
In the past several years there has been a continuous interest in so–called
generalized Kripke–semantics or Kripke–type–semantics. The main mo-
tivation for this revival of interest in the semantics for first–order modal
logics basically comes from two different sources. First of all, it has been
realized that standard Kripke–semantics is highly incomplete as wit-
nessed e.g. by a theorem by Ghilardi (cf. Ghilardi 1991) . This has led
to several generalizations—such as functor semantics, Kripke–sheaves
or metaframe–semantics—which were on the one hand mathematically
rich enough to allow for general completeness results and on the other
hand enabled one to understand the insufficiency of standard Kripke–
semantics much better (cf. Skvortsov and Shehtman 1993) .

Secondly, there has been a growing awareness that standard seman-
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tics is also inadequate from a more philosophical point of view or that
standard syntactic machinery is insufficient with respect to a proper
treatment of e.g. singular terms or definite descriptions in modal con-
texts (cf. Fitting and Mendelsohn 1998). One should also mention here
different attempts to modify or generalize the Counterpart–Theory by
David Lewis.

The main problem obviously lies in the question of how to treat
“modal individuals”. Observe that in standard semantic approaches like
constant or varying domain semantics, variables and constants are treated
quite differently. While the former take objects as values that are sup-
posed to be—once fixed—constant throughout all possible worlds (apart
from changing all their properties) the latter can very well take individ-
ual concepts as values as is the case with non–rigid constants. This is
hence the starting point for generalizations of the semantics. Note that
there is also an alternative way of dealing with this asymmetry, i.e. to ex-
plicitly allow quantification over both individual objects and individual
concepts as has been done in (Fitting 2000).

Now, there is still no consensus as to which generalized semantics is
the ‘right’ one from a purely mathematical point of view. Furthermore,
the high technicality of the proposed semantics has led to—as a mat-
ter of fact—almost complete neglect on behalf of philosophers, linguists
etc., despite their far greater flexibility in handling e.g. problems of the
individuation of individuals.

In this paper we first single out a rich class of first–order modal logics,
which are normal extensions of our base logic FK. This base logic is
obtained from a combination of positive free logic with identity, PFL

.
=,

and the modal propositional logic K. We then present a semantics which
is on the one hand closely related to the functor–semantics proposed by
Ghilardi (cf. e.g. Ghilardi 1991) and on the other hand picks up some
ideas from David Lewis’ Counterpart–Theory (Lewis 1968) to deal e.g.
with the failure of the principle of the necessity of identity. We follow
a proposal by van Benthem and avoid all categorial terminology that is
not strictly necessary (cf. van Benthem 1993), thus skirting around QS4
as a base logic. Our approach to the semantics of modal predicate logics
is hence quite elementary, and it is hoped that it will provide a useful
tool for philosophers, linguists or people working in AI.

In the next paragraph we start off by saying a few words about free
logic and by defining the class of modal predicate logics we are going to
investigate. In §3 we define the semantics and state a soundness theorem
for our base logic FK. In §4 we prove a general completeness theorem
by constructing a canonical model ML for each modal predicate logic
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L. This proves completeness wrt so–called modal structures, which are
frames (in the sense defined here) together with an interpretation of
the relation symbols. In §5 we sketch how to obtain frame–completeness
results by showing the canonicity of certain axioms. In the last para-
graph we show how to obtain general frame–completeness by enriching
the canonical frame by a suitable modal algebra of ‘admissible interpre-
tations’.

2 Free Logic and Free Modal Logic
Our language consists in some signature for predicate logic, with symbols
for relations only, and the set Var := {xi : i ∈ ω} of variables. We
omit constant symbols here because a proper treatment would introduce
further complications that will be dealt with in the sequel to this paper.
The set of formulae of this language is denoted by L. ML is the language
obtained by admitting any number of unary modal operators. For sake
of exposition, we use just one modal operator, �. The base logic is not
the usual quantified K (henceforth denoted by QK), but a weaker logic,
denoted here by FK; its L–fragment is denoted by PFLE!. For a more
detailed treatment of the motivations behind the use of free logic the
reader is referred to (Kutz 2000) and (Garson 1991). Here, a few brief
remarks must suffice.

In the following, the existence symbol E! abbreviates the formula
∃y(y .= x), where y is a variable distinct from x. We first state the
axioms of PFLE!. We then add the axioms for identity and then the
axioms and rules of the propositional modal logic K to obtain FK.

Definition 2.1 (Axiomatization of PFLE!) Let φ and ψ be modal
formulae. Then all formulae of the following type are axioms:
Tautologies: All instances of classical propositional tautologies are
axioms.
Vacuous Quantification: If x is not free in φ, then the formula
φ→ ∀xφ is an axiom.
Universal Distributivity: ∀x(φ→ ψ) → (∀xφ→ ∀xψ).
E! 1: ∀xE!(x).
E! 2: If y is free for x in φ(x, z̄) and y /∈ z̄, then
∀xφ(x, z̄) → (E!(y) → φ(y, z̄)) is an axiom.

Next, the following axioms for the identity symbol are added.

Definition 2.2 (Axioms for Equality) Let x and y be any variables
and φ a formula such that x is free in φ and y is free for x in φ. φ(y//x)
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is shorthand for formulae which result from φ by replacing some (not
necessarily all) occurrences of x by y. Then all formulae of the following
type are axioms:

Self–Identity: (x .= x)

Leibniz’ Law: (x .= y) → (φ→ φ(y//x))

As usual, we have the rules of inference Modus Ponens (MP) and
Universal Generalization (∀). The axioms for PFLE! together with
the axioms for equality and the inference rules constitute the system
PFL

.
= of positive free logic with identity.

Before turning to the modal logic FK, a few short remarks on the
use of free logic might be in order. First of all, since free logic is just
a weakening of classical predicate logic, those who wish to deal with
classical quantificational logic can simply install an extra axiom saying
that all terms exist. This readily entails full classical universal instanti-
ation. One can, on the other hand, use a primitive existence symbol E!,
two (classical) quantifiers

∧
and

∨
and define the (free) quantifiers ∀

and ∃ by restricting to the extension of the predicate E! (the domain of
existence).

