
Invariant Logics

MARCUS KRACHT

Abstract. A modal logic Λ is called invariant if for all automorphisms α of
NExtK, α(Λ) = Λ. An invariant logic is therefore uniquely determined by its
surrounding in the lattice. It will be established among other that all extensions
of K.alt1, S4.3 and G.3 are invariant logics. Apart from the results that are being
obtained, this work contributes to the understanding of the combinatorics of finite
frames in general, something wich has not been done except for transitive frames.
Certain useful concepts will be established, such as the notion of a d–homogeneous
frame.

1. Introduction

In [2] we have investigated the groups of automorphisms of various lattices of
modal logics. A full description of Aut(NExtS4.3) and Aut(NExtK.alt1) was ob-
tained. Moreover, we have shown that every automorphism of NExtS4 fixes all
logics with the finite model property, and so also all logics of finite codimension.
We raised the question about the group of automorphisms of NExtK. The motiva-
tion for such an endeavour can also be found in [2]. We should say here that apart
from being interesting in its own right, this question provokes the development of
new techniques of dealing with frames. Thus, the auxiliary results are at least as
interesting as the main ones.

In this paper, we shall make a modest step towards the structure of the group of
automorphisms of NExtK. We shall study logics which are invariant under all mem-
bers of that group. Knowing which logics are invariant under any automorphism
helps in this direction because it constrains the possible actions of an automorphism.
It is our belief that all logics with the finite model property are invariant. This nar-
rows down the choice of automorphisms substantially, though it is still conceivable
that there are continuously many autormophisms.

2. Basic Terminology and Notation

We follow the notation and terminology of [3] for the basic terminology of modal
logic and [2] for the notions relevant to automorphisms of lattices of modal logics.
We will quickly review the basic instruments which we will need for our purposes.
Recall that the normal logics form a distributive lattice (in fact a locale), which
is denoted by NExtK. The lattice operations are denoted by t and u (and the
infinitary operations by and ). Notice that Θ u Λ = Θ ∩ Λ, although not
necessarily Θ t Λ = Θ ∪ Λ.

This paper is dedicated to Edward L. Keenan in gratitude.
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Definition 2.1. A modal logic Λ is said to be (absolutely) invariant if for all
automorphisms α of NExtK α(Λ) = Λ.

A Kripke–frame is a pair F = 〈F, �〉, where F is a set (possibly empty) and
� ⊆ F 2 a binary relation on F . If G ⊆ F then F � G := 〈G, � ∩G2〉 is the induced
subframe on G. A frame identical to some F � G is called a subframe of F. We
write G ⊆ F if G is a subframe of F. Special subframes are the generated subframes,
which are based on generated subsets. S ⊆ F is a generated subset of F if for all
x ∈ S and x � y also y ∈ S. We write F ↑ x for the generated subframe induced by
x. It is based on the least generated subset containing x. x ∈ F is a root of F if the
least generated subset containing x is F . F is called rooted if it has a root. Given
a Kripke–frame F, put Th F := {ϕ : F |= ϕ}. Finally, let F ≤ G iff Th F ≤ Th G.
This is a converse well–quasi–ordering on the finite frames: it is transitive, and
contains no infinite strictly upgoing chain. However, we can have F ≤ G ≤ F and
nevertheless F 6= G, even F 6∼= G! One example is F⊕ F, the disjoint sum of F with
itself. However, an often used fact is the following folklore result (see [2]).

Lemma 2.2. Let F and G be rooted and finite. Then Th F = Th G iff F ∼= G.

By factoring out equivalence we get a converse well–partially ordered set, the set
of all Th F, F a finite rooted Kripke–frame. We define I to be the set of all Th F,
F rooted and finite. As is well–known (see [1]), I does not coincide with the set
of intersectively irreducible logics of finite codimension. I is ordered by ≤. We
shall often identify a logic of a frame with the frame itself, if that carries no risk of
confusion. In that sense we may for example think of an automorphism of NExtK
as inducing an automorphism of the set of all rooted finite Kripke–frames.

A logic Λ is prime in NExtK if whenever i∈IΘi ≤ Λ, there is an i ∈ I such
that Θi ≤ Λ. [1] has shown that Λ is prime in NExtK iff Λ = Th F for some finite,
rooted, cycle–free frame. Let us denote the se of prime logics by P. Then we have
the following:

Lemma 2.3. Every automorphism of NExtK fixes the set P.

It does not follow that each member of P is fixed by a given automorphism. In
fact, establishing this for a small class of frames requires a lot of work. We shall
briefly mention the following important fact.

Lemma 2.4. Let Λ ∈ P and Θ ≥ Λ. Then Θ is tabular. Moreover, it is u–
irreducible iff it is in P.

Further, notice the following:

Lemma 2.5. P is an upper subset of 〈I,≤〉.
This means that if Θ ∈ P and Λ ≥ Θ is a member of I, then Λ ∈ P as well. It

follows from Lemma 2.4 that given F ∈ P, there is an upper bound on the number
of logics containing Th F, which can be uniformly determined on the basis of |F |.

Define dn := 2n⊥ ∧ 3n−1>, n > 0. Say that a point x in a cycle–free frame F
is of depth n if x |= dn. It is not hard to show that if F ∈ P then any point in F
has a depth and that this depth is unique. Further, if π : F → G is a p–morphism,
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then for x ∈ F we have x |= dn iff π(x) |= dn; whence the depth is invariant under
p–morphisms. The depth of F is the largest number n such that there exists a node
of depth n.

In Rautenberg [5], Page 232, one finds a picture of the upper part of NExtK. We
shall be dealing only with tabular irreducible logics. First, there are two coatoms, by
a theorem of Makinson ([4]). Then follow countably many logics of depth 2. These
are among other the logics of the loops of prime order. Let Loopn := 〈{0, 1, . . . , n−
1}, �〉, where j � j iff j ≡ i + 1 (mod n). The logic Th Loopn has codimension 2
exactly when n is a prime number (see [3]). There are many more logics of depth 2,
but this may suffice for an indication of the complexity of the lattice, even when we
restrict the attention to tabular logics. Recall that an antichain in a poset 〈P,≤〉
is a set A such that for all x, y ∈ S such that x 6= y also x � y and y � x. By the
above, 〈I,≤〉 possesses an infinite antichain, namely the set {Th Loopp : p prime}.
Further down we shall show that also 〈P,≤〉 has an infinite antichain.

In order to establish that some logic Λ is invariant under all automorphisms it
is enough to find a formula ϕ(x) in some logical language using the signature of
lattices such that {Λ} = {Θ : NExtK |= ϕ(Θ)}. In sequel it is enough to use
monadic second order logic (MSO). The nonlogical symbols will be ≤, u and t. Of
course, some higher order language might also be used but is not necessary for our
purposes. However, we shall make use of the following fact.

Lemma 2.6. The set of invariant logics is closed under u, t, and . In par-
ticular, it forms a sublocale of NExtK.

The supremum and infimum of infinite sets is defined as follows:

inf (P, x) := (∀y)(y ∈ P → x ≤ y) ∧ (∀z)((∀y)(y ∈ P → y ≤ z) → z ≤ x)
sup(P, x) := (∀y)(y ∈ P → x ≥ y) ∧ (∀z)((∀y)(y ∈ P → y ≥ z) → z ≥ x)

Definition 2.7. Let S ⊆ NExtK. S is called MSO–definable if there is an MSO–
formula ϕ such that S = {Θ : NExtK |= ϕ(Θ)}. A logic Λ ∈ NExtK is MSO–
definable if {Λ} is MSO–definable. Throughout this paper we shall use definable
instead of MSO–definable.

It is worthwile to establish the definability of some basic sets of logics.

Lemma 2.8. The set of u–irreducible logics and the set of prime logics are definable.

Proof. The defining formulae are

ϕi(x) := (∀yz)(x
.
= y u z → (y

.
= x ∨ z

.
= x))

ϕp(x) := (∀P )((∀y)(inf (P, y) → y ≤ x) → (∃y)(y ∈ P ∧ y ≤ x))

�

Lemma 2.9. Suppose that S is definable. Then for every automorphism α of
NExtK, α[S] = S. It follows that S and S are invariant. In particular, if
Λ is definable, it is invariant.

This proves once more the observation of Lemma 2.3. Notice that since there are
only countably many formulae, not every subset is MSO–definable. Nevertheless,
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it may very well be that all subsets are invariant (namely when there exists only
one automorphism), so the converse of the previous theorem is false. We shall
note however that α is the identity already when it fixes every compact (= finitely
axiomatizable) logic. Since the set of compact logics is definable, we can in principle
determine the action of an automorphism α by its action on a countable definable
subset of NExtK.

