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A. The present paper is the result of a long struggle to understand
how the notion of compositionality can be used to motivate the structure
of a sentence. While everyone seems to have intuitions about which pro-
posals are compositional and which ones are not, these intuitions gen-
erally have no formal basis. What is needed to make such arguments
work is a proper understanding of what meanings are and how they can
be manipulated. In particular, we need a definition of meaning that bans
all mentioning of syntactic structure; it is not the task of semantics to
state in which way things are put together in syntax. The present paper
presents such a theory of meaning. This, in tandem with some minimal
assumptions on the syntactic process (that there can be no deletion) yield
surprisingly deep insights into natural language. First, it rehabilitates a
lot of linguistic work as necessary on semantic grounds and defends it
against potential claims of redundancy. For example, θ-roles and linking
are an integral part of semantics, and not syntax. To assume the latter is
to put the cart before the horse. Second, as a particular example we shall
show that Dutch is not strongly context free even if weakly context free.
To our knowledge, this is the first formal proof of this fact.

In memory of Kees Vermeulen (1966 – 2004)

This paper has been presented first at the 9th South Californian Philosophy Meeting in
November 2004. The ideas go a long way back. My deepest intellectual credits are to
Albert Visser and Kees Vermeulen. They have opened my eyes to the fact that indices
are not what we really really want. Unfortunately, Kees cannot see the fruit of our long
conversations in 1991/2 when I was a visitor at the philosophy department in Utrecht.
His untimely death leaves a gap no one can fill. I will try my best to give credit to his
contributions to semantics and continue where he had left things. I have toyed the idea
of performing the elimination of indices for a long time without major success. I was
unable to see what to put in their place. The present paper tells me why this was so.
What unfolded in front of my eyes was a maze of technical apparatus that is needed in
order to push through. I have no regrets; I think the work had to be done. In the process
of getting my ideas out, I had the benefit of help from Hans-Martin Gärtner, Ben Keil,
Greg Kobele, Ed Keenan, Philippe Schlenker, Marcus Smith, Dominique Sportiche, and
Ed Stabler. Needless to say they might not share my views on the matter and thus should
not be held accountable for what I say in the sequel. The responsibility is entirely my own.
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1. I

By and large, language presents itself to us in the form of strings of
sounds (or letters). Yet, linguists of all persuasion have argued that there
is evidence for more structure than meets the eye. There are what we call
constituents. There are two types of definitions that are being given for
constituent: one is syntactic and the other is semantic. In structuralism,
a constituent is defined syntactically, via the notion of substitutability in a
context. On the other hand, constituents do seem to have meaning, while
nonconstituents very often do not. This opens the way to define constituents
as semantically meaningful substrings.1 The idea of compositionality is
based on these ideas in the following way. Let’s assume the right model of
syntax is a context free grammar. This means that it is described by means
of context free rules like (1).

(1) S→ NP VP

As a claim concerning the generated string language it says that if a given
string ~x is an NP and ~y is a VP, then the string ~xa�a~y is (among other things)
an S.2 If we assume compositionality, then we additionally claim the follow-
ing: there is a function F such that if M is the meaning of the NP ~x and N
is the meaning of ~y then F(M,N) is the meaning of ~xa�a~y. Montague was
the first to work this idea out for linguistics. Following Frege he assumed
that for F one basically has only one choice: function application. To ex-
plain this further: in his grammar, if we can form a constituent from two
parts, the meaning of one of them is going to be a function that can take the
meaning of the other as its argument. Since the context free rules encode
order as well, and since the VP may be either to the right (as in English) or
the left, it will turn out that we either have to apply the meaning of the left
hand constituent to that of the right hand constituent, or that we have to do
the converse.

With the introduction of Montague Grammar, the notion of composition-
ality was put into the spotlight. But what does it actually mean? It is usually
defined like this: the meaning of a constituent is a function of the meaning
of its immediate parts, the function being determined by the mode of com-
position. Notice that it says “meaning of the parts”, so it presupposes that
the parts do have meaning, and that this meaning is there to begin with. We
are not free to introduce new meanings to hitherto unknown parts. The parts

1I am tacitly assuming that constituents are continuous; I am doing this only for expos-
itory purposes.

2We use a to denote string concatenation and � for the blank. We distinguish plain
concatenation ~xa~y from word concatenation ~xa�a~y. This is not an accurate assessment of
the orthographic facts; it only serves to remind us that on the side of strings even in context
free grammars there is not just concatenation.
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that are used in the course of this “composition” are the constituents men-
tioned above.3 So, compositionality says that constituents are those parts
that are used in the derivation of the meaning. In [28] (see Sections 3.1 and
5.7) I have spent considerable energy in pinning down in more detail what
the principle actually says and what it does not say. Part of this is repeated
below. I assume that language is a set of signs, consisting of a phonologi-
cal representation (here: a string or a sequence thereof), a category, and a
meaning. There is a restriction on the syntactic side: you are not allowed
to destroy anything, and any string that you have formed on the way must
be a substring of the entire string you are analysing. I do allow for empty
strings; there are invisible signs, so to speak.

One problem that I have not addressed previously was: what are mean-
ings? This question seems to be a hopeless one, and I am not pretending to
have a definitive answer. Instead, I shall propose a few things that I claim
do not get represented at all in semantics. These are the following:

(a) indices,
(b) order, and
(c) multiplicity.

As for indices, I propose that semantics has no notion of index in the sense
of logic. Thus there are no variables x8, x1043 or the like; the only existing
things are what is called anonymous variables in computer science. In or-
der to access a location where information on an individual has been stored
you have to describe where to find it, or say what it contains. This idea
has been proposed by Albert Visser and Kees Vermeulen in several papers
(see [42, 43, 44]), and by Kit Fine ([13]). Their solutions differ (and mine
is still different), but we all agree that for the purposes of communicating
meanings there is no such thing as x76. Syntax may tag indices onto syn-
tactic items but semantics will pay no attention to them. This thwarts any
hopes of executing the program [23] without an additional layer that trans-
lates indices into something more useful for semantics. Kees Vermeulen
has introduced referent systems in [43] to supply such a layer. Referent
systems have anonymous variables but you can access the location by using
specially designed names. While the referent system may (or may not) use
variables in the usual sense, it does not show them to you. All you can do is

3Just as an etymological remark: compositionality has the Latin words con ‘with’
and ponere ‘to put’ in it. It actually also says that the meaning of the object is obtained
by actually forming constituents and accompanying this with a formation of the associated
meaning. This means that the accounts of semantics favoured in the Minimalist Program,
which assume that meanings are computed at LF by induction on the structure, are not
compositional in this sense. Yet they are subject to the structural constraints of composi-
tionality. More in Section 20.
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use names to call them. These names are agreed on beforehand (for exam-
ple, ‘subject’, ‘object’, or ‘nominative’, ‘accusative’ etc.). This system also
does away with the second complaint, the problem of order. In referent sys-
tems, the fact that underlyingly predicates are sets of n-tuples does little to
help you find the linking of the arguments to the positions in the sequence.

My only worry about referent systems is the fact that they are not com-
positional. The names are something that has no meaning (or need not
have any). They constitute an interface between syntax/morphology and
semantics, an interface in the true sense of the word.4 They were designed
to link argument positions to slots in the predicate. To achieve that they
use morphological properties (cases, grammatical relations) and link them
with variable names. It is this point where the present investigation took its
beginning. In order to have a truly compositional semantics, the lexical rep-
resentations have no place for an interface. Syntax should be autonomous,
and so should be semantics, by compositionality. Semantics should only
contain meaning. Or rather: it should only contain truth-conditions.5 What
followed were attempts to remove any excess information that standard
predicate logic provides over truth conditions. The concerns that our no-
tational systems are less than adequate are not new. Quine, speaking about
linear notation of sets once used the phrase “excess of notation over subject
matter”. The string {∅, {∅}} involves two token inscriptions for the empty
set where there is only one empty set to begin with.6 Kit Fine (p.c.) in
connection with variables said that the standard semantics is not “alphabet-
ically innocent”.7 For the purposes of meaning it should not matter what
you called the variable; the only thing that matters is that you have dis-
tinct names for distinct variables. This is implemented below in a particular
way. What it effectively says is that semantics ignores particular names for
variables as “excess information”.

All these measures take care of (a) and (b). A last loophole to be closed
is that of multiplicity. DRT makes use of condition such as x6 � x75. In

4Also, the names could in principle be anything. There is no limit on how many names
you use. This allows to replicate indices of predicate logic.

5To prevent confusion I should stress that I am not advocating a specific semantics.
Many cognitive grammars contain visual representations (see in particular [30]). But the
contrast between a visual representation and one in terms of formulae (or graphs) is purely
one of surface appearance. Even a cognitive linguist will admit that the representations
have content that can be checked against reality. It is this content that I wish to tease out
here. In that sense the ‘concepts’ that will be defined below despite looking like formulae
from predicate logic are in substance much more like the structures found in [30].

6I owe this quote to Hans-Martin Gärtner, who has made that point for syntax in [15].
7This phrase he used in a lecture at UCLA explaining his [13]. The paper does not seem

to contain that rather apt expression, though.
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[23] and similar proposals they are used in an essential way, namely to link
meanings to each other. Names of variables are global, they are used by the
assignment function. In this interpretation, x6 � x75 is not vacuous; it says
that your assignment gives the same value to x6 and x75. However, what I
fail to see is how they enter the picture in the first place. What is it in the
meaning of a verb, say see, that allows to actually link a variable, say x6, to
the subject? In DRT, all you can do is use a special variable for the subject,
say x1, which is linked to x6 in interpretation (either by renaming or by
adding the equation x1 � x6). Once the sentence is complete, it expresses a
fair amount of conditions on specific variables. It is these conditions whose
reality I fail to see. What is the precise contribution of x6 � x75 in the DRS
of a given sentence? If you can rename variables (as I propose) it would
mean the same as x98 � x101 if you are allowed to map, say, x6 to x98 and
x75 to x101. So far there is nothing to prevent you from inserting equations.
Thus, just like ϕ ∧ ϕ, the iteration of a variable under a different name is
simply excluded (or rendered meaningless).