Now, there is an important relationship between existence and iden-
tity, a fact which presumably goes back to Jaakko Hintikka.1 If one
formulates an axiom system with an existence symbol but without iden-
tity, the existence symbol is not eliminable, i.e. there is no formula φ(x),
which does not contain the existence symbol, such that the formula
φ(x) ↔ E!(x) is provable. This was shown by Bencivenga, Lambert and
Meyer (cf. Bencivenga et al. 1982). But if the language is enriched by the
identity symbol, the formula E!(x) is provably equivalent to ∃y(y .= x),
whence E! can be understood to be defined by this formula. In the lit-
erature, this fact has been called ‘Hintikka’s Theorem’.

Concerning the intrinsic reasons for using free logic, we just mention
three basic points. Firstly, in standard quantified K, there are a number
of theorems that do not seem to be valid under all possible interpreta-
tions. Consider for example the formula �∃x(x .= x), which states in the
standard interpretation that it is necessary that there are things. Now
it is perfectly imaginable that this claim be challenged by some philoso-
pher. Also, the Converse Barcan Formula is easily proved in QK, while
it is quite obviously disputable. Secondly, if one works for example in a
varying domain setting, a formula like ♦φ(t) might contain a term t that
denotes an object a in world w that does not exist in another accessible

1Compare his “Existential Presuppositions and Their Elimination”
(Hintikka 1969).
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world v. If one then wants to assign a truth value to the formula ♦φ(t) at
world w, one has the choice between giving up the principle of bivalence
or adopting free logic by assigning truth values also to formulae that
contain terms denoting non–existing things. Thirdly, adopting classical
predicate logic also blocks a proper treatment of non–denoting terms
and definite descriptions which is particularly important in the modal
setting.

We now turn to the definition of our modal base logic. The logic FK
is obtained by adding the axiom–schema Box–Distribution and the
rule Necessitation (MN). The only subtle point concerns the axioms
for identity.

Definition 2.3 (Modal Axioms for Equality) Let x appear free in
the formula φ and let y be a variable that does not appear free within the
scope of a modal operator in φ and that is free for x in φ. The notation
φ(y//x) is shorthand for a formula that results from φ by replacing
some occurrences of x where x appears free but not within the scope of
a modal operator by y. Within the scope of a modal operator, either all
or none of the occurrences of the variable x have to be replaced by y.
Then all formulae of the following type are axioms:
Self–Identity: (x .= x)
Modal Leibniz’ Law: (x .= y) → (φ→ φ(y//x))

By means of the above definition of the identity axioms, we restrict the
Quinean principle of the ‘substitutability of identicals’ insofar as it is
thus formulated so as to avoid all implications with respect to possible
‘transworld identifications’ of objects. That is to say, it avoids making
assumptions about the behaviour of objects when one moves from one
possible world to another. This suffices to establish ‘classical circum-
stances’ in the theory of a single world. Formulae on the other hand
that entail ‘transworld identifications’ are assumed to be part of a given
modal theory or otherwise of a logic stronger than the base logic.

By way of example, let us consider the following formulae, which are
not correct instances of the Modal Leibniz’ Law:

(x .= y) → (2(x .= x) → 2(x .= y))

(Not all occurrences of the variable x are replaced by y, x is free within
the scope of “�”.)

(x .= y) → (♦(x 6 .= y) → ♦(y 6 .= y))

(The variable y is free within the scope of a modal operator.)

(x .= y) → (∃y♦(x 6 .= y) → ∃y♦(y 6 .= y))
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(The variable y is not free for x.)

We illustrate this situation in the next section by giving countermodels
for the formulae above.
However, the following formulae are correct instances:

(x .= y) → (2(x .= x) → 2(y .= y))

(All occurrences of x are replaced by y.)

(x .= y) → (♦(x 6 .= z) → ♦(y 6 .= z))

(The variable y is not free within the scope of a modal operator.)

(x .= y) → ((x .= z) → (y .= z))

(y is free for x and is not free within the scope of a modal operator.)

(x .= y) → ((x .= x) → (y .= x))

(y is free for x and is not free within the scope of a modal operator.
Only one occurrence of x has been replaced by y.)

As the last examples have shown, we can easily establish that the equal-
ity symbol “ .=” satisfies the axioms of an equivalence relation in any
given world. The set of formulae derivable in the system FK is then
denoted by FK. The modal axioms for equality could also be thought of
as a minimal theory of identity that accompanies every quantified modal
logic. We now distinguish first and second order substitutions:

Definition 2.4 (First–Order Substitutions) Let φ(x, z̄) be a modal
formula, in which x appears free and y is free for x. Then φ(y/x, z̄) is
called a first–order substitution instance, if φ(y/x, z̄) is the result
of replacing every free occurrence of x in φ by y.

Definition 2.5 (Second–order Substitutions) Let φ be a formula
in which the n-place relation symbol P appears and let ψ be some
modal formula. Then (ψ/P )φ is called a second–order substitution
instance, if (ψ/P )φ is the result of replacing every occurrence of Pn(ȳ)
in φ by ψ(ȳ/x̄), possibly renaming some bound variables.

Note that assuming unrestricted second order substitution for a given
logic L automatically extends the underlying modal theory of identity.
For instance, given that (x .= y) → (P (x, x) → P (x, y)) is an admissible
instance of Leibniz’ Law, second order substitution yields (x .= y) →
(�(x .= x) → �(x .= y)) and hence (x .= y) → �(x .= y). This is one of
the motivations for distinguishing first- and second–order–closed logics.
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Definition 2.6 (Modal Predicate Logics) A set of formulae L with
FK ⊆ L ⊆ ML is called a first–order closed modal predicate logic,
if it is closed under the rules (MN), (∀) and (MP) and L is also closed
under first–order substitutions. If L is additionally closed under second–
order substitutions, it is called a second–order closed modal pred-
icate logic. If we speak of a modal predicate logic L simpliciter, L is
assumed to be at least first–order closed.