3. Inherently 1–covered logics

We shall identify P in some canonical way with a set of finite rooted Kripke–
frames, which we will also call P. P is ordered by ≤, as defined above. It is an upper
subset of 〈I,≤〉.

Definition 3.1. Suppose that F ∈ P. We say that F is n–covered if it has at most
n covers in I (iff it has at most n covers in P, by Lemma 2.5). F is inherently
n–covered if every G ≥ F is n–covered. We denote by Cn the set of all inherently
n–covered P–frames (and the logics thereof). Finally, let

Γn := Th Cn

Clearly, these notions are definable. From Lemma 2.9 we infer

Lemma 3.2. Let α ∈ Aut(NExtK). Then α(Γn) = Γn.

C0 consists of the empty frame, and therefore Γ0 := K⊕⊥, the inconsistent logic.
The case n = 0 is therefore trivial. Of particular interest in the study are the logics
in C1. Here is a useful way to identify C1–logics.

Lemma 3.3. Let Λ be prime. Λ is in C1 iff NExtΛ is finite and linear.

It does not follow, of course, that the generating frame of Λ is linear; neither does
it follow that NExt Γ1 is linear. To the contrary, this is quite a complex lattice,
whose structure we will unravel to some extent. We remark here the following fact,
which immediately shows that nontrivial invariant logics exist.

Proposition 3.4. K = n∈ωΓn. Furthermore, Γn+1 < Γn for all n ∈ ω.

Proof. First, for any finite Kripke–frame there is an n such that it is inherently
n–covered. So, the first claim follows from the fact that K has the finite model
property. For the second claim, consider the following frame Ln := 〈Ln, �n〉 defined
by

Ln := {r} ∪ {si : i < n} ∪ {ti : i < n}

�n :=


{〈r, si〉 : i < n}

∪ {〈tj, tj−1〉 : 0 < j < n}
∪ {〈si, tn−1〉 : i < n}
∪ {〈si, ti〉 : i < n}

The picture below shows the frame L4.
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It is easily established that Ln has no contraction images other than Ln. (A con-
traction must be depth preserving, and so it can only collapse some s–points. But
this is impossible, as they have different successors.) The subframes generated by
the si are therefore the only immediate covers of Ln. They are all non–isomorphic,
showing that Ln has n covers (using Lemma 2.2). �

Before we consider the structure of C1–frames, let us specialize a little further.

Definition 3.5. Let F ∈ P. Then F is called linear if for any n ∈ ω there is at
most one point of depth n in F.

(For a general notion of linearity, see Section 6.) So far we have not established
any tool to identify logics of linear frames. However, a useful fact to note is the
following:

Lemma 3.6. Let F be linear and in P. Then any p–morphic image of F is iso-
morphic to F. Furthermore, the codimension of Th F equals the number of points of
F.

Proof. The first claim is easy to verify. Now suppose that G ≥ F. Then G is
isomorphic to a generated subframe of F. Now suppose that the root of F has depth
n and let y be of depth n − 1. Then y generates a frame G of depth n − 1. By
linearity, |G| = |F | − 1. This shows that NExt Th F has n + 1 points, and so Th F
has codimension n. �

Definition 3.7. Suppose that F is cycle–free. F is called d–homogeneous if for
any pair x, y of points of equal depth the following holds: if x � u and u has depth
k, then there is a v of depth k such that y � v.

Obviously, linear P–frames are d–homogeneous.

Lemma 3.8. Suppose that F ∈ P is d–homogeneous. Then there exists a (uniquely
determined) linear frame G and a p–morphism π : F � G. Furthermore, if F is
contractible to a linear P–frame, F is d–homogeneous.

Proof. Put G := {n : exists x ∈ F : x |= dn}, and let m J n iff there exists x of
depth m and y of depth n such that x � y. G := 〈G, J〉. Now put π(x) := n if x
has depth n. It is easy to check that this is a p–morphism. The uniqueness follows
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from the fact that if x is of depth n in F, it must be of depth n in G. So, G is
the smallest frame onto which a p–morphism exists, and it is easily seen that there
exist no surjective p–morphism between nonisomorphic linear P–frames. Hence, G
exists and is unique. Now assume that F is contractible to (that is, can be mapped
onto) a linear P–frame, say π : F � G, G linear. Then x and y have the same
depth iff π(x) = π(y). So, assume that x �u and let y be of same depth as x. Then
π(x) = π(y) and therefore π(y) J π(u). It follows that there is a v such that y � v
and π(v) = π(u). So, v has the same depth as u. Hence F is d–homogeneous. �

So, F is d–homogeneous exactly if it is contractible to a linear P–frame. For
P–frames in general we shall define the concept of a depth profile.

Definition 3.9. Let F be a P–frame. Then the depth profile of F, ℘(F), is the set
of pairs of numbers 〈m, n〉 such that there exists a point of depth m seing a point of
depth n. For a point x, the depth profile of x, ℘(x), is the set of all numbers n
such that there exists a successor of x of depth n.

Clearly, a linear frame is uniquely characterized by its depth profile. Moreover,
we can count the number of linear frames of given depth in the following way.

Theorem 3.10. Let F be a frame of depth n. Then ℘(F) is a subset of {1, . . . , n}2

with the following properties.

(1) 〈m,m− 1〉 ∈ ℘(F) for all n ≥ m > 1.
(2) If 〈m, m′〉 ∈ ℘(F) then m > m′.

If P ⊆ {1, . . . , n}2 is any set satisfying these two properties, there is a linear frame

LP such that ℘(LP ) = P . Hence there are 2(n−1
2 ) = 2(n−1)(n−2)/2 many linear P–

frames of depth n.

We may also note the following, which is immediate from the definitions.

Lemma 3.11. Let F be a d–homogeneous P–frame, x of depth m and 〈m, n〉 ∈ ℘(F).
Then there exists a y of depth n such that x � y.

Lemma 3.12. Let π : F � G be a p–morphism. Then

(1) F is d–homogeneous iff G is.
(2) ℘(F) = ℘(G).

Proof. The first claim follows from Lemma 3.8. For the second notice that a p–
morphism is depth preserving. �

Write ℘(F) � n := ℘(F) ∩ {1, . . . , n}2.

Lemma 3.13. Let F be a d–homogeneous P–frame and G ≥ F of depth n. Then
℘(G) = ℘(F) � n. Further, if L is linear and ℘(L) = ℘(F) � n, then L ≥ F.

Proof. If G is a p–morphic image of F, this follows from the previous theorem.
Suppose then that G is a p–morphic image of F, say π : F � G. π is depth
preserving. So, let 〈i, j〉 ∈ ℘(F). Then there are x of depth i and y of depth j such
that x �F y. Then π(x) is of depth i, π(y) of depth j and π(x) �G π(y). Hence
〈i, j〉 ∈ ℘(G). Conversely, suppose that 〈i, j〉 ∈ ℘(G). Then there are x′ of depth i
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and y′ of depth j such that x′ �G y′. There is x ∈ F such that π(x) = x′. π is a
p–morphism, so there exists a y ∈ F such that x �F y and π(y) = y′. x′ has depth
i and y′ has depth j. Therefore, 〈i, j〉 ∈ ℘(F). Now for the last claim. Suppose
that L is linear, and that ℘(L) = ℘(F) � n. Consider the contraction of F onto a
linear frame L′. We have ℘(L′) = ℘(F), by Lemma 3.12. Let L′′ be the subframe of
depth n of L′. Then ℘(L′′) = ℘(L), so L′′ ∼= L, from which the claim follows, since
L′′ ≥ F. �

Using this result one can show that 〈P,≤〉 possesses an infinite antichain. Namely,
let Qn be the unique linear frame in P such that ℘(Qn) = {〈j, j − 1〉 : 1 < j ≤
n} ∪ {〈n, n − 2〉}. Clearly, for n ≤ m we do have ℘(Qm) � n 6= ℘(Qn), from which
follows Qm � Qn (and anyway Qn � Qm). So, {Qn : n ∈ ω} is an infinite antichain
of P–frames.

We define for a given F the order depth the length of a longest ascending chain
of u–irreducible logics. This is by definition a lattice invariant. (It is not the same
as the codimension of that logic, see [2].)