Thus we arrive at a particular version of meaning where you cannot give
particular names to variables, and you cannot give different names to the
same object. Once we have come this far, we turn around and ask: how must
language be like if it is compositional and uses these kinds of meanings?
This question, I think, is a very natural one, so natural that it makes me
wonder why virtually no one is concerned about it. One interpretation is
that up until now the question could not be meaningfully asked. There was
no satisfactory notion of semantics that would allow to draw conclusions
of that sort. I am inclined to think that there is an additional deeper reason:
linguistic training mostly involves learning to think in terms of syntax—as a
consequence few have reliable intuitions about meanings and they have also
been told that it does not matter. (Well, metamathematics with its talk of
inscriptions has had its hand in there, too.) Folklore says syntax has a mind
of its own, and does not need semantics. I wish to add here: the same goes
for semantics! I agree that semantics is not what Montague Grammar makes
us believe it is—and I shall give arguments in that direction below. But I
do not agree that sentence structures cannot be motivated from semantics.
Even if we grant that syntax has its own way, the fact that at the end of
the day we want to communicate certain meanings will put pressure on
language to put up with the requirements of semantics. In other words:
both syntax and semantics will have certain intrinsic properties, and they
will conspire to produce the systems that we call natural languages.

Be this as it may, the present paper will show that many features of nat-
ural language are rooted in certain constraints that originate not in syntax,
but in semantics. It will show that simply because semantics is weaker than
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we originally thought, it needs syntax to schedule the composition of con-
stituent in such a way that semantics with its limited capacity is actually
able to come up with the right result.

2. S S

Let us return to the idea of strings and constituent structure. An over-
whelming majority of syntactic theories start with the following assump-
tion: a constituent is a substring of the given string, and constituents are
in general formed from two strings by concatenation. I call this syntactic
locality. I stress outright that this is an assumption we make, and it is—I
think—a reasonable one. An underlying rationale for positing this restric-
tion might be the following. Constituents have meaning; on the assumption
of compositionality, the meaning of the next higher constituent is formed
from the meanings of its parts. Thus, the meanings of the parts are engag-
ing in a process of some sort. From the standpoint of the hearer, s/he needs
to figure out which of the parts of a sentence are constituents and which
ones are not. The idea is now that the closer a string is to the other, the
closer the connection. Closeness indicates relevance. The closest you can
be is be adjacent. Thus, we expect a constituent to be adjacent to the one
with which it forms the constituent next up in the tree.

The trouble starts at two points, actually. First, notice that for any given
constituent, if it is a mere string, it only has two points where a constituent
can be joined. A ditransitive verb thus poses a dilemma for its three ar-
guments; at least one of them cannot be adjacent. (Imagine having three
children: with only two hands you have trouble holding each of them by
the hand.) Many grammatical theories welcome this on the grounds that the
ditransitive does not seek its arguments at once; it will accept them only
one by one. Each time it does, the next argument has two places to choose.
They will deny that in

(2) John calls Harry an idiot.

the phrase an idiot enters into a constituent with the verb; rather, it en-
ters into a constituent with calls Harry.8 This argument rests on the idea
that the notion of calling [someone] an idiot has no linguistic home. You
may think about such a concept, but syntax will not allow you to pronounce
it without first filling the argument slot of the direct object. I have met
this kind of reasoning a lot; some would think that there is no sense to the
thought in the first place. If you can’t say it it does not exist. I find that
simplistic. There certainly is a notion of insulting. It means, well, to throw

8Or they will claim that at another level it forms a constituent calls an idiot. But
that does not make a difference, the problem is the same at that level.
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bad words at someone—for example, by calling him an idiot. You are cer-
tainly able to think of the notion of spitting out bad words without asking
who is addressed. There is also a way to put this into words: to swear,
or to issue an insult. As far as I can see this is not syntactically defi-
cient, so it ought to exist. Any semanticist believing in Montague Grammar
should actually agree: it just takes applying some combinator shuffling the
argument places and the concept is there.

Now, as a matter of fact, word order in natural languages is a tricky mat-
ter. Things do not work out in the way sketched above. In a topicalised
sentence, for example, the object is at the left edge of the sentence, so if
adjacency is to hold, it is the subject that forms a constituent with the verb.
Different scenarios have been developed. We may allow the verb to change
its meaning so as to accommodate the subject before the object. The draw-
back of this solution is that it does not tell us why we do not do that when
the object is right adjacent to the verb. We may however admit that latter
option too. At that point we have given up on the motivating story above.
The second scenario is to give up adjacency and make discontinuous con-
stituents a first class citizen. It is this option that I favour. The third option
is by far the most popular. It is to assume locality at some other level, and to
assume that there are structural operations that may change the arrangement
of constituents. This is the story of transformational grammar.9

3. T

In particular, within transformational grammar, arguments have been pre-
sented to show that the syntactic structure of sentences is quite complex:
they are generated in a two-layered process, the first of which establishes a
basic structure, where the function-argument relation is established and the
second rearranges the elements into their surface position. This theory has
a lot to recommend itself. I mention only the fact that it explains the syntax
of questions in English rather well. All we have to assume is that first we
generate the question as if it were an assertion and then front the auxiliary
and finally the question word.

you have seen the movie with whom?(3)
with whom have you seen the movie?(4)

9Recent developments within the Minimalist Program suggest a rapprochement between
these views. The idea of sideward movement is effectively a way to reconcile the need for
locality with the desire not to insert an element early into a structure. The connection
between sideward movement and the tuple based syntax that I favour has been worked out
in detail by Ed Stabler, see [39, 40].



8 MARCUS KRACHT

At the beginning of the inception of transformations by Zellig Harris, they
were claimed to leave meaning invariant. Later this position was aban-
doned. Moreover, transformations were included into the generative proce-
dure for sentences. Chomsky argued that transformations existed because
of a need to render a logically correct structure into one which conforms
to the surface laws of language. For example, in the above case there is a
condition of English that requires at exactly one question word to appear
at the beginning of the sentence. Moreover, there is another condition that
requires the auxiliary to be in second place. Therefore, even though (3) is
formed according to the typical grammar (subject-verb-object), the partic-
ular requirements of English require a repair which is offered by moving
certain parts to the left. Eventually, one reaches (4), which conforms to the
laws of English surface syntax.

At times it has also been argued that a particular syntactic analysis is
needed because without this assumption the sentence would not be inter-
pretable. In the present version of the transformational theory, the Mini-
malist Program, no assumption of that sort is made. Syntax projects deep
structures and goes through a cycle of transformations, which eventually
yield a surface string and a logical or semantic representation. This latter
architecture if correct leads to a scenario where interpretation can be com-
positional only at LF. Compositionality however requires to build meanings
in tandem with structure; for the purposes of MP we have to pretend the
structures of LF are assembled in the obvious way. I will return to the via-
bility of this approach at a later stage in Section 20.

Here I will discuss some foundational issues of the program itself. At
its earliest stages, transformational grammar was heavily based on string
rewriting, though it always assumed a structure to go with it. This has meant
that a crosslinguistic rule of passivisation could not be formulated, because
the surface realization of passives were too diverse to be captured by string
rules. This led to the birth of relational grammar (see [34, 35]). For a while,
transformation grammar, then known under the name GB, eliminated order
from syntax. Later, with antisymmetry hypothesis by Kayne ([24]), order
was paired with structure so that effectively it was put back into syntax.
Now however it imposed a rather quirky structure on syntax, because linear
order had to be recoverable from c-command. The price to be paid was the
postulation of an armada of new constituents which eventually rendered the
relation between deep structure and surface structure completely opaque.
The theory culminates in the claim that all languages have the same deep
word order, head medial, a claim for which no independent evidence ex-
ists. Not everyone agrees, though, that this is a correct assessment, see for
example [16, 17] for the claim that SOV must be included in the list of fun-
damental orders. Of course, it may be said that the refutation of Kayne’s
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thesis is a theory internal matter, so it does not make sense to ask for moti-
vating evidence in the first place. I will not even bother to dismantle such
claims.

Another consequence of Kayne’s theory was this. The newly postulated
constituents had to have labels to make their assumption reasonable for a
linguist. If one looks at the labels one is struck by the fact that they are
exclusively semantic in nature: negation, aspect, tense, distributivity and so
on figure in the names of these categories. What is more, in an extensive
study of the order of adverbials [4], Cinque not only proposes that the order
is more or less fixed by their semantic type, but also proposes that this is ba-
sically due to syntactic constraints. I do not dispute his claims; I only point
out that what the theory does not explain is why the adverbials come in the
order they do.10 It is precisely the Prague school, in the notion of commu-
nicative dynamism (see for example [14]), which has long ago addressed
the issue, claiming that the order is motivated by communicative/pragmatic
constraints. If that is so, we ask: how come syntax mirrors the extrinsically
motivated order if the labels for the constituents are purely abstract? How
come a negative word such as not will actually ever originate in NEG0 if
syntax does not know what all these things mean?

The predicament is I guess a very real one. On the one hand syntax is
claimed to be abstract, on the other hand we use semantic terms to identify
syntactic labels, so that we have celerity aspect phrases (for the adverbial
constituents denoting speed), durative aspect phrases (for the constituents
denoting or qualifying an ongoing action) and so on. The crosslisting of
semantic categories in syntax should raise doubts as to whether the expla-
nations are syntactic in nature. What is at stake, then, is not the validity of
the observations concerning the surface order but the arguments that relate
them to syntactic structure.

4. M G

In semantics, an analogous confusion can be noted. Many semantic the-
ories (not the least Montague’s own) import syntactic notions in order to
get the mechanics of meaning right. For example, in Montague Grammar
a transitive verb such as see is translated into a typed expression that con-
sumes first the object and then the subject. Thus, given that the only rule
of combination is function application and that this in turn is paired with
concatenation, the constituent structure that emerges is [S [V O]], order
irrelevant. For a language like Gaelic, which has (in part) VSO order, the

10Another point that needs to be raised is why it is that adverbials are not moved while
DPs are. ([4] uses this so that he can use surface order as a diagnostic instrument for deep
order.) I do not know of a syntactic argument why this is so.
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needed constituent cannot be formed. At the heart of this failure is the
notion of Currying a function.11 Even if a predicate actually needs two
arguments at once, we shall turn it into a function that will take them one
at a time. This is the same idea that we talked about earlier in connection
with ditransitives: we claim that some arguments actually do not enter into
a constituent with the head alone, but with the head plus some argument
slots already filled. The problem with this solution is again a foundational
one: if the predicate is first, and the Currying comes later, who decides in
which way to Curry the function? This is the question that Dowty raised in
[5]. However, what he did not talk about was the other question: how do
we get from the predicate to its Curried equivalent? Suppose you call your
meaning see′(x6, x75). Then you abstract the object by abstracting over x75;
you abstract the subject by abstracting over x6. Thus we get the following
two Curried versions:

(5) λx75.λx6.see′(x6, x75), λx6.λx75.see′(x6, x75)

Now assume, as I do, that there is no way to point at variable names di-
rectly. Then you have to give me a way to identify the subject and object
independently of the way they have been called. (This is quite reasonable
as the variables you use to store the concept may be different from mine.
Yet, we should get the same function in the end.) If that can be solved,
however, we may ask: what is the need of function abstraction in the first
place? The need arose in the first place because one sought to follow Frege
in assuming that syntactic juncture is accompanied by function application.
But was he right? He said the predicate is unsaturated; you needed to fill
in a subject to obtain a complete thought. I ask: why is see not a complete
thought?12 My answer is: because syntax makes us think that way. I may
think: there is music in the hallway, because I hear that someone is singing
“Sweet Georgia Brown”. What is my thought? Should it be (6), or (7)? Or
rather (8)?