A natural solution to the above problem is therefore to deal with second–
order closed logics without identity and to add a modal theory of identity,
or, alternatively, to count the theory of identity as part of the logic and
to restrict substitution in an appropriate way.

Note that a second–order closed logic is a second–order logic in the
sense that predicate symbols are treated as second–order variables with-
out having explicit second–order quantification. Hence, predicate vari-
ables are treated as being implicitly universally quantified.

3 Semantics
In the following we very briefly introduce the relevant semantical con-
cepts. First, we define first–order structures to interpret the free logical
part of the system FK. We basically use the so–called inner–domain/ou-
ter–domain approach to free logic.

Definition 3.1 (First–Order Structures) A triple S = 〈US , DS , IS〉
is called a first–order structure if US is a non–empty set (the universe
of the structure), DS a (possibly empty) subset of US (the domain of
existence) and IS an interpretation, which assigns to each n–place rela-
tion symbol a subset of the n–dimensional cartesian product of US . The
class of all structures is then called KPFL.

The next step towards a definition of modal frames is to define an appro-
priate class of ‘counterpart–relations’. The next definition is intended to
replace the usual notion of the monotonicity of individual domains.

Definition 3.2 (Counterpart–Existence–Property) Let S and T
be two structures and C a binary relation between US and UT . Then C
has the Counterpart–Existence–Property wrt S (CE–Property for
short), if for each element a ∈ US there is at least one element b ∈ UT ,
such that 〈a,b〉 ∈ C. C is then said to be a CE–relation. CS,T stands
for the set of all CE–relations between US and UT .

This last definition does not only take care of the bivalence of the seman-
tics, it is also necessary to establish normality, as a look at the soundness
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proof below will reveal.

Definition 3.3 (Modal Structures and Frames) A pair f = 〈W, C〉
is a modal structure, if W 6= ∅ is a non–empty set of first–order struc-
tures and C ⊆ CW is a subset of the set CW of all CE–relations between
(universes of) structures from W. Members S of W are also called (pos-
sible) worlds. CoS,T denotes the set of all CE–relations between S and
T in the modal structure f. The class of all modal structures is called
frK. If the interpretation function of the modal structure f is omitted,
we denote the result by F = 〈U,C〉 (where U is now just a family of
pairs of the form 〈US , DS〉 with S ∈ W) and call F a modal frame.
The class of all modal frames will be denoted by FrK.

We say that S sees T in f if there is a CE–relation from S to T in
f. A valuation is a function υ which assigns to each variable x and
possible world S an element from the universe US of S. We write υS for
the valuation υ at S. A modal model M = 〈f, υ〉 is a modal structure
f together with a valuation υ. Finally, an existential x–variant of a
valuation υ in the world S is a valuation function υ̃ which is like υ except
that υ̃ assigns some element from DS to the variable x at S.

Definition 3.4 (Truth in a Modal Model) Let φ(y1, . . . , yn) and
ψ(z1, . . . , zm) be modal formulae with the free variables y1, . . . , yn and
z1, . . . , zm, respectively. Let f be a modal structure, S a possible world
and let υ be a valuation. We define:

(a) 〈f, υ,S〉 � xi
.= xj :⇐⇒ υS(xi) = υS(xj) in US .

(b) 〈f, υ,S〉 � R(y1, . . . , yn) :⇐⇒ 〈υS(y1), . . . , υS(yn)〉 ∈ IS(R).
(c) 〈f, υ,S〉 � ¬φ :⇐⇒ 〈f, υ,S〉 2 φ.
(d) 〈f, υ,S〉 � φ ∧ ψ :⇐⇒ 〈f, υ,S〉 � φ and 〈f, υ,S〉 � ψ.

(e) 〈f, υ,S〉 � ♦φ(y1, . . . , yn) :⇐⇒ there is S C−→ T and a 〈y1, . . . , yn〉-
variant υ̃, such that 〈υS(yi), υ̃T (yi)〉 ∈ C for i = 1, . . . , n and
〈f, υ̃, T 〉 � φ(y1, . . . , yn).

(f) 〈f, υ,S〉 � ∃xφ(x) :⇐⇒ there is an existential x–variant υ̃, such
that 〈f, υ̃,S〉 � φ(x).

Now the usual soundness theorems like e.g. a Coincidence Lemma can
be proved, of which we shall make free use below. In particular, we can
prove the following Soundness Theorem for FK. The only subtle points
concern the normality of FK and the modal equality axioms.

Theorem 3.5 (Soundness) Let F be an arbitrary modal frame. Then
it holds that F � FK.
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Proof. We have to prove that every formula that is derivable in FK is
true in any modal model M. We only consider Leibniz’ Law and Box–
Distribution. The validity of the other axiom–schemes is easily verified.

Modal Leibniz’ Law Inductively we show the following: Suppose
that φ is an arbitrary modal formula and φ̃ := (x .= y) → (φ→ φ(y//x))
is an admissible instance of Leibniz’ Law. Then φ̃ is valid. From this,
Leibniz’ Law follows.
(i) This claim is trivial for atomic formulae and easy to verify for for-
mulae of the form ¬ψ or (ψ ∧ χ).
(ii) Let φ(x, y, z̄) = ∃wψ(w, x, y, z̄) and φ̃(x, y, z̄) be an admissible in-
stance of Leibniz’ Law. Then

(x .= y) → (ψ(w, x, y, z̄) → ψ(w, y//x, y, z̄)) (?)