Lemma 3.14. Let F ∈ P be d–homogeneous. Then the order depth of F coincides
with |F |.
Proof. We have shown this already for linear P–frames. So, assume that F is not
linear. Then there are x and y, x 6= y, of same depth such that x and y see the
same set of points. Such a pair exists. For let m be the least number such that
there is more than one point of depth m. Since F is not linear, m exists. Choose x
and y of depth m. Then x and y see the same set of points, as is easy to see. (For
otherwise x and y generate the nonisomorphic linear frames F ↑ x and F ↑ y.) Now
collapse x and y into the same point and call the resulting frame G. Then G ∈ P
and |G| = |F | − 1. Now an easy induction on |F | establishes the claim. �

As it turns out, C1–frames are d–homogeneous:

Lemma 3.15. Let F be a C1–frame. Then F is d–homogeneous.

Proof. Suppose the claim is false. Then there exists a smallest C1–frame F which is
not d–homogeneous (recall that C1 consists of finite frames). This means that there
exist points x and y of identical depth, say n, such that x has a successor of depth
m < n, but y does not. Consider the subframes F ↑ x and F ↑ y generated by x and
y. By choice of F they are d–homogeneous and therefore possess a linear contraction
image Gx and Gy, respectively. By choice of x and y, Gx and Gy have the same
depth but are not isomorphic. Hence we have neither Gx ≥ Gy nor Gx ≤ Gy. But
this is impossible by Lemma 3.3. �

As a consequence we note that, by Lemma 3.14, the order depth of a C1–frame F
is exactly |F |. So we can reconstruct the number of elements in such a frame just
from the lattice of its extensions. A cycle–free frame is of depth n if no point has
depth > n and there is at least one point of depth n. Now, rooted frames of depth 2
have a rather simple structure. They consist of a single root and a number of depth
1 successors. Let F be of depth 2 and let F have n + 1 elements; then we denote F
by Bn.
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Lemma 3.16. Let n > 1. Bn has exactly one C1–cocover, namely Bn+1.

Proof. Suppose that F is a cocover of Bn and assume that F ∈ C1. Then F cannot be
of depth 3, since then it has several cocovers (namely, there is a generated subframe
of depth 2 isomorphic to Bn and a contraction image, which has n − 1 points of
depth 1). So F is of depth 2, and hence isomorphic to Bm for some m. It is easy to
see that m = n + 1. This shows that Bn has exactly one cocover in C1. �

Now, there are three non–isomorphic rooted, cycle–free frames of cardinality 3,
two of which are linear. The third is B2. B2 is definable, since it has less C1–
cocovers that the other two. For it follows from the next lemma that the linear
frames with three elements have no less than 4 C1–cocovers.

Lemma 3.17. Let F be rooted and linear and let |F | = n. Then F has at exactly
2n−1 linear cocovers.

Proof. We may assume that F ( G with G = F ∪ {y}. The new point y is the
new root. Its set of successors is any set containing at least the root of F. There
are 2n−1 such sets. Since F is linear, all these frames linear as well and in addition
non–isomorphic since they have different depth profile. �

Notice that there are 2(n−1)(n−2)/2 linear P–frames of depth n, each possessing 2n−1

different linear C1–cocovers. Thus we have 2n−1×2(n−1)(n−2)/2 = 2(2(n−1)+(n−1)(n−2))/2 =
2n(n−1)/2 linear P–frames of depth n + 1. Thus a simple counting argument would
have sufficed for the linear frames.

Proposition 3.18. Bn is definable for every n > 0.

Proof. B1 is definable by the property expressing that is a prime frame of codi-
mension 2. B2 is definable by the formula expressing that it is a prime frame of
codimension 3 and has exactly one C1–cocover (by Lemma 3.14 the first condition
defines frames of cardinality 3, and by Lemma 3.17 the second then defines B2 in
conjunction with the first). Bn is definable by the formula expressing that it is a
prime frame of codimension n, and below B2 (for n > 2). �

As we have seen, not all C1–frames are actually linear. But they are not far from
being linear. We first establish a weak version of a theorem that will reveal the
structure of C1–frames.

Lemma 3.19. Let F be a C1–frame of depth n and not linear. Then the root has
two immediate successors. Furthermore, if G ≤ F is a C1–frame, G has the same
depth as F.

Proof. We show the first claim. Suppose that F does not have 2 points at depth
n− 1. Then there are two covers. (1) The frame obtained by collapsing two points
into one, (2) the generated subframe of depth n− 1. They are both generated and
nonisomorphic. The second claim follows in this way. Suppose that G is a cocover
of F. Then it is obtained by adding a single point. This point cannot be a new root,
otherwise we would violate the first property. �
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In order to make progress in distinguishing various frames of identical size we
shall develop a formula that allows us to count the number of cocovers. The idea is
as follows. We have already established how many C1–frames exist of which F is a
maximal generated subframe, now we shall establish how many C1–frames exist that
cover F and can be mapped onto it. By previous theorems, the fact that G cocovers
F means that G has one more point than F. So let π : G → F be a contraction
(= a surjective p–morphism) and x and y different points such that π(x) = π(y).
(By our assumptions, {x, y} is unique.) Then the set of successors of x and y in G
coincide, by the p–morphism conditions. Furthermore, the set P of predecessors of
π(x) in F is the union of two sets π[X] and π[Y ], where X is the set of predecessors
of x in G, and Y the set of predecessors of y in G. Both X and Y are nonempty,
since G is rooted. Conversely, if in G we find two points x and y such that their
sets of successors are identical, then (and only then) is the collapsing of x and y a
p–morphism, and the set P of predecessors of π(x) is the union of (the π-image of)
the set of predecessors of x and that of y. Thus, any contraction cocover is obtained
in this way. Obviously, an upper bound on the number of cocovers of which F is a
p–morphic image is obtained by taking all possible points x distinct from the root,
and all possible representations of P := {y : y � x} as unions of nonempty subsets.
This bound can be very high. Notice also that it is only an upper bound, since some
cocovers may turn out to be isomorphic.

Now let F be a C1–frame. We have counted the number of linear cocovers. Now
we count the number of nonlinear C1–cocovers.

Lemma 3.20. Let L be a linear P–frame and x its root. Then there are card(℘(x))
many nonlinear C1–cocovers of L, which are all inherently 1–covered.

Proof. Assume that L has depth d with root x. Let F be a d–homogeneous C1–
cocover of L. By Lemma 3.14, F has one point more than L itself. Further, F has
the same depth profile as L, by Lemma 3.12. This means that we can consider L to
be a subframe of F. So, we now assume that L ⊆ F . By Lemma 3.14, F −L = {y}
for some y. Let y be of depth k. It is easy to see that we must have v � y iff
v = x. (For suppose otherwise. Let u be a successor of x of depth d− 1. y is not of
depth d− 1 (otherwise we have an immediate contradiction, since x �F y). So, u is
unique and different from y. Then F ↑ u is a cover of F not isomorphic to L (since
it contains y). But F is an C1–frame. Contradiction.) Consequently, as x �F y, we
have k ∈ ℘(x). Now let w be of depth k, w 6= y. w and y have the same set of
predecessors, namely only x. The contraction collapsing w and y is an admissible
p–morphism from F onto L (the only one in fact). So we must have ℘(y) = ℘(w),
which is to say that w and y have the same successors. So, F is uniquely determined
by the number k. On the other hand, for each k ∈ ℘(L), such a frame exists. �

There is an immediate application. Let Chn be defined by

Chn := 〈{0, 1, . . . , n− 1}, �n〉
�n := {〈i, i− 1〉 : 0 < i < n}

This chain has, by the above theorems, 2n−1 + 1 C1–cocovers. For either Chn � F,
in which case F is linear and there are 2n−1 choices up to isomorphism. But if
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G � Chn, then G is obtained by adding a point of depth < n. For each given depth
d there exists such a cocover iff 〈n, d〉 ∈ ℘(Chn) iff d = n− 1. Hence there is only 1
nonisomorphic choice.

We denote the frames defined in the proof by Lk (see also below for the notation).
For example, the following frame

• - ?• -
6

• -•

has these two nonlinear C1–cocovers:

• - ?
Q

Q
QQs

• -
6

•�
�

��3

�������1• -• • - ?

-

• -
6

• -

•�
�

��3
•

In order to discriminate the nonlinear cocovers from the linear cocovers, we shall
investigate the structure of C1–frames in more detail.

Definition 3.21. Let F be a P–frame. We say that F is of d–width m iff there are
exactly m points of depth d. The width of F is the maximum of all d–widths of F,
d ∈ ω.

Lemma 3.22. Let F be a C1–frame. Suppose that F is of d–width 4. Then for all
d′ < d, F is of d′–width 1.