Someone is singing “Sweet Georgia Brown".(6)
There is singing of “Sweet Georgia Brown".(7)
I hear a song. It’s "Sweet Georgia Brown".(8)

Anyone wishing to persuade me that the thought of (7) without the accom-
panying thought of someone actually singing “Sweet Georgia Brown” is

11Another escape hatch is to relax constituency; I have proposed this in [28]. Effectively,
this move will be made below. It does not solve the principled problem that we discuss
here, though.

12Probably, if we were Japanese speakers we would not think that way. My hunch is
that the theory too easily follows the lead of one’s own language. Might that also hold for
the debate between SVO and SOV?
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incomplete will have to claim that there are sentences which express in-
complete thoughts. But they may actually be true or false in the same way
(6) may be true or false. So who is to decide?

Actually, I doubt very much that many semanticists really care about
Frege’s worries. For them, the typed λ-calculus provides a convenient way
to write down meanings. What it does for them is what I call variable ad-
ministration. Even though I am convinced that it is not the best way to use it
for, there are more substantial arguments against the adoption of λ-calculus.
Suppose namely that meanings are Curried functions. Then the notion of
an object, say, can be defined purely on the basis of the type. The Curried
function projects a syntactic structure that makes the object of the verb its
sister. (This is reminiscent of Chomsky’s definition of the term subject and
object.) This means that there is nothing left to explain. The fact that, for
example, the more agent like argument ends up in subject position is a nice
thing to have, but it is simply a regularity of the lexicon that may or may not
be there. Given that there seem to be cognitive roots for this phenomenon
we seem to miss a generalisation here. The meanings do not put pressure
on the system to arrive at a consensus about the assignment of argument
roles. As far as the λ-calculus is concerned, it’s all the same. Also, notice
that languages will not have both a relation and its converse in the lexicon
(apart from spatial relations, that is). For example, there is no basic verb
that means “to be taught by” in English and any language I know of. From
the standpoint of λ-calculus this is an unexplained coincidence, for on other
occasions we do seem to find words whose meanings could be derived from
other word meanings (like causatives; actually “teach” may be analysed as
“to make learn”, just like the textbook causative “to kill”, analysed as “to
make die”, and so on).

Another thing that has no home in Montague and Categorial grammar is
agreement morphology. In a language like Latin, where cases signal argu-
ment status, cases are vital in assuring the correct linking in presence of
free word order. Both Montague Grammar and Transformational Grammar
pass this problem with silence: the derivation does not need this informa-
tion. The problem is not that morphology cannot be added; the problem is
that it appears to be unmotivated to begin with. This in turn is due to the
fact that both theories assume that everything starts with syntactic structure.
Once we have stripped off the additional layer of Currying, however, things
start to look somewhat different. Then we must seriously ask the question
that we have so far covered up: how is the linking of argument places in
the head with syntactic arguments actually carried out? Again, if we do
afford the luxury of variable names, this can be made a trivial matter of just
adding some predefined identity statement. Once we remove that we begin
to see why languages are the way they are: because they are blindfolded!
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They cannot see all these things theory makes us believe are there. If we
assume predicate logic to start, then we need a theory of which abstraction
is applied first. There is none that I know of.

5. D

To make the presentation focused, I shall present a particular example.
The order of words in Dutch in infinitives is markedly different from that of
English.

Ik zei dat Jan Marie Hans het kind zag laten leren(9)
zwemmen.

I said that Jan Marie Hans the child saw let teach swim
Ich sagte, dass Jan Marie Hans das Kind schwimmen(10)

lehren lassen sah.

I said that Jan Marie Hans the child swim teach let saw
I said that Jan saw Mary let Hans teach the child(11)

to swim.

As can be gleaned from the word to word gloss, the order of the verbs in
Dutch is the same as that of English. In German, on the other hand, it is
inverted. Rather than saw-let-teach-swim we have swim-teach-let-saw. The
fact that we use embedded that-clauses only has to do with the fact that main
clauses have different word order in both Dutch and German, a fact that we
shall ignore by turning to the analysis of just the subordinate clauses.

It is not hard to see that the English sentences can be produced by the
following grammar.

S[−i]→ NP VP[−i]
S[+i]→ NP VP[+i]

VP[−i]→ VR[−i] S[+i] | VB[−i]
VP[+i]→ VR[+i] S[+i] | VB[+i]

NP→ Jan | Marie | Hans | the child
VR[+i]→ see | let | teach
VB[+i]→ swim
VR[−i]→ saw | let | taught
VB[−i]→ swam

(12)
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Likewise, the German sentences can be generated by the following gram-
mar:

S[−i]→ NP VP[−i]
S[+i]→ NP VP[+i]

VP[−i]→ S[+i] VR[−i] | VB[−i]
VP[+i]→ S[+i] VR[+i] | VB[+i]

NP→ Jan | Marie | Hans | das Kind
VR[+i]→ sehen | lassen | lehren
VB[+i]→ schwimmen
VR[−i]→ sah | ließ | lehrte
VB[−i]→ schwamm

(13)

Apart from the actual words that get inserted, the difference is in the third
and fourth row: the verb follows its sentential complement rather than pre-
ceding it.

Both grammars are context free: they generate the sentences by starting
with the string S[−i] through successive replacement of one token by the
right hand side of a rule (if there is a | there is a choice between the item to
the left of the slash and the one to the right), until no more replacements are
possible. The grammar assigns structure to the strings in an obvious way.
If the process replaces the symbol X by the string ~x then the occurrence of
~x is taken to be a constituent of label X. The labels are otherwise arbitrary.

We now ask: is there a grammar that generates the sentences of Dutch?
At first glance the answer seems to be yes. Just choose

S[−i]→ NP VB[−i] | NP VP[−i]
VP[−i]→ S1[−i] VB[+i]
S1[−i]→ NP VP1[−i]

VP1[−i]→ S1[−i] VR[+i] | NP VR[−i]
NP→ Jan | Marie | Hans | het kind

VR[+i]→ zien | laten | leren
VB[+i]→ zwemmen
VR[−i]→ zag | liet | lerte
VB[−i]→ zwam

(14)

This grammar generates the Dutch as if it was German, only that the finite
verb is placed at the beginning. There is wide consensus that this gram-
mar assigns incorrect structures to the Dutch sentences. To wit, [21] has
argued that the structures are incorrect, if we assume that selectional re-
strictions (subject is animate or not) are actually syntactic in nature. For
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then it can be shown that the association between subjects and their verbs is
grammatically relevant. If this can be made manifest in terms of syntactic
marking, then that constitutes a proof. This has been the source of the proof
by Shieber ([37]) that Swiss German is not context free. However, Huy-
bregts himself was not at ease with this type of argument because he felt
that the restriction was rather of semantic nature. Thus, it remained open
whether or not Dutch must be seen as syntactically context free. What I aim
to show here is that such worries are orthogonal to the linguist’s question of
what the appropriate structure for Dutch should be. Here, namely, we feel
compelled to recognise the cross serial dependencies as syntactically real.
To make such an argument, however, requires a number of assumptions,
which I shall clarify below in Section 18.

Standardly, linguists are likely to use their instinctive syntactic analysis
as a basis of judgement. The problem however is that this line of thinking
does not take us very far. First, there are languages spoken in Australia
which are said to have very free word order. Although not totally free (typ-
ically clauses present a constituent boundary), the order may be virtually
free within a single clause of several constituents. This has prompted the
claim that these languages are actually of a totally different syntactic type
(nonconfigurational). What is of interest here is the fact that these lan-
guages allow to disrupt the continuity of constituents to a degree deemed
impossible by a speaker of a Western European language. Yet these lan-
guages are perfectly intelligible. In [8], together with Christian Ebert I
have given a semantic account of them in terms of this nonconfigurational
structure, which is computationally even simpler than Montague Semantics.
Therefore, the mere instinct that free or alternative word order is impossi-
ble is not enough to exclude a given syntactic analysis. What we need is
a proof. We shall provide such a proof below. Certainly, it is a proof only
inasmuch as you believe my story and inasmuch as the purported facts of
Dutch hold, but they are uncontroversial. One can easily see from the proof
that it uses practically nothing else but the fact that Dutch has cross-serial
dependencies.

If that is so, this constitutes the first proof of its kind. Elsewhere, in [28],
p. 444-445, I have shown that Chinese A-not-A questions are not strongly
context free, given that the structures are as in [36]. However, it is not clear
that the syntactic facts concerning Chinese are as portrayed in that paper.
Moreover, syntactic copying is marginal, while crossing dependencies are
more widespread. Therefore, with Dutch, matters are quite different. If
the pattern is repeatable without bound (as we shall assume here), the ar-
gument goes through. Thus, we shall establish the impossibility of certain
constituent structures over a given sentence based purely on the fact that
a compositional interpretation cannot otherwise be given. To provide this
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argument, we must make precise what we mean by compositionality, and
what we mean by meaning.

6. C

We shall assume the background framework of [28], Section 3.1. A sign
is a triple σ = 〈e, c,m〉, where e is the exponent, c the category and m the
meaning of σ. We write ε(σ) for e, κ(σ) for c and µ(σ) for m. Languages
are sets of signs. A signature is a pair 〈F,Ω〉, where F is a finite set of
so-called modes and Ω : F → N a function assigning each symbol from F
a so-called arity. A grammar for a language L is a map G, which assigns
to each f ∈ F a partial, computable function G( f ) : LΩ( f ) → L such that
L is the least set closed under the G( f ); or, equivalently, if L is generated
with the help of the G( f ). This means the following. Each f such that
Ω( f ) = 0 is assigned an element G( f ) of L; the set {G( f ) : Ω( f ) = 0} is
the lexicon. All other signs are created from the lexicon using the functions
G( f ) with arity > 0. Apart from the lexicon, there are typically very few
such functions. For example, Montague Grammar uses besides the lexicon
only the modes A< and A>, Ω(A<) = Ω(A>) = 2. The exponents are strings
over the alphabet, including the blank (‘�’); the only available operation
is concatenation. The categories are terms over the set of basic categories
formed with the infix symbols / and \. Meanings are typed λ-terms over a
signature of predicate logic. The modes are interpreted as follows.