is also admissible, hence valid by induction hypotheses. Now suppose
that 〈υ,S〉 � (x .= y)∧ ∃wψ(w, x, y, z̄) in some model M. Then υS(x) =
υS(y) and 〈υ̃,S〉 � ψ(w, x, y, z̄) for some w–variant υ̃ of υ. Because the
variable w is different from x and y, υ̃S(x) = υ̃S(y), whence (?) implies
〈υ̃,S〉 � ψ(w, y//x, y, z̄). It follows that 〈υ,S〉 � ∃wψ(w, y//x, y, z̄).
(iii) Let φ(x, z̄) = ♦ψ(x, z̄) and φ̃(x, z̄) be admissible. Then, by definition
of ‘admissible instance’, y /∈ z̄ and x is within the scope of a modal oper-
ator. Therefore φ̃(x, z̄) is of the form (x .= y) → (♦ψ(x, z̄) → ♦ψ(y, z̄)),
where every occurrence of x in ψ(y, z̄)) is replaced by y. Now let M be
a model and S a world such that 〈S, υ〉 � (x .= y) ∧ ♦ψ(x, z̄). Then
υS(x) = υS(y) and there is a world T and a (x, z̄)–variant υ̃, such
that S C−→ T , 〈υS(x), υ̃T (x)〉 ∈ C and 〈υS(zi), υ̃T (zi)〉 ∈ C for all
zi ∈ z̄ and 〈υ̃, T 〉 � ψ(x, z̄). Now let υ̂ be a (y, z̄)–variant of υ such
that υ̂T (y) = υ̃T (x) and υ̂T (zi) = υ̃T (zi). It may be the case that
υ̃T (x) 6= υ̃T (zi) for all i. Hence the above definition of υ̂ is only admissi-
ble, since—by assumption—y is different from all zi. So the valuations υ̂
and υ̃ coincide at T on the free variables of ψ and y is free for x in ψ(x, z̄).
By the Coincidence Lemma it follows that 〈υ̂, T 〉 � ψ(y, z̄) and because
υS(x) = υS(y) and υ̂ is a (y, z̄)–variant of υT with 〈υS(u), υ̂T (u) ∈ C
for all u ∈ y ∪ z̄, we have that 〈υ,S〉 � ♦ψ(y, z̄).

Box–Distribution Let φ(x̄) and ψ(ȳ) be modal formulae with free
variables x̄ and ȳ respectively and suppose that 〈υ,S〉 � �(φ(x̄) →
ψ(ȳ)) ∧�φ(x̄). Suppose wlog that there is a world T in a modal model
M and a CE–relation C, such that S C−→ T . Now let υ̃ be any ȳ–variant
of υ such that 〈υS(yi), υ̃T (yi)〉 ∈ C for all yi ∈ ȳ. Because C is a CE–
relation, there is—for every variable xj ∈ x̄ − ȳ—an element aj ∈ UT ,
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such that 〈υS(xj),aj〉 ∈ C. Now define a x̄ ∪ ȳ–variant υ̂ of υ by:

υ̂T (x) =
{

ai : if x = xi ∈ x̄− ȳ
υ̃T (x) : otherwise

By assumption 〈υ̂, T 〉 � (φ(x̄) → ψ(ȳ))∧φ(x̄), hence 〈υ̂, T 〉 � ψ(ȳ). Now
the valuations υ̂ and υ̃ coincide at T on the variables in ȳ, whence by
the Coincidence Lemma 〈υ̃, T 〉 � ψ(ȳ).
Finally, it is straightforwardly checked that the rules of inference preserve
the validity of the axioms of FK. a
We now come to the promised examples. In the following pictures, a
world is represented by a square box with individuals being represented
by a bullet if they exist at that world and by a circle otherwise.

FIGURE 1 Refuting the Barcan Formula and its Converse
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•
b

T S •
a

-
R

◦
b

T

In Figure 1, the objects a and b are related via a CE-Relation R. The
model on the left refutes the Barcan Formula ♦∃x(x .= x) → ∃x♦(x .= x)
and also the Necessity of Fictionality ¬E!(x) → �¬E!(x). Correspond-
ingly, the model on the right refutes the Converse Barcan Formula and
the Necessity of Existence. In Figure 2, the left model refutes the Ne-

FIGURE 2 Fusing and Splicing of Objects
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cessity of Identity (x .= y) → �(x .= y), whereas the model on the
right refutes the Necessity of Distinctness (x 6 .= y) → �(x 6 .= y). The



The Semantics of Modal Predicate Logic / 11

former also relates to “Pierre’s Puzzle” (Kripke 1979). Think of world S
as the actual world and of world T as Pierre’s “World of Beliefs”. Then
Pierre’s seemingly inconsistent beliefs about the actual city denoted in
the real world by constants like London and Londres can be consistently
modelled as a de re belief about two distinct (fictional) objects in his
Belief–World.

4 Canonical Models
Definition 4.1 (Free Henkin–Types) A maximally consistent set of
modal formulae ∆ is called a free Henkin–type if it also satisfies the
following condition:

(H) For every ∃–formula ∃xφ(x, z̄) ∈ ∆ there is a variable y such that
φ(y, z̄) ∈ ∆, E!(y) ∈ ∆ and y is free for x in φ(x, z̄).

The set of all free Henkin–types wrt the logic L will be denoted by
FHenL.

In the sequel, we often use substitutions f : Var −→ Var that are totally
defined and injective. We will call them faithful substitutions and
denote the set of all these functions by F.

Lemma 4.2 (Existence of Free Henkin–Types) For every consis-
tent set ∆ and any two finite sequences y1, . . . , ym and z1, . . . , zm of m
pairwise distinct variables there is a faithful substitution f ∈ F such that
f(yi) = zi for i = 1, . . . ,m, and a free Henkin–type Γ such that

∆f := {φf (v̄) : φ(ū) ∈ ∆ and f(ū) = v̄} ⊆ Γ,

where f(ū) = v̄ abbreviates f(ui) = vi, i = 1, . . . , n.