Proof. We let F be a minimal counterexample to this claim. Let ui, i < 4, be the
points of depth d. Assume that there are two points of depth d′, where d′ < d.
Then there is no d′′ 6= d′ and d′′ < d such that F has d′′–width > 1. (Otherwise
there are some admissible p–morphisms contracting F to a smaller counterexample.)
Moreover, we can assume that F has d′–width 2. (Again, we can apply an admissible
p–morphism otherwise.) Call the points of depth d′ x and y. (Case 1.) 〈d, d′〉 6∈ ℘(F).
Then the contraction of u0 and u1 into one point is a p–morphism, and so is the
contraction of x and y into one point. So, F has two covers. Hence this case does
not arise. (Case 2.) 〈d, d′〉 ∈ ℘(F). Then each ui (i < 4) sees at least x or y by
Lemma 3.15. As {x, y} has only three nonempty subsets, there are i and j such
that i < j and ui and uj have the same set of successors of depth d′. It follows that
they have the same set of successors of any given depth < d. Hence, contracting ui

and uj to a single point is a p–morphism, and so F has two nonisomorphic covers.
So this case does not arise either. We have reached a contradiction, and the claim
is proved. �

Lemma 3.23. Suppose that F is a nonlinear C1–frame. Then there is no infinite,
homogeneously 2–branching tree of C1–frames rooted at F in NExtK.

Proof. If F is nonlinear and G a C1–cocover of F, then G has the same depth as F
by Lemma 3.19. Let it be d. Consider the number of frames which have the same
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order depth κ, where κ > 3d−2. These frames cannot be of width < 4. Hence there
is some d′ such that they are of d′–width ≥ 4. By Lemma 3.22, F is of d′′–width
< 4 for all d′′ 6= d′. The number of such frames is bounded by some number just
depending on d. This shows that no homogeneously 2–branching tree of C1–frames
rooted at F can exist. �

Lemma 3.24. Let L ∈ P be linear and of depth > 1. Then there is an infinite,
homogeneously 2–branching tree of C1–frames rooted at F.

This follows basically from Lemma 3.17 and the fact that we are dealing with
C1–frames.

Definition 3.25. L denotes the set of linear P–frames, D the set of d–homogeneous
P–frames.

Lemma 3.26. The class L is definable.

Proof. There is an MSO–formula t(x) which is true of Θ iff Θ is the root of some
homogeneously 2–branching tree of C1–frames. Now consider the following formula:

`(x) := C1(x) ∧ (∀y)(y ≥ x → t(x)) .

We claim that Θ is the logic of a linear frame iff `(Θ). But this is easily shown by
induction on the order depth of Θ. �

Here is now a first result:

Lemma 3.27. A linear frame is isomorphic to some Chn iff its unique nonlinear
C1–cocover has exactly one C1–cocover.

It follows that the set of logics {Th Chn : n ∈ ω} is definable. Recall that K.altn is
the logic of all frames with the property that a given point has at most n immediate
successors. Then we get the following result.

Theorem 3.28. K.alt1 is invariant.

Lemma 3.29. F is rooted and d–homogeneous iff for any two linear frames G1, G2 ≥
F we have G1 ≥ G2 or G2 ≥ G1.

Proof. Suppose first that F is d–homogeneous. Let L1, L2 ≥ F be linear P–frames of
depth n1 and n2, repsectively. Without loss of generality, n1 ≤ n2. We have ℘(L1) =
℘(F) � n1 and ℘(L2) = ℘(L2) � n2, from which we get that ℘(L1) = ℘(L2) � n1. It
follows from Lemma 3.13 that L1 ≥ L2. Now suppose that F is not d–homogeneous.
Then there are x, y ∈ F or identical depth and a u of depth k such that x�u but no
v of depth k exists such that y�v. We choose x of minimal depth with this property.
Consider F ↑ x and F ↑ y. We claim that these frames are d–homogeneous. For
example, if u, v ∈ F ↑ x and the depth of the two points is less than the depth of x,
by minimality of x, u has a successor of depth n iff v has. However, there is exactly
one point of depth equal to the depth of x. So, the claim is proved. It follows that
F ↑ x and F ↑ y can be mapped onto some linear frames L1 and L2. By choice of x
and y, L1 and L2 are not isomorphic, but of the same depth. It follows that neither
L1 ≤ L2 nor L2 ≤ L1 holds. �
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Theorem 3.30. The following sets are definable. (a) L, (b) D, (c) the set of all
frames from D (or L) which have n points.

Proof. From Lemma 3.26, Lemma 3.29 and Lemma 3.14. �

4. Linear P–Frames

In this section we shall show that in fact every logic of a linear P–frames is
definable, from which we can deduce that any logic of linear P–frames is invariant.
To achieve this goal, we must first define special classes of frames.

Definition 4.1. A frame P is called prelinear if it is a d–homogeneous C1–frame
whose cover is linear.

Obviously, the class of prelinear frames is definable. Recall the notation Lk from
the previous section. Lemma 4.6 will establish that the prelinear frames are the
frames of the form Lk, where L is linear.

Definition 4.2. Let F be a P–frame. Call x n–branching if there exist yi, i < n,
pairwise different, such that x � yi for all i < n, and if the generated frame of yi

contains yj, then j = i. x is branching if it is at least 2–branching. Call x same
depth n–branching if it is not n + 1–branching and there exist yi, i < n, pairwise
different of same depth (except for one point whose depth is one less than the depth
of x), such that x � yi for all i < n, and if the generated frame of yi contains yj

then j = i. Say that a frame is same depth branching if for each node x there
is n such that it is same depth n–branching. R denotes the class of P–frames which
are d–homogeneous and such that only the root x is branching.

Lemma 4.3. R is definable.

Proof. Let α be the following property:

(a) F is d–homogeneous and
(b) for all L, P ≥ F: if L is linear and P is prelinear then P ≤ L.

This is obviously an MSO–statement. Now, we shall show that for a d–homogeneous
frame F, F has α iff it is in R. (⇒) Suppose that F is not in R. Then there is a node
y which is not the root and 2–branching. Let P be a prelinear contraction image
of F ↑ y, and let L be the (unique) linear contraction image of F. Then P must
have lesser depth than L, whence L � P. (⇐) Suppose that F is in R. Consider a
prelinear frame P ≥ F. Then P must have the same depth as F. Then if L ≥ F is
linear, P ≤ L, since both have the same depth profile. This completes the proof. �

Let π : F � G be a p–morphism. π is called minimal if for any p–morphisms
ρ, σ such that π = ρ ◦ σ, either ρ or σ are bijective. π is 2–collapsing, if there
are two points, x and y, x 6= y, such that: (a) π(x) = π(y) and (b) for all z, z′

such that {z, z′} 6= {x, y}: if π(z) = π(z′) then z = z′. The pair {x, y} is called
the critical pair of π. Obviously, a 2–collapsing p–morphism is minimal. If F is
d–homogeneous and G a p–morphic image of F, then by the proof of Lemma 3.14
there exists a series of 2–collapsing p–morpisms mapping F onto G. We distinguish
two types of p–morphisms:
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Type 1: The distinguished pair is {x, y} and there is a z such that z � x, y.
Type 2: The distinguished pair is {x, y} and no z exists such that z � x, y.

Obviously, for F ∈ R if π is of Type 1 and z � x, y, z must be the root. It is easy to
see the following:

Lemma 4.4. Let F be a R–frame and π : F � G and ρ : G � H be 2–collapsing
p–morphisms of Type 1. Then there exists G′ and ρ′ : F � G′ and π′ : G′ � H
2–collapsing of Type 1 such that ρ ◦ π = π′ ◦ ρ′ and the critical pair of π′ is the
ρ′–image of the critical pair of π.

Recall that, in general, for a 2–collapsing p–morphism all we need to know to fix
F up to isomorphism is: (a) G, (b) the image point of the collapsed pair, and (c)
two sets A and B such that A ∪B is the set of predecessors of z. If A ∪B consists
of one point only, we have a Type 1 p–morphism. For the sake of brevity, let us
introduce the following notation.

Definition 4.5. Let G be a d–homogeneous frame, z a point and A and B sets such
that A∪B is the set of predecessors of z. Then WA,B

z (G) denotes the frame (unique
up to isomorphism) such that there is a 2–collapsing p–morphism π : WA,B

z (G) � G
whose critical pair {x, y} is mapped onto z, and A is the set of predecessors of x,
B the set of predecessors of y. If A, B or z are clear from the context, they are
omitted.