A>(〈~x, γ/δ,M〉, 〈~y, δ,N〉) := 〈~xa�a~y, γ,M(N)〉(15)

A<(〈~x, δ,M〉, 〈~y, γ\δ,N〉) := 〈~xa�a~y, γ,N(M)〉(16)

The functions are partial; A>(σ,σ′) is defined only when the category of
σ′ is of the form δ and the category of σ is of the form γ/δ for some γ.
Likewise for A<. Montague Grammar also is compositional.13

Definition 1. A grammar for L is compositional if for every mode f ∈ F
there are partial functions f ε, f κ and f µ on the exponents, categories and
meanings, respectively, such that

Ê G( f )(σ1, · · · , σΩ( f )) is defined iff
(a) f ε(ε(σ1), · · · , ε(σΩ( f ))) is defined and
(b) f κ(κ(σ1), · · · , κ(σΩ( f ))) is defined and
(c) f µ(µ(σ1), · · · , µ(σΩ( f ))) is defined.

13One should not confuse the assertion that Montague Grammar is compositional with
the claim that languages are compositional. What I claim is that although it is composi-
tional (except for the rules for pronouns) but that it uses the wrong type of semantics. Thus
the question of compositionality of languages is an entirely different matter.
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Ë If G( f )(σ1, · · · , σΩ( f )) is defined then

G( f )(σ1, · · · , σΩ( f )) =
〈 f ε(ε(σ1), · · · , ε(σΩ( f )),

f κ(κ(σ1), · · · , κ(σΩ( f )),
f µ(µ(σ1), · · · , µ(σΩ( f ))〉

This notion of compositionality requires each of the three components
to be autonomous of each other; the only channel of communication is the
choice of the mode. So, if a complex sign is formed using a mode, the
meaning of that sign depends only on the meaning of the parts and the
mode applied. And likewise for the category and the exponent. We shall
introduce restrictions on possible functions as we go along.

7. H T  C?

There exist proofs that every language is compositional (see [46]) or at
least every recursively enumerable language ([22]). However, what Janssen
and Zadrozny call compositionality does not do justice to our intuitive un-
derstanding. These proofs consist in both cases in postulating additional
signs.14 But we have dismissed these options above. Still, in [28], Theorem
3.14ff, I gave arguments that English (and presumably every other natural
language) can be generated by a ‘compositional’ grammar. The proof is
based on the existence of infinitely many signs of the form

(17)

〈one, ν, 1〉
〈one plus one, ν, 2〉
〈one plus one plus one, ν, 3〉
〈one plus one plus one plus one, ν, 4〉
· · ·

where ν is an arbitrary category, say that of numerals. Notice that there
is a one-to-one correspondence between form and meaning; the exponent
is predictable from the meaning and the meaning from the exponent. The
function num(−) is bijective:

(18) num(~x) := number of occurrences of one in ~x

Moreover, the set of expressions of the form above is recursive in the set of
all exponents, which is to say that given a string ~x we can tell whether it is
of the form of any of the exponents of (17). The only remaining assump-
tion is that the expressions of English of any given category are recursively

14Zadrozny massages the semantics into some suitable form, while Janssen assumes
that only sentences have meaning and that everything else can be fiddled to fit the needs.
Both come down to the same.



The Emergence of Syntactic Structure 17

enumerable and that there are finitely many categories. Thus, assume that
there is a finite set Γ such that

(19) L =
⋃
γ∈Γ

Lγ

where

(20) Lγ := {σ ∈ L : κ(σ) = γ}

Moreover, assume that for each γ ∈ Γ there is a recursive function ργ : N�
Lγ. The grammar is this. We write a grammar to generate the signs from
(17). We need only two lexical elements (one for one and one for plus)
in addition to A>. In addition to this grammar we assume for every γ ∈ Γ a
unary mode gγ, which is defined as follows.

(21) gγ(〈~x, ν, n〉) := 〈ε(ργ(num(~x))), γ, µ(ργ(n))〉

So, given a sign from (17), the exponent is obtained by calculating the num-
ber n that the exponent represents, then calculating the nth member of the
enumeration of the signs and taking the exponent of that sign.

We shall rule out such an example as follows (see [28], Section 5.7).
The functions on the exponents are required to not destroy any material.
In general, exponents are tuples of strings.15 If exponents are strings, the
requirement is furthermore that nothing but polynomials based on string
concatenation are available. This successfully rules out many artificial ex-
amples, but it cannot cope with the problem of Dutch. The problem with
Dutch is not that we failed to provide a reasonable grammar, but that we
need to show that we can come up with functions on the meanings that
make the grammar compositional. There is so far no reason why we cannot
use an analogous trick.

This convoluted definition (21) makes sure that the algorithm proceeds
strictly inside the language. It uses the fact that inside the language there is
a definable set of signs where the number can be calculated from the expo-
nent alone. In general, if there is a computable function ξ from meanings to
exponents (in every given category) with computable inverse, then the au-
tonomy of the meanings is trivially obtained. Let me illustrate this with A>.
Given the meanings of the two arguments, m and m′, we first look up the
exponents e := ξ(m) and e′ := ξ(m′) that denote them, using our computable

15We shall not deal here with phonological representations, nor are we concerned with
the abstractness of the orthographic system. The idea that we are dealing with tuples of
strings is a suitable simplification and we ignore the low level complications that phonol-
ogy and morphology pose. For the purpose of this paper I am basing my arguments of
something like deep phonological representations, in the way of [32].
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function ξ from meanings to exponents. We combine e and e′ (here by con-
catenation), and then look up the meaning that this complex expression has,
using the computable ξ−1.

(22) A>(〈e, γ/δ,m〉, 〈e′, δ,m′〉) := 〈ea�ae′, γ, ξ−1(ξ(m)a�aξ(m′))〉

Thus, we effectively ‘spy’ on syntax to determine what to do with our mean-
ings. This has a lot to do with our problem of Dutch: unless it can be argued
that the meanings of some of the expressions are actually identical there is
no hope to argue that there is no compositional context free grammar for
Dutch. We can take the one we have found above in (14) and calculate with
the method shown here. In this way, semantics becomes a slave of syntax,
deriving the meanings from the expressions as a whole, not necessarily de-
pending on the meanings of the parts previously established in any direct
way. One may find this totally absurd. Indeed, many linguists would ar-
gue that the kinds of functions needed to make this work are unnatural and
not available in semantics. But I should stress that so far no one has suc-
cessfully delineated what kinds of functions are admissible or available in
semantics and which ones are not. Until that is done, the dismissal of this
proposal as unnatural is without theoretical basis. We need to look harder.

8. M A T C

The idea that I will pursue here is all problems arise from an improper
understanding of what meanings actually are. The crux is that as long as
anything can pass for ‘meaning’ no theoretical claim will ever be proved.
Just let meanings contain a record of the syntactic structure and composi-
tionality comes for free. Therefore, I wish to exclude any semantic rep-
resentation that keeps a record of the syntactic structure (unless I can be
convinced that it must be there). The challenge therefore is to come up with
a proper notion of meaning.

My stance at the matter is this. I assume that meanings are no more and
no less than truth conditions. This said, the judicious application of this
assumption requires a lot of thought. Namely, because truth conditions are
normally communicated using languages that merely describe them (such
as predicate logic), we have to remind ourselves of the fact that different
descriptions might actually be descriptions of the same thing, that is, of the
same truth condition. We have to be aware that there may be variation in
expression that is actually irrelevant.

Thus, I shall assume that meanings are expressed by formulae of many
sorted first order predicate logic but I reject the view that this is what they
are. Before I can say what I think meanings are (or better: how they func-
tion), let us briefly fix our lingua franca. The language has variables xi,
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i ∈ N, and certain function and relation symbols. We shall later also in-
troduce variables of different type, but for now there shall only be one, the
type of objects. The model structures are pairs M = 〈M,I〉, where M is
a set, the universe, and I a function assigning to an n-ary function symbol
f a function I( f ) : Mn → M, and to an n-ary relation symbol R a relation
I(R) ⊆ Mn. (Actually, the language is many sorted and so the definition of
model structures and so on would have to be more complex. As the sorts
complicate the notation I shall omit them whenever possible.) A valuation
is a function from the variables into M.16 By induction on the structure
of the formula one defines whether a valuation makes a formula true in a
structure. In the standard semantics this means that we may view meanings
simply as functions from valuations into a model into a truth value. Fix-
ing a particular first-order structure M, the meaning of ϕ is simply a set of
valuations.

(23) [ϕ]M := {β : 〈M, β〉 � ϕ}

For example, let our model be the numbers modulo 3. Then

(24)
[(∃x2)(x2

2 = x1)]M = {β : β(x1) = 0 and β(x2) = 0
or β(x1) = 1 and β(x2) = ±1}

As is well known, the meaning of any given formula of the language of
predicate logic can be computed from the meaning of its parts. Thus if we
can translate expressions into formulae of this language, it can be cascaded
with this translation to yield an effective form-to-meaning translation. This
is the basis of Montague Grammar.

Meanings are thus construed as sets of assignments. However, I shall
change this slightly and say that an assignment is an infinite sequence ~a =
〈ai : i ∈ N〉. The sequence ~a represents the assignment β~a : xi 7→ ai. The
meaning of a formula is thus a set of infinite series, defined bottom up in
the following way.