Proof. Fix an enumeration π : ω → ML. Let 〈Γ−1, 〈Γi : i ∈ ω〉〉 be a
sequence defined in the following way. Because the given lists of variables
are finite, there are k, l ∈ ω, such that {y1, . . . , ym} ⊂ {x1, . . . , xk} and
{z1, . . . , zm} ⊂ {x1, . . . , xl}. Now let f be defined as follows:

f(x) =
{

zi : if x = yi (for i ∈ {1, . . . ,m})
xl+2i+1 : if x = xi and x 6= yi for i = 1, . . . ,m

Since the yi are all distinct, this (total) function is faithful. In particu-
lar, range(f) ⊂ {z1, . . . , zn} ∪ {xl+2i+1 : i ∈ ω}, hence infinitely many
variables (namely those of the form xl+2·(i+1) for i ∈ ω) are not within
the range of f . Put Γ−1 := ∆f . Define Γn inductively as follows:

(i) If Γn−1∪{π(n)} is L–consistent and π(n) is not an ∃–formula, put
Γn := Γn−1 ∪ {π(n)}.
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(ii) If Γn−1 ∪{π(n)} is L–consistent and π(n) = ∃xφ(x, xi1 , . . . , xij
) is

an ∃–formula, put Γn := {φ(xi, xi1 , . . . , xij
), E!(xi), π(n)} ∪ Γn−1,

where xi ∈ Var is the first variable in the standard–enumeration,
which is not under the (free or bound) variables occurring in Γn−1∪
{π(n)}. (Alternatively, choose xi as xl+2(n+1).)

(iii) Finally, if Γn−1∪{π(n)} is L–inconsistent, we define Γn := Γn−1∪
{¬π(n)}. (Notice that ¬π(n) is then not an ∃–formula, even if it
might be L–equivalent to one.)

Γn is easily seen to be consistent. Now set Γ :=
⋃

i∈{−1}∪ω Γi. This is a
complete type. Moreover, by construction Γ is a free Henkin–type and
in particular ∆f ⊂ Γ. a

Definition 4.3 (Canonical Universe of Discourse) Let ∆ be a free
Henkin–type. Define an equivalence relation ∼∆ on variables by putting
x ∼∆ y iff (x .= y) ∈ ∆. Put [x]∆ := {y : y ∼∆ x}. The universe of
the structure S∆ is then defined as: U∆ := {[xi]∆ : xi ∈ Var} and the
domain of quantification as D∆ := {[xi]∼∆ : xi ∈ Var and E!(xi) ∈ ∆}.

Definition 4.4 (Canonical Interpretation) Let ∆ be a free Henkin–
type, R an n–place relation symbol and y1, . . . , yn n variables. We define
an n–place relation R∆ on the n–dimensional cartesian product of U∆

by setting:

〈[y1]∆, . . . , [yn]∆〉 ∈ R∆ :⇐⇒ R(y1, . . . , yn) ∈ ∆.

The canonical interpretation is then I∆(R) := R∆ ⊆ Un.

It is easily shown that this is well–defined. Next we define the notion of
a canonical structure.

Definition 4.5 (Canonical Structures) If ∆ is a free Henkin–type,
we define the canonical structure S∆ as the triple 〈U∆, D∆, I∆〉. The
class {S∆ : ∆ ∈ FHenL} of all canonical structures is then denoted by
WL.

Definition 4.6 (Canonical Valuation) Let ∆ be a free Henkin–type
and let S∆ be the associated canonical structure. Then the canonical
valuation υ∆ : Var −→ U∆ is defined by υ∆(xi) := [xi]∆.

Definition 4.7 (Canonical Counterpart–Relations) Let f be any
faithful substitution and ∆ and Γ be two free Henkin–types. We then
define the expression Cf := {〈[x]∆, [y]Γ〉 : f(x) = y} and finally put:

(∆�)f := {φf (z̄) : �φ(ȳ) ∈ ∆ and f(yi) = zi, i = 1, . . . , n}.
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Finally define: S∆
Cf−→ SΓ :⇐⇒ (∆�)f ⊂ Γ (or briefly ∆

Cf−→ Γ).
The class CL of all canonical counterpart–relations of the canonical
modal structure is then given by:

CL := {Cf : f ∈ F, ∆
Cf−→ Γ and ∆,Γ ∈ FHenL}.

By constructing appropriate free Henkin–types, it is easily seen that
canonical counterpart–relations are in general neither functional nor in-
jective or surjective etc. We now define the notion of a canonical modal
structure and give the central result in Theorem 4.9.

Definition 4.8 (Canonical Modal Structure/Model) The cano-
nical modal structure fL is given by the pair 〈WL, CL〉. The canoni-
cal modal model is then ML = 〈fL, υL〉, where υL denotes the canon-
ical valuation.

Theorem 4.9 (Fundamental Theorem) Let L be any modal pred-
icate logic, φ be an arbitrary modal formula, fL the canonical modal
structure, S∆ any world and υL the canonical valuation. Then

〈fL, υL,S∆〉 � φ⇐⇒ φ ∈ ∆.

Proof. The proof is by induction on the construction of φ. We perform
only the problematic steps.

(i) Let φ = ∃xψ(x, ȳ). 〈fL, υL,S∆〉 � ∃xψ(x, ȳ) :⇐⇒ there exists an
existential x–variant υ̃ such that 〈υ̃,S∆〉 � ψ(x, ȳ). By definition this
is the case if and only if there is a valuation υ̃ with υ̃∆(x) = [z]∆ ∈
D∆ such that 〈υ[z]∆

x ,S∆〉 � ψ(x, ȳ). Here the valuations υ and υ
[z]∆
x

coincide at S∆ on all variables save possibly x and υ∆(z) = [z]∆ =
υ

[z]∆
x (x). Now let ψ̃(x, ȳ) be a bound variant of ψ(x, ȳ), such that z is

free for x in ψ̃(x, ȳ). By the Coincidence Lemma it follows that 〈υ,S∆〉 �
ψ̃(z, ȳ) and [z]∆ ∈ D∆. But by assumption and definition this means
that there is a variable z such that E!(z) ∈ ∆ and ψ̃(z, ȳ) ∈ ∆. Because
E!(z)∧ ψ̃(z, ȳ) → ∃zψ̃(z, ȳ) ∈ L and ∆ is a complete type it follows that
∃zψ̃(z, ȳ) ∈ ∆. But then, since complete types are closed under renaming
of bound variables, ∃xψ(x, ȳ) is in ∆ as well. Conversely, assume that
∃xψ(x, ȳ) ∈ ∆. Then, since ∆ is a free Henkin–type, there is a variable
z such that E!(z) ∈ ∆ and ψ(z, ȳ) ∈ ∆. Now we can reverse the last
argument. This proves part (i).