Now let F be an R–frame and π : F � G be of Type 1. We claim that F is
uniquely determined (up to isomorphism) by the following data: (a) G, (b) the
number k such that the for the critical pair {x, y}, both x and y are of depth k.
(It is clear that x and y must be of the same depth.) Namely, we obviously have
F � (F − {x, y}) ∼= G � (G − {π(x)}). We may actually consider these frames to
be identical rather than isomorphic. Let z := π(x). Let u 6= x, y. Then u �F x iff
u�F y iff u�G z; x�F u iff y �F u iff z �G u. This establishes the claim. We denote
F by Gk. By the Lemma 4.4 it is established that (Gm)n

∼= (Gn)m.
Let us take an R–frame F. Then there exists a linear frame L and a chain of

2–collapsing p–morphisms mapping F onto some linear frame L. L is uniquely
determined, the chain of p–morphisms is not. As remarked above, the members of
the chain are either of Type 1 or of Type 2. Clearly, if F is a cocover of L, the chain
consists of a single 2–collapsing p–morphism π : F � L. This p–morphism is of
Type 1.

Lemma 4.6. Let L be a linear frame and let F be an R–cocover of L. If F is not
linear, then F ∼= Lk for some k. Moreover, k is such that there exists a point of
depth k in L which is seen by the root.

So, for every k such that the root sees a point of depth k, Lk exists; and the
frames of the form Lk are the only R–cocovers of L which are not linear. It remains
to establish a method such that, given a linear frame L and a nonlinear R–cocover
F, we can establish the number k such that F ∼= Lk. To that end, let us look at
R–frames which are in addition inherently 1–covered.
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Definition 4.7. A frame is called an Rn–frame if it is an R–frame and also a
Cn–frame.

Notice that C1 ⊆ R1 and so C1 = R1. It is useful to keep this in mind.
Take the frame Lk and an R1–cocover F. Then there exists a 2–collapsing p–

morphism π : F � Lk. Suppose first that π is of Type 1. Then F ∼= Lk,m for some
m. By Lemma 4.4 we must have m = k. So, F ∼= Lk,k. It is easy to see that we
have an infinite downgoing chain of R1–frames:

L > Lk > Lk,k > Lk,k,k > . . .

We write Lkn for the n–fold iteration of the map M 7→ Mk, starting with L. Now
let us consider the case when π is of Type 2. If ρ : Lk � L has distinguished pair
{x, y}, then {x, y} is the set of predecessors of the point z which is doubled. If π is
of Type 2, several choices appear for A and B (up to renaming): (a) A = {x, y} and
B = {x, y}, (b) A = {x} and B = {y}. (c) A = {x}, B = {x, y}. However, since F
is an R–frame, A and B can each only contain one point. (Otherwise, assume that
A contains 2 points. Contract F such that everything after x and y is linear. Then
the map contracting A to a single point is a p–morphism. Likewise, contraction of
x and y. So, F is not inherently 1–covered.) Therefore, we are in situation (b). So,
A and B are uniquely fixed and therefore omitted, and we have F ∼= Wz(Lk).

Now assume that G is an R1–cocover of F. If G ∼= Fm for some m, then — as
is easy to verify — G is not inherently 1–covered, since the maps G � F � Lk

‘commute’. This is asserted by the following lemma.

Lemma 4.8. Let F be an R–frame and π : F � G and ρ : G � H 2–collapsing
p–morphisms. Then if π is of Type 1 and ρ is of Type 2, there exists G′ and 2–
collapsing p–morphisms ρ′ : F � G′ and π′ : G′ � H such that π′ ◦ ρ′ = ρ ◦ π and π′

is of Type 1 and ρ′ is of Type 2.

So, if we have A = B, then we never get a C1–frame. It follows from this first of
all the following.

Lemma 4.9. Suppose that F is an R1–frame, and u, z ∈ F . If and Wz(F) and
Wu(F) are R1–frames, then u = z.

Proof. Verify by induction that there is exactly one node having two immediate
predecessors. Clearly, if Wz(F) is defined, z must have two immediate predecessors.
This proves the claim. �

This allows to drop mentioning the world z. Now we conclude the following.

Lemma 4.10. Let L be linear and k > 0. Lk has exactly two R1–cocovers: Lk,k and
W (Lk). If k = 0, Lk has exactly one R1–cocover, Lk,k.

Similarly, the following is established.

Lemma 4.11. Let k > 0, m > 0. Wm(Lk) has at most one R1–cocover. If m = k,
it has no R1–cocover. If m < k, Wm+1(Lk) is the unique R1–cocover of Wm(Lk).
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Let us put this together. We are given a linear frame L. We want to establish
its structure. First, we can determine its depth. Let it be d. We want to know,
given two numbers m, n ≤ d, whether 〈m,n〉 ∈ ℘(L). To that end we establish first
the generated subframe of depth m. (This is easily done; just go d−m steps up in
〈I,≤〉.) For simplicity, we therefore assume m = d. Now, take an R1–cocover M
of L. If it has exactly one R1–cocover, then M ∼= L0, and the root sees a point of
depth 0. Otherwise, M has two R1–cocovers, N1 and N2. One of them, say N1,
has an infinite downgoing chain of R1–frames below it. Now take the number p of
R1–frames strictly below N2. Then M ∼= Lp+1.

Lemma 4.12. Let i, j be natural numbers and i > j. The class of all linear frames
L such that 〈i, j〉 ∈ ℘(L) is definable.

Proof. We first define the class of such frames which are of depth i. From this the
result follows easily. (Take the property of being below a frame L of depth i with
〈i, j〉 ∈ ℘(L).) The property in question is:

L has codimension i and has a C1–cocover F such that there are only
j many C1–frames below F.

Clearly, F ≤ L has finitely many R1–frames below it only if it has the form W p(Lq)
for some p > 0 and q ≥ p. Since there are j many such frames, we must have q = j.
This means however that 〈i, j〉 ∈ ℘(L). �

Theorem 4.13. Let Θ be the logic of a linear frame. Then Θ is definable.

Proof. Let L be linear such that Θ = Th L. Let L have depth d. For a frame
M: M ∼= L iff (a) M is a P–frame of depth d, (b) for all 0 < i, j ≤ d: 〈i, j〉 ∈
℘(L) iff 〈i, j〉 ∈ ℘(M). This is a finite conjunction of definable properties, and so
definable. �

Corollary 4.14. Let Θ be the logic of a given set of linear frames. Then Θ is
invariant. In particular, K.alt1 and every extension of G.3 is invariant.

Let us cash out a little bit further on the results established so far. Notice that
the logics Th Lkn are all definable. This opens the way for the following result.

Definition 4.15. Let F be a P–frame and x a point of depth d. We say that x is
directly n–branching if x has exactly n successors of depth d− 1.

Theorem 4.16. The class of d–homogeneous frames of depth ≥ δ which have an at
least (at most, exactly) directly n–branching point of depth d is definable.

Proof. Let F ≤ Lkn−1 for some linear frame L of depth ≤ δ. Then it is immediately
verified that F contains a point of depth ≤ δ which is immediately ≥ n–branching.
Conversely, suppose that F contains an immediately at least n–branching point x
of depth d ≤ δ. Take G := F ↑ x. For all k < d − 1, contract all points of depth k
onto a single point. The resulting frame is isomorphic to a frame Lkp for some L of
depth d and some p ≥ n. This frame is contractible to a frame Lkn . �

Lemma 4.17. Let F be a d–homogeneous frame of width ≥ n. Then there exists
a contraction image G which has width exactly n. There is a unique largest frame
with this property.
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Theorem 4.18. The class of d–homogeneous frames of depth ≤ δ which have at
least (at most, exactly) n points of depth d is definable.

Proof. The proof is by induction on d. Suppose the claim is true of all k < d. Then
take the frame G ≥ F of largest size such that it has exactly one point of depth
k for all k < d. Since the number of points of depth k < d can be established by
induction hypothesis, we can also construct G, since it is uniquely defined by its
description, by Lemma 4.17. It is the result of reducing F to a linear frame at depth
< d. This frame exists, again by Lemma 4.17. (The reader is asked to note the
special case d = 0, where is fact nothing needs to be proved, and G ∼= F.) Let Hδ,d

the set of all R–frames of depth ≤ δ, width 2, which have exactly one point of depth
k for all k < d. This set is finite, and it is definable. Now, we claim that for all
d–homogeneous F: F has only one point of depth d iff F � H for all H ∈ Hδ,d. For
let F ≤ H for some H ∈ Hδ,d. Then clearly F must have two points of depth d. Now
assume that F has two points of depth d. We contract F to a frame of width 2,
and of width 1 at all depths < d and call the result F1. Let x and y be the points
of depth d. Let z be the point of least depth such that F1 ↑ z contains x and y.
Then F1 is an R–frame; it is of width 2 and has width 1 at all depths < d. Further,
F1 ↑ z has depth ≤ δ. So, it is in Hδ,d. This shows that F ≤ H for some H ∈ Hδ,d,
as promised. Finally, we need to find the number of points of depth d. In order to
do this, let us return to F and G as constructed above. Let H be the largest frame
such that H ≥ G and such that H has exactly one point at depth d. This frame
is uniquely defined. Let m be the size of the longest chain of frames between G
and H (including G and H). Then m is the number of points at depth d. For the
contraction of all points of depth d to a single point can be split into a series of d−1
2–collapsing p–morphisms, giving rise to a chain of length d. On the other hand, in
between G and H no other frames exist, that is to say, H has the same number of
points at all depths > d as G. This finally concludes the proof. �

This allows us to define another set of very important frames, namely homoge-
neously branching trees.