[R(xi1 , · · · , xin)]M := {~a : 〈ai1 , · · · , ain〉 ∈ I(R)}
[¬ϕ]M := Mω − [ϕ]M

[ϕ ∧ χ]M := [ϕ]M ∩ [χ]M
[∃xi.ϕ]M := Ci.[ϕ]M

(25)

16This is a suitable moment to clarify a few things. The present approach uses a single
model as the semantics. This model may be abstract (meanings modulo equivalence), so
this actually not much of a commitment. There are no meaning postulates; identity in
meaning is identity in denotation. (See [47] on this question.) Our approach seems to be
extensional; however, using many sorted predicate logic allows to add as many parameters
as one wishes, for example worlds and times.
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Let [b : i]~a denote the sequence obtained by replacing the member ai by b.
The operation Ci of cylindrification is defined by

(26) Ci.A := {~a : there is b such that [b : i]~a ∈ A}

If Ln is the language obtained by using only the variables x1 through xn,
then meanings will just be n-tuples of elements. The clauses above remain
the same (modulo replacing Mω by Mn). The presentation of meanings as
certain sets has been given by Tarski and has led to the introduction of cylin-
dric algebras. They are noteworthy in the present context since they can be
said to provide actual meanings for formulae (and thus are a semantics in
the proper sense of the word) rather than algorithms for assessing their truth.
They will be found inadequate, though. The notation will nevertheless be
useful. We add some more notation. There is a family of diagonals:

(27) di, j := {~a : ai = a j}

Notice that di, j = [xi = x j]M . Also, we write

(28) Πi.A := {〈a1, · · · , ai−1, ai+1, ai+2, · · ·〉 : ~a ∈ A}

Πi.A is the projection of A obtained by removing the ith column. If A ⊆ Mn

then Πi.A ⊆ Mn−1 provided that i ≤ n.
There is a branch in semantics called variable free semantics which ar-

ticulates meanings (and operations on meanings) in the form of algebraic
operations. As I just said, algebraic semantics is the proper choice if we
allow free variables. For, as has been noted quite early on (see [10]) the
standard semantics in terms of truth under a valuation is not compositional.
This is because the value of a quantified expression (Qx)χ(x), for example
(∃x)χ(x), cannot be computed unless the values of χ(x) are known for dif-
ferent choices of x rather than just one. So, the meanings must be in some
sense sets of assignments. These sets form an algebra, namely a cylindric
algebra. Algebraic semantics and variable free semantics are in fact quite
similar.17 This is due to the insight is that substitution is actually definable
in terms of cylindrification (see [7] for a discussion), so that it is possible to
interpret a relation symbol by a certain set of assignments (corresponding
to, say, the set [R(x1, · · · , xn)]M ) and then perform operations in terms of
substitution and the operations above.

9. A I

Unfortunately, the meanings just presented suffer from a defect. They
depend on the names of the free variables chosen. This means that chang-
ing the names of the variables affects the meaning, while it is clear that the

17See the collection [1] on variable free semantics.
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choice of the particular variables to fill in the empty slots in see′( , ) is im-
material. This problem needs to be addressed. In [13], Kit Fine has noted
that the ordinary semantics for predicate logic is not compositional for pre-
cisely the reason just noted. We are interested in a similar problem: it is the
fact that predicate logic for this reason is not suitable to represent meanings.
Thus, while ‘(∃x2)x2

2 = x4’ can be thought of as having different meaning
than ‘(∃x2)x2

2 = x1’ as far as predicate logic goes, we deny that they repre-
sent different meanings of natural language expressions. The distinction is
between the name of the variable and the role it plays in the representation.
The point that the actual name is irrelevant as long as different variables are
given different names has been made over and over in the work of Albert
Visser and Kees Vermeulen (see [43], [44]). They have developed an alter-
native theory of so-called referents, a theory that focuses on the process of
baptism of the individual variables. It is not necessary to explain this par-
ticular proposal, all we need to note is that their views conspire to the same
requirement on meanings that Kite Fine called alphabetical innocence.

A I. If ϕ′ is the result of replacing the free
variables of ϕ by free variables so that different variables are
replaced by different variables, then ϕ′ expresses the same
meaning as ϕ.

We shall henceforth employ the following notation. For a formula of pred-
icate logic ϕ let «ϕ»M represent the meaning expressed by ϕ in the model
structure M . (We shall define this notion below in exact detail.) Then
alphabetical innocence implies among other the following.

(29) If s : Var→ Var is injective then «ϕs»M = «ϕ»M

The consequences of this requirement are far reaching. The meaning cannot
be computed on the basis of the set of variables that occur in it. Now, even
if one cannot tag variables with numbers, still one should be able to dis-
tinguish variables that would ordinarily receive different numbers. In [13]
Kit Fine solves the problem by requiring to keep score of (physical) posi-
tions. This, however, puts the numbers back on the table if only as labels of
positions. Kees Vermeulen in [43] has proposed to assign variables names
of any sort (they could be numbers) but requires that the algorithms be in-
dependent of the actual number chosen. We sympathise with the second
solution because it presupposes no linear order.18 Let us see what the con-
sequences are. The first consequence is that every formula may after some

18The linear order in predicate logic (and in virtually all formal languages) is not ap-
propriate for human languages. We rather think that meanings are abstract schemes (say,
in the way outlined in cognitive grammar), but it is not necessary here to commit to one of
the many views. Instead, we have seen to it to obtain maximal abstractness for the names
while still using the linear notation.
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substitution be brought into the form ϕ(x1, · · · , xn), where the variables x1

to xn are exactly the free variables of the formula. However, notice that
we are factually unable to say which of the original variables is now called
x1, which one is x2, and so on. Thus the present theory differs also from
variable free semantics in an important way. In variable free semantics it is
effectively always possible to trace the name of a variable in a formula. For
in variable free semantics substitutions must be made explicit. The effect
of substituting x7 by x4, for example, corresponds to application of an op-
erator, say, O4:7 on the meaning of the formula. Further, in variable free se-
mantics the converse of a relation is distinguishable from the relation itself;
given alphabetical innocence it is not: R(x1, x2) is an alphabetical variant of
R(x2, x1)! Let us make this formally more explicit. Let π be a permutation
of the set {1, 2, · · · , n}. (A permutation is just a one-to-one and onto map.)
For an n-tuple ~a put

(30) π(~a) := 〈aπ(1), aπ(2), · · · , aπ(n)〉

Furthermore, for a set P set

(31) π[P] := {π(~a) : ~a ∈ P}

Then from alphabetical innocence it follows that π[P] must be regarded the
same as P. This is a welcome consequence. [45] and [12] have argued that
a relation and its converse are actually the same. While both wish to reform
the definition of a relation itself, I remain conservative and use relations as
before, but insist that the actual meanings (called concepts below) must be
free of positional bias, in the way both Williamson and Fine suggest for
relations.

There is however more that we want to require. If a variable does not
occur in a formula it should be possible to ignore it completely. Because
meanings are represented by first order formulae, only finitely many vari-
ables occur freely. This allows us to finitise the meanings as follows. In
a given structure M = 〈M,I〉, meanings are represented as subsets of Mn

for a suitable n. However, not all such sets actually denote different mean-
ings. Notice for example that the formula ϕ is equivalent to the formula
ϕ ∧ xn � xn, regardless of whether xn actually occurs in ϕ or not.

(32) «ϕ»M = «ϕ ∧ (xn � xn)»M

Thus, the set P × M, where P is the meaning of ϕ, represents the same
meaning as P.

Finally, suppose that you decided to have two variables, xi and x j that
receive the same value by any valuation that make the formula true. Then
the difference in name should actually be immaterial, and you are safe to
replace one by the other. Thus, if in P, for every ~a ∈ P, ai = a j, then we
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may ‘cut’ the jth argument place.19 Thus P is regarded the same meaning
as Πi.P.

Definition 2. Let M = 〈M,I〉, be a first-order structure. A relation over
M is a subset of Mn for some n. We say that two relations P and Q express
the same concept, in symbols, P ≈ Q, if Q can be obtained from P by any
number of the following operations.

(S1) Adding a trivial column: P 7→ P × M = {〈~a,m〉 : ~a ∈ P,m ∈ M}.
(S2) Removing a trivial column: P × M 7→ P.
(S3) Permuting the columns: P 7→ π[P], π a permutation of {1, 2, · · · , n},
(S4) Shrinking identical columns: P 7→ ci[P], provided that there is a

j , i such that for every ~a ∈ P ai = a j.
(S5) Expansion: P 7→ {〈~a, ai〉 : ~a ∈ P}.

Write JPKM := {Q : Q ≈ P}. A set of relations over M is called a concept if
it has the form JPKM for some relation P.

Thus if P ≈ Q you do not know any more by what name you called the
variables, you do not know how often you called something by a different
name, and you do not know how many variables you actually used. These
things (although appearing in the notation) are not considered part of the
meaning. In linear notation we are forced to linearise the members of a
concept by writing for example 〈a, c, d, z〉. The places for the the elements
are called slots; a is for example in slot 1, c in slot 2. The tuples however
are aligned simultaneously.

(33) H = {〈a, d〉, 〈b, c〉}

Then a and b must always appear in the same slot: thus we say they are
in the same column. Similarly for d and c. Thus the following is not a
member of the concept of H: {〈d, a〉, 〈b, c〉}. In writing a relation, columns
are mapped in a standard way to slots: columns number i appears in slot
number i. However, this obtains only if we consider minimal members. As
soon as we allow expansion there is a certain ambiguity in the association
of slots with columns. This can be avoided completely by alway using
relations of minimal length in the algorithms.

Let me stress that meaning identity is neither entirely a matter of form,
neither one of equivalence. First, if two formulae are equivalent, then they
have the same meaning. But there are nonequivalent formulae which do
have the same meaning, for example x1 � x3 and x1 � x2. The best way to
think about ≈ is equivalence (in the ordinary sense of predicate logic) plus
alphabetic innocence.

19By permutation invariance, we may also cut the ith place but not both
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Given a concept c, there is a P such that c = JPKM . P is minimal if it has
minimal length among the members of c. A concept c has arity n iff its min-
imal members have arity n. Consider now the set H = {〈a, b〉, 〈a, c〉, 〈b, c〉}.
Its converse is H` = {〈b, a〉, 〈c, a〉, 〈c, b〉}, and H ≈ H`. Thus, the concept
JHKM contains both H and H`. This seems pretty odd: it means that the
meaning of left of is the same as the meaning of right of, the meaning
of south of the same as the meaning of north of. It will be my task to
show that the situation is not as impossible as it may appear. For as it turns
out, even though the concepts may be same, we need not use them in the
same way.

As a point of notation: for a function f : M → N and a subset X ⊆ M
write

(34) f [X] := { f (x) : x ∈ M}

The following is immediate from the definitions.

Lemma 3. If P and Q are n-ary relations on which (S2) and (S4) cannot be
applied, then P ≈ Q iff there is a permutation π such that π[P] = Q.

We briefly mention the following interesting fact.