(ii) Assume that φ(x1, . . . , xn) = ♦ψ(x1, . . . , xn) and that the claim
holds for ψ.
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Assume first, that 〈υ,S∆〉 � ♦ψ(x1, . . . , xn). Then, by definition, there
is a free Henkin–type Γ and a Cf ∈ Co∆,Γ, such that (∆�)f ⊂ Γ.
Furthermore there are variables y1, . . . , yn, such that 〈[xi]∆, [yi]Γ〉 ∈ Cf

and 〈SΓ, υ
[yi]Γ
xi 〉 � ψ(x1, . . . , xn). But then there are variables ui ∈ [xi]∆

and vi ∈ [yi]Γ such that f(ui) = vi (i = 1, . . . , n). Then, in particular,
[ui]∆ = [xi]∆ and [vi]Γ = [yi]Γ and hence 〈[ui], [vi]〉 ∈ Cf for i = 1, . . . , n.
It follows that 〈υ[vi]Γ

xi ,SΓ〉 � ψ(x1, . . . , xn). The variables vi might not be
free for xi in ψ(x1, . . . , xn). Therefore let g be a faithful substitution such
that g(xi) = vi (and g arbitrary otherwise). Then 〈υ[vi]Γ

xi ◦ g−1,SΓ)〉 �
ψg(v1, . . . , vn), i.e. 〈υL,SΓ〉 � ψg(v1, . . . , vn). By assumption it follows
that

ψg(v1, . . . , vn) ∈ Γ (∗).
Now assume that ♦ψ(x1, . . . , xn) /∈ ∆. Because [xi]∆ = [ui]∆ for i =
1, . . . , n, it follows that (xi

.= ui) ∈ ∆ for i = 1, . . . , n. Moreover, let h be
faithful with h(xi) = ui for i = 1, . . . , n. It follows that ♦ψ(x1, . . . , xn) ∈
∆ ⇐⇒ ♦ψh(u1, . . . , un) ∈ ∆, whence ♦ψh(u1, . . . , un) /∈ ∆. Then �¬ψh(u1, . . . , un) ∈
∆ and since (∆�)f ⊂ Γ we also deduce that we have (¬ψh)f (f(u1), . . . , f(un)) ∈
Γ, i.e. that

¬ψf◦h(v1, . . . , vn) ∈ Γ (∗∗).
But since the formulae (∗) and (∗∗) differ only in the choice of bound
variables, this immediately yields a contradiction.
Conversely, assume that ♦ψ(x1, . . . , xn) ∈ ∆. Then there is a possible
world Γ and a canonical counterpart–relation Cf in Co∆,Γ, such that
ψf (y1, . . . , yn) ∈ Γ. Then (∆�)f ⊂ Γ, where f(xi) = yi for i = 1, . . . , n.

Hence ∆
Cf−→ Γ and 〈[xi]∆, [yi]Γ〉 ∈ Cf for i = 1, . . . , n. By assump-

tion it follows that 〈υ,SΓ〉 � ψf (y1, . . . , yn) and hence 〈υ ◦ f,SΓ〉 �
ψ(x1, . . . , xn). (Here (υ ◦ f)Θ = υ for all Θ 6= Γ, and (υ ◦ f)Γ := υΓ ◦ f .)
But then there is a 〈x1, .., xn〉–variant υ̃ of υ, namely υ̃Γ(xi) = [f(xi)]Γ =
[yi]Γ, such that by the Coincidence Lemma 〈υ̃,SΓ〉 � ψ(x1, . . . , xn) and
〈υ∆(xi), υ̃Γ(xi)〉 ∈ Cf . Hence 〈υ,S∆〉 � ♦ψ(x1, . . . , xn), which completes
the proof of the theorem. a
As usual, M � φ (where M = 〈f, υ〉) if for all worlds S, 〈f, υ,S〉 � φ. Put
Th(M) := {φ ∈ ML : M � φ}. Furthermore, f � φ if for all models M
based on f (i.e. for all valuations in f), M � φ holds. Finally, F � φ if for
all interpretations I in F, f � φ, where f = 〈F, I〉. On the basis of this it
is not hard to show the following.

Theorem 4.10 (Canonical Model Theorem) Let L be a modal pre-
dicate logic. Then Th(ML) = L. In particular, the canonical valuation
is dispensable, i.e. L = Th(fL).
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However, this only establishes completeness wrt models and not frames.

5 Canonicity and Frame–Completeness
Definition 5.1 (Frame–Completeness) We say that a modal predi-
cate logic L is frame–complete, if there is a class K of modal frames
such that L =

⋂
F∈K Th(F).

Definition 5.2 (Canonicity) A logic L is said to be canonical, if it
is valid on the canonical frame FL, i.e. if FL � L.

The following are now immediate.

Theorem 5.3 Every canonical logic is frame–complete.

Proof. Immediately from Theorem 4.10. a

Corollary 5.4 The logic FK is frame–complete with respect to the class
FrK of all frames.

Proof. By 3.5 and 4.10. a
It is possible to establish a correspondence between properties of Kripke–
structures and certain axioms in the usual way but also between prop-
erties of the C–relations and axioms. Examples are the functionality or
injectivity of all CE–relations of a model which correspond respectively
to the validity of the axiom–schemes (x .= y) → �(x .= y) (Necessity of
Identity) and (x 6 .= y) → �(x 6 .= y) (Necessity of Distinctness). If the for-
mer axiom–schema is denoted by (N) then specializing on QS4N (where
‘Q’ signalizes that we also specialized to classical predicate logic), we ob-
tain the C–sets of (Ghilardi 1991). We further illustrate this situation
and the kind of correspondence that obtains by the following examples.