Definition 4.19. A P–frame F is a tree if for all x and y we either have F ↑ x ⊆
F ↑ y or F ↑ y ⊆ F ↑ x or F ↑ x ∩ F ↑ y = ∅. F is homogeneously n–branching
if every point of depth > 1 is directly n–branching.

Theorem 4.20. Let T be the class of d–homogeneous, homogeneously n–branching
trees of depth δ. Then Th T is invariant.

Proof. F ∈ T iff it is of depth δ, is d–homogeneous, n–branching at each depth and
has exactly nδ−h points of depth h. This set is definable by Theorems 3.30, 4.16 and
4.18. �

Unless the depth profile consists only of the pairs 〈n, n− 1〉, this does not fix the
trees up to isomorphism. The following trees are d–homogeneous, homogeneously
2–branching, and have the same depth profile.
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It requires considerable effort to establish the definability of each individual frame of
this kind. We will not go into the details here and concentrate on the linear frames
instead.

If the depth profile is minimal, the trees can be fixed up to isomorphism. The
logic of homogeneously n–branching trees with minimal depth profile is the following
logic.

K.Tn := K.altn.{♦n+1> → �n♦> : n ∈ ω}
This logic is therefore invariant, as any extension determined by homogeneously
n–branching trees (which is not to say that every extension is of this kind).

5. Logics of Depth 1

The results of the previous section can be pushed up remarkably by the following
technique. Let P be a set of logics, and let Θ be a logic. Then a subset Q ⊆ P is
called a P–subreduction of Θ if Q ≤ Θ. A set H of logics is P–stable if it is a
set of logics having the same set of P–subreductions. Θ is called P–stable if {Θ} is
P–stable. Then the following is immediate from Lemma 2.6.

Lemma 5.1. Assume that P is a set of definable logics. If Θ is P–stable, it is
invariant.

The content of the concept of P–stability is the following. Although we have
immediate hopes only to define logics of cycle–free frames, we can extend this to
other logics as well. Take a frame F, not cycle–free. Then, by unravelling, there is
a sequence Pn of cycle–free frames such that Th Pn ≤ Th F. Therefore, {Th Pn :
n ∈ ω} forms a P–subreduction of Th F. If F and G have different unravellings,
then no automorphism can map F onto G. In particular, if no logic has the same
unravellings as F, F is invariant.

We shall precisify the notion of unravelling as follows. Let F be a Kripke–frame,
and x ∈ F . Then denote by T n(x, F) the set of points that can be reached in at
most n steps from x. This set is called the n–transit of x in F (see [3]). The
subframe Tn(x, F) := F � T n(x, F) is likewise called the n–transit of x in F. We
omit F whenever it is clear which frame is meant. The following is easily shown by
induction on n.

Lemma 5.2. Suppose that F and G are frames, x ∈ F and y ∈ G points and
Tn(x, F) ∼= Tn(y, G). Then for every formula ϕ of modal degree ≤ n:

〈F, x〉 |= ϕ ⇔ 〈G, y〉 |= ϕ
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Definition 5.3. An unravelling of F is an infinite series G = 〈Gn : n ∈ ω〉 of
frames such that the following holds.

(1) For all n ∈ ω: Gn ⊆ Gn+1.
(2) For all n ∈ ω: Gn � F.
(3) For each m, n ∈ ω and x ∈ Gn there exists a p such that for all q ≥ p:

Tm(x, Gq) = Tm(x, Gp) .

(4) lim G ≤ F.
(5) There exists a k ∈ ω such that for all q ∈ ω and x ∈ Gq+k −Gk there exists

a y ∈ Gq with
Gq+k � x ∼= Gq � y .

The last condition is called the cyclicity condition. G is called finite if all Gk

are finite.

Here, lim G is the frame 〈
⋃

n Gn,
⋃

n �n〉. Obviously, unravellings are some kind
of subreductions. However, the existence of some subreduction is not enough for
us. What we must establish for stability (and invariance) is which frames a given
sequence of frames subreduces. This is what unravellings let us do quite easily.

The following is an easy consequence of cyclicity.

Lemma 5.4. Let G be an unravelling and k as in Condition 5. Suppose that
〈Gq, x〉 |= ϕ. Then there exists a p ≤ q and a y ∈ Gk such that 〈Gp, y〉 |= ϕ.

Proof. Suppose 〈Gq, x〉 |= ϕ. If x ∈ Gk we are done. Otherwise, we have q ≥ k + 1
and there exists a x′ ∈ Gq−k such that Gq−k � x′ ∼= Gq � x. It follows that for this
x′, 〈Gq−k, x

′〉 |= ϕ. Now reason with x′ instead of x and q − k instead of q. �

Lemma 5.5. Let G be an unravelling of F. Then, given x ∈ Gn and some formula
ϕ we either have 〈Gq, x〉 |= ϕ for finitely many q, or for almost all q.

Proof. Let ϕ be given. Suppose ϕ has modal depth m. Then there exists a p such
that for all q ≥ p: Tm(x, Gq) = Tm(x, Gp). Whence by Lemma 5.2

〈Gq, x〉 |= ϕ ⇔ 〈Gp, x〉 |= ϕ

�

Lemma 5.6. Let G be an unravelling of F and x ∈ Gn. Then 〈lim G, x〉 |= ϕ iff
〈Gq, x〉 |= ϕ for almost all q.

Proof. Notice that Tm(x, lim G) = Tm(x, Gq) for almost all q. �

Consider the formulae ϕn := py ∧2nδ(G), where δ(G) is the diagram of G. This
is defined as follows.

δ(G) :=
∨
〈py : y ∈ G〉

∧
∧
〈px → ¬py : x 6= y〉

∧
∧
〈px → ♦py : x � y〉

∧
∧
〈px → ¬♦py : x 6 y〉

Definition 5.7. Let F and G be frames, x ∈ F , and h : F → G a map. h is
n–localic with respect to x if the following holds.
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(1) If y �F z for y, z ∈ Tn(x, F) then h(y) �G h(z).
(2) If y ∈ Tn−1(x, F) and h(y) �G u then there exists a z ∈ F such that y �F z

and h(z) = u.

Lemma 5.8. py ∧2nδ(G) can be satisfied at x in F iff there exists an n–localic map
from F ↑ y onto G ↑ x.

The following can be found in Kracht [3].

Theorem 5.9. Let G be a finite frame. ∆ := {py ∧ 2nδ(G) : n ∈ ω} is satisfiable
in a frame F iff G is a generated subframe of some contraction of an ultraproduct
of F iff G ≥ F. If F is finite, then G is the contraction image of some generated
subframe of F.

Lemma 5.10. Let G be a finite unravelling of F and K a finite frame. Then there
exists a point x and a valuation β such that 〈lim G, β, x〉 |= {py ∧ 2nδ(K) : n ∈ ω}
iff for all n, py ∧2nδ(K) is satisfiable in almost all Gm.

Proof. (⇒) Suppose that 〈lim G, β, x〉 |= {py∧2nδ(K) : n ∈ ω} for some x and some
β. Let n be given. Then there exists a q such that Tn+1(x, Gq) ∼= Tn+1(x, lim G).
Hence, for the restriction βq of β to Gq we have 〈Gq, βq, x〉 |= py ∧ 2nδ(K). So,
for each n, py ∧ 2mδ(K) is satisfiable in at least some member of the unravelling.
Now, by Condition 3 of unravellings, Tn+1(x, Gq) ∼= Tn+1(x, Gp) for almost all p.
Hence, py ∧ 2nδ(K) is satisfiable in almost all Gm. (⇐) Suppose that for all n,
py ∧ 2nδ(K) is satisfiable in almost all Gm. By Lemma 5.4, we may assume that
py ∧ 2nδ(K) is satisfiable in some Gp at a point in Gk. Since Gk is finite, there
must be a point x ∈ Gk such that x satisfies for each m the formula py ∧ 2mδ(K)
in Gpm for some pm (under some valuation βm). It is not necessarily the case that
βm+1(px) ∩ Gpm = βm(px) for all x ∈ K. However, by choosing an appropriate
subsequence we get (for infinitely many and so) for each m a model

〈Gpm , βm, x〉 |= py ∧2mδ(K)

and βn(px) ∩ Gm = βm(px) for all x ∈ K and all m, n such that n ≥ m. Put
β(px) :=

⋃
〈βm(px) : m ∈ ω〉. This is a valuation into lim G. Choosing this valuation

we now have

〈lim G, β, x〉 |= {py ∧2mδ(K) : m ∈ ω} .