Theorem 4. Let L(Ω) be the language of predicate logic over a fixed re-
lational signature Ω; and let Ln(Ω) be the restriction of L(Ω) to the set of
formulae where the only occurring variables are x1, · · · , xn. There is a com-
positional grammar for FLn := {〈ϕ, «ϕ»M 〉 : ϕ ∈ Ln}. There is however no
compositional grammar for L(Ω) (given some nontriviality assumptions on
Ω and M ).

For a proof see [29].

10. A S G

We shall present here a grammar for some fragment of English. It is
based on the nonlogical words Alex, Bert, Cindy, Danielle, man, woman,
sees, likes, walks, talks, and some logical words such as and, or, who,
and some. The phrase structure skeleton is as follows.

S→ NP VP
N→ man | woman

VP→ walks | talks | VT NP | VP and VP | VP or VP
VT→ sees | likes
NP→ some N1 | Alex | Bert | Cindy | Danielle
N1→ N

(35)
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Like Montague grammar, the logical words are syncategorematic. This can
be avoided, but that introduces notational complications which I’d like to
avoid. This grammar generates among other the following sentences:

Alex sees Cindy.(36)
Some man talks.(37)
Some man sees some woman.(38)

We fix a language L of predicate logic that contains the constants A, B, C,
D, man′, woman′, talks′, walks′, likes′, and sees′, and we fix a model
structure M = 〈M,I〉 that interprets them. This is the structure M =

{A, B,C,D}, where A = I(A), B = I(B), C = I(C) and D = I(D). Further-
more,

I(man′) ={A, B}
I(woman′ ={C,D}

I(walk′) ={A,C}
I(talk′) ={D,C}
I(see′) ={〈B,C〉, 〈B,D〉, 〈C, A〉, 〈C,C〉}
I(like′) ={〈A, A〉, 〈A, B〉, 〈A,C〉, 〈B, A〉, 〈B,D〉}

(39)

The lexical modes are the following:

G(`0) := 〈man,N, «man′(x1)»M 〉

G(`1) := 〈woman,N, «woman′(x1)»M 〉

G(`2) := 〈talks,VP, «talks′(x1)»M 〉

G(`3) := 〈walks,VP, «walks′(x1)»M 〉

G(`4) := 〈sees,V, «sees′(x1, x2)»M 〉

G(`5) := 〈likes,V, «likes′(x1, x2)»M 〉

G(`6) := 〈Alex,NP, «x1 = A»M 〉

G(`7) := 〈Bert,NP, «x1 = B»M 〉

G(`8) := 〈Cindy,NP, «x1 = C»M 〉

G(`9) := 〈Danielle,NP, «x1 = D»M 〉

(40)

Here are two unary modes:

G(ν0)(〈e, c,m〉) :=

〈somea�ae,NP,m〉 if c = N1
undefined else

G(ν1)(〈e, c,m〉) :=

〈e,N1,m〉 if c = N
undefined else

(41)
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The rest of the grammar consists in binary modes. To define them we need
a special device, called a linking aspect.

Definition 5. A linking aspect is a partial function on concepts which for
each c if defined yields a minimal member of c.

For the purpose of defining the grammar we define the following linking
aspect.

(42) Y(c) :=


P if c and P are unary and c = «P»M

I(like′) if c = «like′(x1, x2)»M

I(see′) if c = «see′(x1, x2)»M

undefined else

We assume that in both cases x1 is the subject and x2 the object in the rela-
tion. This is not necessary, but makes reading the formulae easier.

G(θ0)(〈e, c,m〉, 〈e′, c′,m′〉)

:=


〈ea�aanda�ae′,VP, JY(m) ∩ Y(m′)KM 〉

if c = c′ = VP
undefined else

G(θ1)(〈e, c,m〉, 〈e′, c′,m′〉)

:=


〈ea�aora�ae′,VP, JY(m) ∪ Y(m′)KM 〉

if c = c′ = VP
undefined else

G(θ2)(〈e, c,m〉, 〈e′, c′,m′〉)

:=



〈e′a�ae,S, JΠ1.(Y(m) ∩ Y(m′))KM 〉

if c = VP and c′ = NP
〈ea�ae′,VP, JΠ2.(Y(m) ∩ (M × Y(m′)))KM 〉

if c = VT and c′ = NP
undefined else

(43)

Let us stop here and see how we derive (37) and (38). First (37). As is
customary in Montague Grammar and elsewhere, we define analysis terms.
These are terms in the signature Ω, which the grammar evaluates into signs.
For (37) the analysis term is t := θ2(`2, ν0(ν1(`0))). The value is denoted by
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ιG(t). We evaluate it step by step:

ιG(θ2(`2, ν0(ν1(`0))))
=G(θ2)(G(`2),G(ν0)(G(ν1)(〈man,N, «man′(x1)»M 〉)))
=G(θ2)(G(`2),G(ν0)(〈man,N1, «man′(x1)»M 〉))
=G(θ2)(G(`2), 〈some man,NP, «man′(x1)»M 〉)
=G(θ2)(〈talks,V, «talk′(x1)»M 〉, 〈some man,NP, «man′(x1)»M 〉)
=〈some man talks,S, «∃x1.talk′(x1) ∧man′(x1)»M 〉

=〈some man talks,S,∅〉

(44)

Only the last two steps involves some nontrivial manipulations. The actual
definition of the semantics is as follows:

(45) JΠ1.(Y(«talk′(x1)»M ) ∩ Y(«man′(x1)»M ))KM

Now, since man′ and talk′ denote unary relations, we find that

Y(«man′(x1)»M ) = [man′(x1)]M (= {A, B})
Y(«talk′(x1)»M ) = [talk′(x1)]M (= {C,D})

(46)

Next we use the identity [P(x1) ∧ Q(x1)]M = [P(x1)]M ∩ [Q(x1)]M , (45)
becomes

JΠ1.[talk′(x1)]M ) ∩ Y(«man′(x1)»M ))KM

=JΠ1.[talk′(x1) ∧man′(x1)]M KM
(47)

This can be rewritten using Πi.[χ]M = [∃xi.χ]M into

(48) J[∃x1.man′(x1) ∧ talk′(x1)]M KM

Finally, observe that «χ»M := J[χ]M KM . So we finally get the desired
result. The concept is actually ∅, or simply “false”, as can be computed
from the model.

Now we step over to (38). Here, the linking aspect is actually doing real
work. The analysis term is u = θ2(θ2(`2, ν0(ν1(`1))), ν0(ν1(`0))). We have:

ιG(ν0(ν1(`0))) =〈some man,NP, «man′(x1)»M 〉

ιG(ν0(ν1(`1))) =〈some woman,NP, «woman′(x1)»M 〉
(49)
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The next step is to compute ιG(`2, ν0(ν1(`1))), which comes down to this:

G(θ2)(〈sees,V, «see′(x1, x2)»M 〉,

〈some woman,NP, «woman′(x1)»M 〉

=〈sees some woman,VP,

JΠ2.Y(«see′(x1, x2)»M ) ∩ Y(«woman′(x1)»M )KM 〉

=〈sees some woman,VP,

JΠ2.Y(«see′(x1, x2)»M ) ∩ (M × Y(«woman′(x1)»M ))KM 〉

=〈sees some woman,VP,

JΠ2.[see′(x1, x2)]M ) ∩ (M × [woman′(x1)]M ))KM 〉

=〈sees some woman,VP,

JΠ2.([see′(x1, x2)]M ∩ [woman′(x2)]M )KM 〉

=〈sees some woman,VP,

JΠ2.[see′(x1, x2)) ∧ woman′(x2)]M )KM 〉

=〈sees some woman,VP,

J[∃x2.see′(x1, x2)) ∧ woman′(x2)]M )KM 〉

=〈sees some woman,VP,
«∃x2.see′(x1, x2)) ∧ woman′(x2))»M 〉

=〈sees some woman,VP, J{B}KM 〉

(50)

The important steps are the transition from Y(«see′(x1, x2)»M ) to [see′(x1, x2)]M ,
which holds by definition of Y; and the transition from M × [P(x1)]M to
[P(x2)]M , which holds by definition of [−]M . From here on things proceed
as in (37).

11. A R C

We shall now add more modes in order to generate relative clauses. Here
the semantics adds no complication; instead, it is the syntax that needs at-
tention. Notice that relative clauses work by putting the relative pronoun at
the beginning regardless of whether it is subject or object. We shall analyse
them in the fashion of GPSG: there are special categories of sentences-
missing-a-subject (S[s]) and sentences-missing-an-object (S[o]), as well as
VP-missing-an-object (VP[o]). The rule set that is added to the original
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grammar is as follows:

N1→ N RelC
RelC→ who S[s] | who S[o]
S[o]→ NP VP[o]
S[s]→ VP

VP[o]→ VT

(51)

It will thus be possible to generate the following sentences:

Some woman who sees some man walks.(52)
Some man walks or likes some woman who talks.(53)

The grammar needs the following unary modes:

G(ν2)(〈e, c,m〉) :=

〈whoa�ae,RelC,m〉 if c ∈ {S[s],S[o]}
undefined else

G(ν3)(〈e, c,m〉) :=

〈e,S[s],m〉 if c = VP
undefined else

G(ν4)(〈e, c,m〉) :=

〈e,VP[o],m〉 if c = VT
undefined else

(54)

Finally, two binary modes are needed as well:

G(θ3)(〈e, c,m〉, 〈e′, c′,m′〉)

:=


〈ea�ae′,N1, JY(m) ∩ Y(m′)KM 〉

if c = N and c′ = RelC
undefined else

G(θ4)(〈e, c,m〉, 〈e′, c′,m′〉)

:=


〈ea�ae′,S[o], JΠ1.(Y(m′) ∩ Y(m))KM 〉

if c = NP and c′ = VP[o]
undefined else

(55)

Let us see how the new grammar deals with (52) and (53). For (52) what
is new is the relative clause and the way it modifies the noun. The analysis
term for the relative clause is r = ν3(ν2(θ2(`4, ν0(ν1(`0))))). We calculate the
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outcome (this time using sets rather than formulae):

ιG(θ2(`4, ν0(ν1(`0))))

=G(ν2)(G(ν3)(G(θ2)(G(`4), 〈some man,NP, J{A, B}KM 〉)))

=G(ν2)(G(ν3)(〈sees some man,VP, J{C}KM 〉))

=G(ν2)(〈sees some man,S[s], J{C}KM 〉)

=〈who sees some man,RelC, J{C}KM 〉

(56)

Finally, it is computed that the modified noun has the analysis term θ3(`1, r).
It is computed that

ιG(θ3(`1, r))

=G(θ3)(〈woman,N, J{C,D}KM 〉,

〈who sees some man,RelC, J{C}KM 〉)

=〈woman who sees some some man,N1, J{C}KM 〉

(57)

Finally, let us turn to (53). Here we meet the logical word or. We com-
pute the analysis terms for likes some woman who talks, which is w =
θ2(`5, ν0(θ3(`1, ν2(ν3(`2))))). Its value is

(58) 〈likes some woman who talks,NP, J{A, B}KM 〉

Finally, we calculate the value of θ1(`5,w):

G(θ1)(〈walks,VP, J{A,C}KM 〉,

〈likes some woman who talks,NP, J{A, B}KM 〉)
=〈walks or likes some woman who talks,

VP, J{A, B,C}KM 〉

(59)

The rest of the derivation is as above.