Definition 5.5 (Prominent Schemes) Let x and y be variables and
let φ be a modal formula:

(NoI) (x .= y) → �(x .= y) (Necessity of Identity)
(NoD) (x 6= y) → �(x 6= y) (Necessity of Distinctness)
(NoE) E!(x) → �E!(x) (Necessity of Existence)
(NoF) ¬E!(x) → �¬E!(x) (Necessity of Fictionality)
(BF) ∀x�φ→ �∀xφ (Barcan–formulae)
(CBF) �∀xφ→ ∀x�φ (Converse Barcan–formulae)
(T) �φ→ φ (T–Schema)
(4) �φ→ ��φ (4–Schema)



16 / Marcus Kracht and Oliver Kutz

In the following we define various properties of frames and state some
soundness and canonicity–results.

Definition 5.6 (Properties of Frames)
(a) A frame F is called functional or fission–free, if all C ∈ CF are
functional.
(b) F is called fusion–free or also injective, if all C ∈ CF are injec-
tive.
(c) F is called existentially faithful, if for all S and T and all
C ∈ CoS,T : If a ∈ DS and 〈a,b〉 ∈ C then b ∈ DT .
(d) We call F existentially friendly, if for all worlds S and T such
that CoS,T 6= ∅: If b ∈ DT , then there is a a ∈ DS and a C ∈ CoS,T ,
such that 〈a,b〉 ∈ C.
(e) If for all possible worlds S and T it holds that C(US − DS) ⊆
UT −DT (meaning that for all C ∈ CS,T : 〈a,b〉 ∈ C and a ∈ US −DS
implies that b ∈ UT −DT ), then F is called fictionally faithful.
(f) A frame F is said to be locally reflexive, if for every world S,
every natural number n and every n–tuple 〈a1, . . . ,an〉 of elements from
US there is a relation C ∈ CoS,S such that C ⊃ {〈ai,ai〉 : i = 1, . . . , n}.
(g) F is then called reflexive, if it is locally–reflexive and for every
world S and every n–tuple in US the same C ∈ CoS,S can be chosen, i.e.
C ⊃ {〈a,a〉 : a ∈ US}.
(h) F is called locally transitive, if for every pair S C−→ T and

T
bC−→ R, every n ∈ N and every triple 〈a1, . . . ,an〉, 〈b1, . . . ,bn〉 and

〈c1, . . . , cn〉 of n–tuples from US , UT and UR respectively, such that
〈ai,bi〉 ∈ C and 〈bi, ci〉 ∈ Ĉ (i = 1, . . . , n) there is a relation C̃ ∈ CoS,R,
such that C̃ ⊃ {〈ai, ci〉 : i = 1, . . . , n}.
(i) F is then called transitive, if for each pair S C−→ T and T

bC−→ R
there is a relation S

eC−→ R in CoS,R, such that C̃ ⊃ C ◦ Ĉ.

Now by showing that the corresponding property of frames holds on the
canonical frame of a logic, we easily obtain e.g. the following complete-
ness–results:

Theorem 5.7
The logic FK + (NoI) is frame–complete wrt the class of all functional
frames.
FK + (NoD) is frame–complete wrt the class of all injective frames.
FK + (NoE) is frame–complete wrt the class of all existentially faithful
frames.
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FK+(CBF) is frame–complete wrt the class of all existentially friendly
frames.
FK + (NoF) is frame–complete wrt the class of all fictionally faithful
frames.
FK + (T) is frame–complete wrt the class of all locally reflexive frames.
FK+(4) is frame–complete wrt the class of all locally transitive frames.

Definition 5.8 ((Semi–) categorial frames) A frame F is said to be
semi–categorial, if it is reflexive and transitive. Moreover, we say that
F is categorial, if F is functional and semi–categorial.

As has already been noted, categorial frames that are also frames for
classical predicate logic are semantically equivalent to C–sets as e.g.
defined in (Ghilardi 1991). That is to say, a formula is valid on all C–
sets if and only if it is valid on all categorial frames for classical pred-
icate logic, i.e. where US = DS for all worlds S. Now it was shown
in (Ghilardi 1992) that all (standard) quantified extensions of canonical
propositional modal logics above S4 are frame–complete wrt functor–
semantics. Hence the semantics given in this paper allows for a wide
class of frame–complete logics.

6 General Frames
In this last paragraph we want to sketch how to obtain general frame–
completeness by enriching the notion of a modal frame by suitable alge-
bras of ‘admissible interpretations’. The situation is therefore quite anal-
ogous to the propositional case, where we have a natural possible worlds
semantics, which is highly incomplete unless an algebraic component is
added. The algebraic concept of a complex algebra as proposed below
is in particular a straightforward extension of the concept of a boolean
algebra with operators as known from propositional modal logic.

Definition 6.1 (Complex Algebras) Suppose F = 〈U,C〉 is a modal
frame, where U = {〈US , DS〉 : S ∈ W} is the associated family of
universes. An n–set is a set of elements of the form 〈a,S〉, where S ∈W
and a ∈ (US)n. If A is an n–set, put

�A := {〈b,S〉 ∈ (US)n × {S} : there is a 〈a, T 〉 ∈ A
and a C ∈ CoS,T such that 〈b,a〉 ∈ C} .

If σ : {1, . . . ,m} → {1, . . . , n} is a map and a an n–tuple, let σ(a)
denote the m–tuple 〈aσ(1), aσ(2), . . . , aσ(m)〉. In an m–set A and a map
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σ : {1, . . . ,m} → {1, . . . , n} are given, put

σ̂(A) := {〈a,S〉 ∈ (US)n × {S} : 〈σ(a),S〉 ∈ A} .