�

Theorem 5.11. Let G = 〈Gn : n ∈ ω〉 be a finite unravelling of F. Then the
following holds for any finite rooted frame H: either (a) H ≥ Gn for some n, or (b)
H ≥ lim G, or (c) H is not subreduced by G.

Proof. Consider ∆ := {py ∧2mδ(H) : m ∈ ω}, where y is the root of H. (Case 1) ∆
is simultaneously satisfiable in some Gn. Then, since Gn is finite, some generated
subframe of Gn can be mapped onto H, and H ≤ Gn. (Case 2) ∆ is not simul-
taneously satisfiable in some Gn, but every member of ∆ is satisfiable somewhere.
It follows by Lemma 5.10 that every member is almost always satisfiable, and so
there exists a point x ∈ lim G such that ∆ is satisfiable at x in lim G. So, there
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exists a series πm : lim G � H of maps such that πm is m–localic with respect to
x for each m. Now, for each m there exists an infinite subset Nm ⊆ ω such that
πp � Tm(x, lim G) = πq � Tm(x, lim G) for all p, q ∈ Nm. We may choose Nm induc-
tively such that Nm ⊇ Nm+1. Define ρ : lim G � H as follows. If y ∈ Tm(x, lim G)
then ρ(y) := πp(y), where p ∈ Nm is arbitrary. By choice of the sets Nm, this does
not depend on the number p. One easily shows that ρ is m–localic with respect to
x for each m, which is to say that it is a p–morphism. (Case 3) Almost all members
of ∆ are nowhere satisfiable in any of Gn. Then H is not subreduced by G, by the
remarks above. �

Corollary 5.12. Let G be a finite unravelling. Suppose that all Gm are invariant.
Then lim G is invariant as well.

Proof. lim G is an intersection of logics with finite model property, and therefore has
the finite model property as well. From Theorem 5.11 it follows that Th lim G ≥⋂
〈Th Gm : m ∈ ω〉. The latter is invariant, by Lemma 2.6. Now, Th lim G is the

intersection of the logics of all finite frames which are above the intersection of all
Th Gm, but not above any Gm. This is again invariant. �

We shall apply this technique to cyclic frames.

Definition 5.13. A Kripke–frame F is called cyclic if it is not the singleton ir-
reflexive point and F possesses at most two nonisomorphic generated subframes: the
empty frame, and F itself.

The following theorem shows why the name cyclic is appropriate.

Lemma 5.14. Let F be a finite cyclic Kripke–frame. Then F = {ci : i < n} and
� ⊇ {〈ci, cj〉 : j ≡ i + 1 (mod n)}.

Let F be a finite, cyclic Kripke–frame. Then put Uω(F) := 〈ω,J〉, where p J q iff
(a) q = p + 1 or (b) p = γn + j, q = γn + k for some γ ∈ ω and j < k < n such that
cj �ck or (c) p = γn+j, and q = (γ+1)n+k for some γ ∈ ω and k ≤ j < n such that
cj � ck. (Actually, (a) is a subcase of (b).) Set Up(F) := Uω(F) � {0, 1, . . . , p− 1}.

Lemma 5.15. {Up(F) : p ∈ ω} is an unravelling and an L–subreduction of F.

Proof. The proof is a longish verification of the details. We shall only do part of
the work. Clearly, Up(F) is linear for every p ∈ ω, so we need to show only that
we have an unravelling. Condition 1 is obviously satisfied. Condition 2 is also
easy. The unravelling frames are cycle free. For Condition 3 p ≥ m + n is clearly
sufficient. For Condition 4 one only needs to show that there exists a p–morphism
from Uω(F) onto F. But this is easy. Finally, Condition 5. Put k := n, where n
is the size of the cycle. Consider the point j of Uq+n(F) Suppose that j ≥ n, then
Uq+n(F) � j ∼= Uq(F) � j − n, as is easily verified. (The isomorphism is given by
i 7→ i− n.) �

We shall start with the logics of the frames Loopn. We have Uω(Loopn) ∼= 〈ω,J〉
regardless of n, where i J j iff j = i + 1. So, using Uω we cannot discriminate
between any of these loops. Fortunately, we can revise our definition as follows. Let
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U1
ω(F) differ from Uω(F) in that for each i, j such that i J j, the arc 〈i, i + j + n〉

is added. Let U1
q(F) be the subframe of U1

ω(F) of the first q points. It is shown as

above that {U1
q(F) : q ∈ ω} is an L–subreduction of F if F is cyclic. Now consider a

p–morphism π : U1
ω(Loopn) � Loopm. Take a point j. It has two successors, j + 1

and j +1+n. However, π(j) has only one successor. So, π(j +1+n) = π(j +1), for
all j. So we conclude that m ≤ n. (Since π factors through the natural projection,
ρn : U1

ω(Loopn) � Loopn we even have m|n.) So, let Qn := {U1
q(Loopn) : q ∈ ω}.

Then Qn is not a subreduction of any Loopm where m > n. Thus, we have shown
that all loops have different subreduction sequences. A last detail is missing. Let
us note that if a frame has the subreduction sequence {Chq : q ∈ ω} iff it is an
K.alt1–frame, we see that each cyclic K.alt1–frame is uniquely characterized by its
L–subreduction sequence.

Theorem 5.16. Every extension of K.alt1 is invariant.

Proof. We may restrict our attention to –irreducible logics. These are the logics of
the chains, or of the frames Loopp,q := 〈{0, 1, . . . , p+q}, �〉, where i�j iff j = i+1 or
i = p+q and j = p. In our previous notation, Loopn = Loop0,n. We have established
that Loop0,n is invariant for all n. Now observe that Loopp,n is characterized by the
following: (A) its logic is u–irreducible, (B) the largest loop ≥ Loopp,n is Loop0,n,
(C) there are p + 1 many irreducible logics between Loopp,n and Loop0,p, namely all
logics of the form Loopj,n. Now it is not hard to see that also Loopp,n is invariant
for all p and n. �

This does not yet establish that all logics of depth 1 are invariant. But this will
follow from the results of the next section, which are even far more general.

6. Linear Logics

Finally, let us extend the notion of linearity to all finite Kripke–frames in the
following way.

Definition 6.1. Let F be a finite Kripke–frame and x and y points of F. x and y
are called g–equivalent if F ↑ x = F ↑ y. x is of depth 1 if every y ∈ F ↑ x is
g–equivalent with x. x is of depth n + 1 iff for all y ∈ F ↑ x: either y is of depth
n or y is g–equivalent to x. F is of depth n if it has a point of depth n but no point
of depth n + 1.

Definition 6.2. Let F be a finite Kripke–frame. F is linear if for all m and n such
that m ≤ n: if x is of depth n and y of depth m, then y ∈ F ↑ x.

Now we are going to prove that every logic of linear frames is invariant. The proof
will be done by induction on the number of cycles.

Definition 6.3. A cycle is a maximal set of g–equivalent points which is not iden-
tical to a set containing a single irreflexive point. The number of cycles of a given
frame F is denoted by cyc(F).

Consider the frame F. Suppose first that it is generated by x, and that x is
contained in a cycle C. (This assumption shall be retracted later.) We may assume
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that C = {ci : i < n}, where � ⊇ {〈ci, cj〉 : i ≡ i + 1 (mod n)}. Without loss of
generality, x = c0. We construct the following frames.

U(F) := 〈U(F ), �U〉
V (F) := 〈U(F ), �V 〉

Here,
U(F ) := n× {0} ∪ C × ω × {1} ∪ (F − C)× {2}

The relations are defined as follows.