12. L

We see that the main difference between the present semantics and Mon-
tague Grammar is that instead of a calculus of application and abstraction
that makes the identification of variables across constituents automatic we
need an additional mechanism of linking. Linking depends on the linking
aspect. This is apparent in the case of a transitive verb. Suppose we defined
the following aspect Z:

(60) Z(c) :=


P if c is unary and c = «P»M

I(like′)` if c = «like′(x1, x2)»M

I(see′) if c = «see′(x1, x2)»M

undefined else
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If the grammar would use Z in place of Y , the subject of ‘likes’ would
be the theme and the object the experiencer. In Montague Grammar the
same result would have been achieved by Currying like′(x1, x2) in a different
way. The difference lies not so much in what is expressed but rather in the
way the syntactic knowledge is encoded into the language. In Montague
Grammar the linking is part of the meaning; a different linking is effected
by a different meaning. Here, linking is part of the grammar20 : it is encoded
in the way rules combine two concepts.

It is worth looking again at variable free semantics. In variable free se-
mantics we work not with concepts but rather with relations, that is, objects
of the form [χ]M for some formula χ. The positions reflect variable names
in a direct way: position number 1 shows the value of variable x1, position
number 2 shows the value of variable x2, and so on. Therefore, in variable
free semantics the relations [like′(x1, x2)]M and [like′(x2, x1)]M are differ-
ent. Therefore, they may be linked independently from each other. There
is alphabetical innocence only in a superficial way: the meanings do not
contain variable names; on the other hand, the relations encode such names
via the columns.

The linking aspect is part of the grammar. It must therefore be a fi-
nite object. In the case above, there is no problem. The linking aspect
is needed only when we combine a transitive verb with its object. However,
the way it is specified leaves something to desire. For we have said that
Y(«like′(x1, x2)»M ) is the relation [like′(x1, x2)]M . This is possible in virtue
of the fact that the interpretation of the primitive symbol like′ is given as
a relation. So, we seem to maintain that we associate relations at least to
some elements of the language. But this is not necessary. I describe below
two ways of defining the linking aspect without assuming such knowledge.

The first approach is via a critical set.

Definition 6. Suppose that P is minimal in its concept. A set A is critical
for P, if for all minimal Q ≈ P: if A ⊆ Q then Q = P.

Proposition 7. Every relation minimal in its concept has a finite critical
set.

Proof. Fix P of length k, and let JPKM = {P,Q1,Q2, · · · ,Qn}. (Since
there are at most k! permutations of the sequence 1, 2, · · · k, we know that
n ≤ k!, so the set is finite.) For every i > 0, let ~xi be a k-tuple such that
~xi ∈ P−Qi. Put A := {~xi : 1 ≤ i ≤ n}. This set is critical for P. For if A ⊆ Qi

we get ~xi ∈ Qi, contradicting our choice of ~xi. �

20Notice the ambiguity in the word ‘grammar’. Here it means grammar to generate
signs, while elsewhere it means rather syntax. In stratificational terminology we have
moved the linking information from the sememes to the semotactics.
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Thus, given the concept «like′(x1, x2)»M we only need a single pair 〈a, b〉
such that 〈a, b〉 ∈ [like′(x1, x2)]M but 〈a, b〉 < [like′(x2, x1)]M . Then we may
define Y(«like′(x1, x2)»M ) to be that minimal member of the concept that
contains 〈a, b〉. Consequently, the linking aspect of the grammar defined
above is defined by giving two pairs of objects: one for the concept of
seeing, one for the concept of liking. Recall that

(61) I(like′) = {〈A, A〉, 〈A, B〉, 〈A,C〉, 〈B, A〉, 〈B,D〉}

Then {〈A,C〉} is a critical set for the concept of liking.
There are two cases for a binary relation: it is either symmetric, or it is

not. If it is symmetric, the concept contains only one pair, and the critical
set may in fact be empty. If it is not symmetric, one pair is enough. For
higher order relations and concepts more tuples might be needed.

A second procedure is this. In place of knowing about a particular tuple
that it is contained in the relation, we may know that the various arguments
of the concept can be told apart by some inherent properties. There is, say,
a unary predicate exp′(x1) which holds of the experiencers. If we pick from
the concept «like′(x1, x2)»M the set I(like′) we expect that the first projec-
tion (the set {A, B}) is the set of experiencers of that concept. However,
since seeing someone is also being an experiencer, the set of experiencers
may not actually be identical to the previous. Assume, for example, that it
is I(exp′) = {A, B,C} (which turns out to be the set of individuals that ei-
ther see or like someone). Then we can also tell apart the columns; suppose,
namely, that we pick the relation I(like′)`. Its first projection is {A, B,C,D},
which contains D, a nonexperiencer. In logical terms, we have the following
situation:

M �like′(x1, x2)→ exp′(x1)
M 2like′(x1, x2)→ exp′(x1)

(62)

This translates into the following identities between relations:

[like′(x1, x2)]M ⊆ [exp′(x1)]M × M

[like′(x1, x2)]M * M × [exp′(x1)]M
(63)

The following, however, does not hold: M 2 ¬(like′(x1, x2) → exp′(x1)).
This is because if someone is liked, s/he may still be an experiencer. (For
example: A likes B and B likes A. Both are therefore experiencers.) Also,
what we do not have is M � exp′(x1)→ like′(x1, x2). For someone may be
an experiencer without liking someone. For example, if C sees A, C is an
experiencer in virtue of seeing C, but C does not like anyone.

The previous method is reminiscent of θ-roles: in order to align the
columns we make use of certain semantic relationships that hold between
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the concept and other concepts. However—and this may well hold for nat-
ural language as well—the method does not need to proceed using inherent
properties. Moreover, it does not need to provide inherent properties for all
its arguments. Let’s deal with the second point. If we have a binary rela-
tion, we need to identify only one of the columns, the other one is fixed as a
consequence. We need to know only who is experiencer, the theme is then
clear as a result. This is interesting insofar as it turns out that especially
the theme is notoriously ill-defined. There seems to be no definition that
would reliably pick out the theme from a concept, in distinction to others,
such as experiencer. But it is also not necessary to have such a definition as
long as the other arguments can be picked out. Furthermore, to return to the
first point, it is not necessary to be able to pick out every argument indepen-
dently from the others. For example, in a ternary concept, it is enough to be
able to pick out one of the arguments in terms of the two others, and sub-
sequently one more argument in terms of the remaining one. This results in
the following definition.

Definition 8. Let ϕ(x1, · · · , xn) be a formula. A θ-cascade for ϕ(~x) is a
series of formulae χi, 0 < i < n, such that

(1) χi = χi(x1, · · · , xi),
(2) M � ϕ(x1, · · · , xn)→ χi(x1, · · · , xi)
(3) For every injective function π : {1, 2, · · · , i} → {1, 2, · · · , i + 1}, if π

is not the identity, M 2 ϕ(x1, · · · , xn)→ χi(xπ(1), · · · , xπ(i)).

For example, 〈exp′(x1)〉 is a θ-cascade for like′(x1, x2). That cascades are
necessary is exemplified by such notions as beneficiary. In an event that has
a beneficiary, the beneficiary is often an intended recipient by the actor, as
in ‘John paints a picture for Mary.’ Thus, we cannot define what it is to be
a beneficiary without taking recourse to the subject.

In comparing these two ways of defining a linking aspect, note that both
of them have disadvantages. θ-roles do not always work. While verbal
heads seem to allow for differentiation of arguments (however see [31] for a
discussion of the complexity of this issue) there are clear cases where such a
differentiation is not possible. Consider the case of greater in the domain
of integers. This word is interpreted by the relation >= {〈m, n〉 : m > n};
both projections of this relation are Z. For it is the case that for every num-
ber there is a larger number; and it is likewise the case that for every number
there is a smaller number. It follows that there is no intrinsic characterisa-
tion for either position. Thus there is no cascade for this concept. We can
use critical sets, though. The set {〈1, 0〉} is critical for >. The method of
critical pairs, however, has the disadvantage of providing only a case by
case analysis. What we really wish to have is some general algorithm to
establish the linking aspect, and this is why cascades are preferred.
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13. H G  T?

Now that we have defined a grammar and shown that it can correctly
handle the cases, we need to ask just how generic the grammar is. In other
words: will this toy grammar really scale up to natural language in the way
Montague Grammar does? Or does it have inherent limitations, and if so,
which ones?

I first discuss aspects where I foresee no problems in generalising the
grammar and then turn to problems that I have so far identified. On the
positive side let us note that we can practically introduce primitive relations
of any arity. We are not bound to binary relations. If we want to use a
ternary predicate, we introduce, say, a rule

(64) VP→ VD NP NP

where VD is the class of ditransitives, for example

(65) VD→ call

For the purpose of linking, after the VP is formed, we get a unary concept,
and so the linking aspect is needed only once.

Another point to mention is the fact that many properties actually contain
many more variables than we have displayed. For example, any realistic
semantics of the word presidentwill need to include a time point, a world
(or situation) and a variable defining the institution of which the person
is president. Such added parameters become vital in giving a successful
semantics for sentences such as the following:

The president met the ex-director of the bank when(66)
they were attending high school.

This sentence is full with reference to time; the subject is president now,
the object is director at some earlier time point, and subject and object at-
tended school (presumably) even earlier than that. I call such added vari-
ables parameters. Such ubiquitous parameters make life difficult in se-
mantics. However, in our case the situation is actually simpler than for
most others. Variables of different sort can never be identified with each
other. Thus, if a concept involves variables of different sort, critical sets
need to be established only up to confusion of variables of identical sort.
To give an example, if we decide to render the semantics of president
as president′(t,w, x, y) (x is president of institution y at time t in world w),
then if x and y, say, are of identical sort, then it is only x and y that can be
confused: t, the time point, is sortally distinct from w, x and y; w, the world,
is sortally distinct from t, x and y.