Furthermore, if j ∈ ω, A is an n–set and j ≤ n, define the operation Ej

as follows:

Ej(A) := {〈a1, . . . , aj−1, c, aj+1, . . . , an,S〉 ∈ (US)n × {S} : c ∈ US
and there is a b ∈ DS , such that 〈a1, . . . , aj−1, b, aj+1, . . . , an,S〉 ∈ A}

Finally, if i, j, n ∈ ω with i, j ≤ n and A is an n–set, define the operation
idi,j by

idi,j(A) := {〈a,S〉 ∈ (US)n × {S} : 〈a,S〉 ∈ A and ai = aj}.

A complex algebra Gn of type n based on F is defined as a family
of n–sets which is closed under all boolean operations and also under
the operations �, Ej for every j ∈ ω and also under idi,j for every pair
i, j ∈ ω. A complex algebra based on F is then defined as a sequence
G = 〈Gn : n ∈ ω〉 in which Gn are complex algebras of type n (i ∈ ω)
and

⋃
i∈ω Gi is also closed under the operation σ̂ for every σ.

Definition 6.2 (General Frames) A general frame γF is a pair
〈F,G〉, where F is a modal frame and G is a complex algebra based
on F. An interpretation I in F is called admissible, if for every n–place
relation symbol P , I(P ) ∈ Gn. A model based on a general frame 〈F,G〉
is a triple 〈F,G, I〉, where I is an admissible interpretation. A formula is
then said to be valid on a general frame γF, if it holds in every model
based on γF.

The reader will immediately notice the close connection between these
models and the cartesian metaframes of Shehtman and Skvortsov (1993)
or the general cartesian metaframes of Shirasu (1998). The connections
between these different types of models will be examined in full detail
in a sequel to this paper.

Now, if a model 〈F,G, I〉 based on the general frame 〈F,G〉 is given,
we assign to each natural number n and each formula φ whose free
variables are contained in x̄ = {x1, . . . , xn} and are exactly σ(x̄) =
〈xσ(1), . . . , xσ(m)〉 (where σ : {1, . . . ,m} → {1, . . . , n}) an n–set Î(φ, n)
inductively as follows. Let Un :=

⋃
S∈W Un

S × {S}. Now set

Î(Pm(σ(x̄)), n) := σ̂(I(Pm))
Î(xi

.= xj , n) := idi,j(Un)
Î(¬φ, n) := Un − Î(φ, n)
Î(φ1 ∧ φ2, n) := Î(φ1, n) ∩ Î(φ2, n)
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Î(♦φ, n) := �Î(φ, n)
Î(∃xj .φ, n) := Ej(Î(φ, n))

It follows that for every formula φ, whose free variables are contained
in {x1, . . . , xn}, Î(φ) ∈ Gn. The canonical general L–frame is then
defined as follows. The set of worlds and relations is as defined above.
Likewise, IL is as previously defined on atomic predicates. We now define
for every n a complex algebra of type n over Un by means of the canonical
interpretation as follows. Put

Gn := {ÎL(φ, n) : FV(φ) ⊆ {x1, . . . , xn}} .
where FV (φ) denotes the set of variables occurring free in φ. It is easily
shown that this is a general frame, which we call the canonical general
frame. Still, as might be observed, the theory of a general frame is not
always closed under second–order substitutions and hence not a modal
predicate logic in the usual sense. However, the theory of the canonical
general frame is closed under these substitutions and this suffices to
establish the following completeness result.

In the following theorem, an L–frame is understood to be a modal
frame F, such that F � L.

Theorem 6.3 (Completeness) If L is a modal predicate logic and K
is the class of all general L–frames, then L is sound and complete wrt
the class K, i.e. L =

⋂
γF∈K Th(γF).

Proof. Let γFL be the canonical general frame and suppose that there
is a φ ∈ L, such that γFL 2 φ. Then there is an admissible interpreta-
tion I, a possible world S∆ and a valuation β such that 〈S∆, I, β〉 2 φ.
Because L is closed under first–order substitutions we can wlog as-
sume that β is the canonical valuation υ∆. Let Pn1

1 , . . . , Pnm
m be all

the relation symbols occurring in φ. Since I is admissible, I(Pni
i ,∆) =

ÎL(ψi) ∈ Gni for i = 1, . . . ,m. In particular FV (ψi) ⊆ {x1, . . . , xni}.
Since φ ∈ L, it follows by closure under second–order substitutions that
φ̃ = (ψ1/P

n1
1 , . . . , ψm/P

nm
m )φ ∈ L as well. But since I(Pni

i ) = ÎL(ψi) it
follows by induction that 〈S∆, IL〉 2 φ̃, which contradicts Th(fL) = L.
This shows that the canonical general frame γF is an L–frame. Now,
completeness follows immediately by appealing to the Canonical Model
Theorem. a

7 Conclusions and Further Work
We have introduced a semantics that combines the mathematical gener-
ality of functor semantics, metaframes or hyperdoctrines with aspects
of Counterpart Theory. By constructing a canonical model for each
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modal predicate logic L, we have shown completeness wrt modal struc-
tures. Furthermore, by defining appropriate conditions on counterpart
relations, many interesting frame–completeness results are easily estab-
lished. By enriching the notion of a modal frame by a suitable com-
plex algebra of ‘admissible interpretations’, completeness wrt to general
frames is obtained. Finally, the use of free logic does not only allow for
an easy refutation of formulae like the Converse Barcan Formula, it is
also the starting point for a proper treatment of non–denoting singular
terms, talk of fictional objects or an investigation of different theories of
definite descriptions in modal contexts.

Since we have not considered these last topics in detail here, this
is one of the subjects to be investigated in more detail in the future.
Also, the exact connection between the different proposed semantics is
to be spelled out. It should also be investigated how the semantics works
with richer modal languages that use—besides an existence predicate—
e.g. an actuality operator, universal modalities or lambda abstraction as
discussed in (Fitting and Mendelsohn 1998). As a last point in case we
would like to point to the problem of investigating the question which
(philosophical) notion of object or individual is presupposed by the kind
of semantics we have discussed in this paper. We believe that modal
predicate logic in itself does not fix the notion of an object uniquely, since
very different semantics involving quite distinct notions of an individual
can give rise to general completeness results.
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