�U :=



{〈〈i, 0〉, 〈i + 1, 0〉〉 : i + 1 < n}
∪ {〈〈i, 0〉, 〈ci, 0, 1〉〉 : i < n}
∪ {〈〈ci, j, 1〉, 〈ck, j, 1〉〉 : i < k, ci � ck}
∪ {〈〈ci, j, 1〉, 〈ck, j + 1, 1〉〉 : ci � ck}
∪ {〈〈ci, j, 1〉, 〈x, 2〉〉 : ci � x}
∪ {〈〈x, 2〉, 〈y, 2〉〉 : x � y}

�V := �U ∪ {〈〈i, 0〉, 〈ci, j, 1〉〉 : i < n, j ∈ ω}
To give an example, consider the following frame. (Here, • denotes an irreflexive
and ◦ a reflexive point.)

•
a

-◦
b

-� •
c

-◦
d

Then U(F) has the following form (where c0 = a, c1 = b).

• -0,0
?

•1,0
?

• -a,0,1

�
• -b,0,1

6

?
��

���
��*

• -a,1,1

6
• -b,1,1

6

?

-

• -a,2,1

-
•b,2,1

HH
HHH

HHY

-

. . .

• c,2

6
◦ d,2

The frames Up(F) and V p(F) are obtained from the frames U(F) and V (F) by
restricting the set of worlds to the set n × {0} ∪ C × p × {1} ∪ (F − C) × {2}.
Further, we let U−k(F) (and V −k(F)) denote the subframe obtained by removing
the points 〈i, 0〉 for all i < k. It is clear from the results of the previous section
that Up(F) subreduces U(F) and V p(F), since they are unravellings. Moreover, for
a finite rooted G, by Theorem 5.11, G is subreduced by {Up(F) : p ∈ ω} if (1)
G ≥ Up(F) for no p ∈ ω, and (2) G ≥ U(F).

Notice that cyc(Up(F)) = cyc(F) − 1. We shall investigate the logics of finite
frames that are subreduced by Up(F) and V p(F).

Definition 6.4. Let S(F) be the set of finite I–frames subreduced both by {Up(F) :
p ∈ ω} and {V p(F) : p ∈ ω}.



Invariant Logics 23

S(F) is a convex subset of 〈I,≤〉.

Lemma 6.5. Suppose that G ∈ S(F) is generated by a cycle. Then G has infinite
dimension in S(F).

Proof. First, notice that G is not isomorphic to a proper subframe of F. Otherwise
we have G ≥ Up(F), V p(F) for all p even, and so neither {Up(F) : p ∈ ω} not
{V p(F) : p ∈ ω} is a subreduction of G. Consider the following frames. T k(F) :=
〈T k(F ), �k〉, defined by

T k(F) := C × k ∪ (F − C)× {k}

�k :=


{〈〈ci, j〉, 〈ci′ , j + 1〉〉 : ci � ci′ , j + 1 < k}

∪ {〈〈ci, k − 1〉, 〈ci′ , 0〉〉 : ci � ci′}
∪ {〈〈ci, j〉, 〈ci′ , j〉〉 : ci � ci′ , i < i′}
∪ {〈〈ci, j〉, 〈x, k〉〉 : j < k, ci � x}
∪ {〈〈x, k〉, 〈y, k〉〉 : x � y}

Take the generated subframe U−n(F) of U(F) consisting of all points with last
component 1 or 2. This frame is isomorphic to the generated subframe V −k(F)
of V (F). This frame can be mapped p–morphically onto T k(F). (Namely, put
π(〈x, 2〉) := 〈x, k〉, and π(〈ci, λk + q, 1〉) := 〈ci, q〉, q < k.) Hence, T k(F) is subre-
duced by both sets, and is a member of S(F). Now, T k(F) ≤ T k′(F) if k is a multiple
of k′. (Again, there is a p–morphism from the latter onto the former.) This shows
the claim. �

Lemma 6.6. Suppose that G is a minimal member of S(F). Then G is a p–morphic
image of U(F) (and V (F)), and F a generated subframe of G.

Proof. Now, first of all, G is not generated by a cycle, by the previous lemma.
Moreover, jus as before, G contains a full copy of the frame F � (F − C). We have
G ≥ U(F) as well as G ≥ V (F). So we must have p–morphisms π : U−k(F) � G
and ρ : V −k(F) � G for some k < n, by these assumptions. Clearly, by minimality
of G, k = 0. Consider now the point 〈k, 0〉. In the first frame it sees at most two
points, in the latter infinitely many. It follows that ρ(〈ck, λ, 1〉) = ρ(〈ck, µ, 1〉) for
all λ, µ ∈ ω and for all k < n. Hence, there is a cycle isomorphic to C. This cycle
generates a frame isomorphic to F, since we have assumed that C generates F. �

Unfortunately, G is not isomorphic to F. Therefore, we must perform some com-
plex reasoning. Let lc(F) be the size of the cycle of largest depth in F (if that exists;
otherwise, this number is zero). We show by induction on cyc(F) and lc(F) that F
is invariant.

Theorem 6.7. Let F be a linear frame. Then F is invariant.

Proof. The proof proceeds by induction on cyc(F) and lc(F). The claim proved
inductively is the following.

(‡) Let p and q be natural numbers. Th F is invariant for all frames
F such that
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(1) cyc(F) < p or
(2) cyc(F) = p and lc(F) < q

Put 〈p, q〉 � 〈p′, q′〉 if (i) p < p′ or (ii) p = p′ and q < q′. We show that the claim
holds for 〈p∗, q∗〉 provided that it holds for all 〈p, q〉 � 〈p∗, q∗〉. The induction starts
therefore with 〈0, 0〉. By invoking Theorem 4.13 we know that (‡) holds for 〈1, 0〉.
Notice that if (‡) holds for all 〈p, q〉 such that p < p∗, then it holds for 〈p∗, q∗〉, by
virtue of its definition. Hence, we only need to prove the step from 〈p, q〉 to 〈p, q+1〉.

Let F be given, with cyc(F) = p and lc(F) = q. We first consider the case where
F is generated by a cycle. Consider the frame G which is minimal in S(F). By
Lemma 6.6, we know that F is a generated subframe of G. Let C be the leading
cycle of F, F◦ := F � (F − C). By induction hypothesis, F◦ is invariant. Let H be
the least frame ≥ G that has infinite dimension in S(F). We know that H < F◦ and
that H > G. Hence, as is easy to see, H ∼= F. So, F is invariant.

Now we consider the case where F is not generated by a cycle. Let C be the
cycle of largest depth, D the largest generated subset of F not containing C, and
A := F − (C ∪D). Then define the following unravellings. Put

X(F) := 〈U(F ), �X〉
Y (F) := 〈U(F ), �Y 〉

�X :=


{〈〈y, 0〉, 〈ci, 0, 1〉〉 : y � ci, y ∈ A}

∪ {〈〈ci, j, 1〉, 〈ci′ , j + 1, 1〉〉 : ci � ci′}
∪ {〈〈ci, j, 1〉, 〈ci′ , j, 1〉〉 : ci � ci′ , i < i′}
∪ {〈〈ci, j, 1〉, 〈y, 0〉〉 : ci � y, y ∈ D}
∪ {〈〈x, 0〉, 〈〈y, 0〉〉 : x � y, x, y ∈ A ∪D}

Further, let
�Y := �X ∪ {〈〈y, 0〉, 〈ci, j, 1〉〉 : y � ci, j ∈ ω}

These define unravellings in the natural way, by restricting to finite parts of the un-
ravelled cycle. These frames have one cycle less than F, and therefore the induction
hypothesis applies to them. This means that they are invariant. Consider the set of
frames subreduced by both sets. Denote this set by T(F). By analogous reasoning
we find that T(F) has no elements of infinite dimension. Consider a minimal element
M in T(F). M must contain the set A. So it is a p–morphic image of X(F) and
Y (F). Hence, it is obtained from these frames by squashing the set C × ω× {1}. It
is now easy to see that M ∼= F. �

Corollary 6.8. Every logic determined by finite linear frames is invariant.

Since every extension of S4.3 has the finite model property, we have the following
result.

Corollary 6.9. Every extension of S4.3 is invariant.

7. Conclusion

Continuing the research of [2], where it was established that all extensions of S4.3
are invariant under the automorphisms of the lattice NExtS4, we have shown here
that they are invariant under all automorphisms of NExtK. In contrast to that, the
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lattice NExtK.alt1 was shown in [2] to have 2ℵ0 automorphisms, but here we have
established that only the identity extends to an automorphism of NExtK, since all
extensions of K.alt1 are invariant. Although this is just a very modest beginning, the
present paper shows that completely new techniques must be developed in order to
obtain the results. We believe that it can be established with the present methods
that all d–homogeneous frames are invariant, and that the unravelling technique
allows to extend this result even further. With respect to P–frames in general our
intuitions are not so well developed yet.
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