Now we come to the downsides of this. First, notice that the only rules of
coordination we have is VP coordination. This is no accident. If we were
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to admit the coordination of, say, transitive verbs, we must also define the
linking aspect on the resulting concept, since the VP-formation rule G(θ2)
uses Y to do the linking. In the sentence

(67) Some man likes and sees some woman.

we shall form the concept of liking-and-seeing someone, and then link it
to the object. At this point the aspect Y is invoked. So we require it to be
defined. Another problem arises with the ditransitives. For the syntactic
evidence suggests that rather than feeding two objects at once, syntax feeds
them one by one. This means that we rather that (64) we want the following
rule:

(68) VT→ VD NP

This allows a ditransitive to combine with one of its objects first, and then
with the second one. This again requires that the linking aspect be defined
for complex concepts, not just those that the lexicon supplies. A last prob-
lem concerns scope. One of the success stories of formal semantics was
its ability to explain different readings in terms of scope differences. Mon-
tague Semantics also showed a way to generate them in a systematic way.
The present theory however returns in some aspects to a pre-Montagovian
analysis: there is no obvious way in which alternative scopes can be derived.
For the time being, each argument is quantified off when it is supplied. That
feature can be eliminated, but that creates problems of its own (see below
in Section 17).

It is to be noted, though, that what appears here under the heading ‘down-
side’ is not really to be regarded as an argument against the proposal. Rather,
it is my conviction that precisely these limitations provide some insight into
the quirky nature of language. We noted, for example, that coordination of
transitive verbs, indeed heads in general, is problematic. If we read [25]
we are thus compelled to think that we must discard this kind of semantics.
However, I suggest it rather means that we have to rethink our syntax of
coordination. On the other hand, looking closer we can also see that not all
coordinated structures are equally good. Consider

John hates or somewhat dislikes his donkey.(69)
?John likes or beats his donkey.(70)
John walks or talks.(71)
?John is seen or walks.(72)

Though intelligible, these sentences seem odd. But there is no prohibition
against them. What I suggest happens (more with disjunction that with con-
junction, by the way) is that the formation of a new concept to be combined
with others is not successful if no uniform linking aspect can be found. One
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way of guaranteeing a uniform linking aspect is if the two are similar in
terms of θ-roles and linking aspect. I admit that the intuitions are vague;
moreover, a theoretical explanation would have to go into the detail of the
computation of the linking aspect. I suggest leaving that topic for further
research. Instead I turn now to diathesis.

14. G R  D

As we have seen above, there is—least in some cases—a possibility to
organise linking in terms of θ-roles or θ-cascades. What needs to be dis-
cussed, though, is the fact that the same predicate can be linked differently,
due to diathesis.

The grammatical roles are arbitrary. This is to be expected. Consider the
sentence

(73) Bert is seen by Alex.

Here, Bert is the subject even though it is object under Y . This brings us to
the notion of diathesis. For simplicity, let us assume that there is a transi-
tive verb is seen by. The concept associated with it is the same as that
of sees. It follows that we must link the same concept differently in the
passive. We can either use a different linking aspect (say, by using Z de-
fined by Z(c) := Y(c)`) or we can use the same linking aspect and just link
the arguments in a different way. The first option then makes us define the
following rule G(θ2):

G(θ2)(〈e, c,m〉, 〈e′, c′,m′〉)

:=



〈e′a�ae,S, JΠ1.(Z(m) ∩ Z(m′))KM 〉

if c = VP and c′ = NP
〈ea�ae′,VP, JΠ2.(Z(m′) ∩ (M × Z(m)))KM 〉

if c = VT and c′ = NP
undefined else

(74)

The second option rather asks us to define the rule as follows:
G(θ2)(〈e, c,m〉, 〈e′, c′,m′〉)

:=



〈e′a�ae,S, JΠ1.(Y(m) ∩ Y(m′))KM 〉

if c = VP and c′ = NP
〈ea�ae′,VP, JΠ1.(Y(m′) ∩ (Y(m) × M))KM 〉

if c = VT and c′ = NP
undefined else

(75)

One is as good as the other. Notice however that these definitions of G(θ2)
are different from the original one. So, what we need to do is to differentiate
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the active from the passive. This is done by adding the feature [±p] to the
verb, so that a full definition runs as follows:

G(θ2)(〈e, c,m〉, 〈e′, c′,m′〉)

:=



〈e′a�ae,S, JΠ1.(Y(m) ∩ Y(m′))KM 〉

if c = VP and c′ = NP
〈ea�ae′,VP, JΠ2.(Y(m′) ∩ (M × Y(m)))KM 〉

if c = VT[−p] and c′ = NP
〈ea�ae′,VP, JΠ1.(Y(m′) ∩ (Y(m) × M))KM 〉

if c = VT[+p] and c′ = NP
undefined else

(76)

This solves the problem of diathesis. However, the addition of gratuitous
syntactic features potentially proliferates inattestable distinctions. The prob-
lem is that we may in fact use the syntactic categories to transmit informa-
tion from syntax to semantics (for example: although we have eliminated all
reference to order in a concept, we may keep track of an intended ordering
by annotating the linking aspect in the syntactic category). To prevent this
abuse I propose to implement the following principle. Say that for a con-
text free grammar G ~x belongs to category A in G iff A ⇒∗G ~x. G defines
constituent occurrences of ~x in the obvious way.

I  I. Suppose that each constituent
occurrence of ~x can be substituted for every constituent oc-
currence of ~y and vice versa. Then ~x and ~y belong to the
same categories of G.

Let us see what options languages have. First, as we have said above, by
the principle of identity of indiscernibles, there must a difference in cate-
gory between actives and passives that reflects different distribution. This is
indeed the case. Thus, verbs come in two forms, active and passive. These
can be distinct in two ways: they can be distinct in form (exponent); or they
can be distinct in category. If distinct in form the linking is triggered via
the difference exponent. If distinct in category, the linking is conditioned
by the syntactic context. Both possibilities exist. English dative shift, for
example, leaves no morphological trace. But it changes the syntactic en-
vironment. The verb does not expect a to-PP any more, but instead two
DPs.

Alex gave a book to Cindy.(77)
Alex gave Cindy a book.(78)
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The principle of identity of indiscernibles does not rule that out. The form of
the verb (77) is the same as in (78) but it enters different syntactic contexts.
The two therefore have different category and are not indiscernible.

Our theory predicts that what will not happen is that there is a rule of pas-
sive that exchanges subject and object. For by the Identity of Indiscernibles,
active and passive will then be identical in category. If that is to, they will
enter the same constructions. There is nothing that can trigger the different
choice of linking aspect.

15. I  R

I shall briefly discuss the impact of our definitions on two topics: identity
and reflexives. First, notice that the concept associated with x1 = x2 is
actually {∅}, the ‘true concept’. This is so because it is generated by the set
{〈x, x〉 : x ∈ M}, which by (S4) is reducible to {〈x〉 : x ∈ M}, which is the
same as M. Using (S5) and the fact that M � 1 × M this is further reduced
to 1 (which is the set {∅}). Thus the fact that some variable is identical to
another makes no contribution. But surely we can issue statements to the
effect that one thing is the same as another. How is this therefore possible?

The answer lies in the following. From a metaphysical point of view
identity is indeed trivial: every object is identical to itself, nothing else
needs to be said. There can also be no two identical things. Thus iden-
tity statements really reveal the identity not of objects but of descriptions
thereof. Cognitively speaking I wish to think of the mental representations
as not containing duplicates of the same thing either. If we have different
images of Brutus the son of Caesar and of Brutus the murderer of Caesar,
then we think they are different. When we learn that they are the same,
however, our mental representation will change, too. It will no longer keep
separate images of the two. (Well, it might, but then I’d say we have not
fully implemented the identity.) I’d like to speak of identity therefore as
process meaning. Its “content” (qua concept) is trivial, but its effect in con-
structions can be substantial.

This may explain why the syntax of “to be” is special. If we were to
treat it like a transitive verb, say “like”, it would enter the construction
with a meaning that is empty—a needless thing indeed. Therefore, some
languages decide to leave the copula empty. In Hungarian, for example, the
third person copula (van) is left out in predicational sentences:

Ez az ember jó.(79)
This  man good
This man is good.
∗Ez az ember jó van.(80)
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Other languages, like English and German, keep the copula. However, the
construction is never symmetric. It seems that the copula rather functions
to promote the postcopular constituent to a predicate. In Finnish, where
there is a special case (the essive) the construction therefore looks like an
overkill:

Jussi on sairana.(81)
Jussi is sick-
Jussi is sick.

Here the copula seems to be required for the sole purpose of having an
inflection carrier, for example to spell out tense and mood. Indeed, in Hun-
garian the copula will appear as soon as we use past tense.

This behaviour of the semantics has another consequence. Consider a
reflexive verb like “to wash oneself”. It is theoretically possible to see this
as a transitive verb with the added semantic condition that the subject is
identical to the object. So, the binary constant wash-r′ is interpreted as
follows:

(82) I(wash-r′) = I(wash′) ∩ d1,2 = {〈a, a〉 : 〈a, a〉 ∈ I(wash′)}

Call a predicate diagonal if P(x, y) implies x = y. In Ancient Greek, the
mediopassive formed a diagonal predicate from a binary relation. What is
observed is however that mediopassive verbs are never transitive again. In
Montague Grammar this could be explained by saying that the mediopas-
sive has the following semantics:

(83) λP.λx.P(x)(x)

Apply it to something of type e → (e → t) and you get something of type
e→ t. However, in principle it is possible to assign to the mediopassive the
following semantics:

(84) λP.λx.λy.(P(y)(x) ∧ x = y)

This returns something of type e → (e → t) again. Thus, Montague Gram-
mar has no semantic explanation for this fact. It can only appeal to common
sense.

In the present semantics, however, the result follows. The semantics in-
sists that the mediopassive is a unary concept, not a binary one. This fol-
lows directly from the rule (S4). The rule obligatorily applies to all diagonal
predicates. (This does not exclude that syntax treats a diagonal predicate as
a binary one by using a transitive verb; to exclude that we need to restrict
the syntax-semantics coupling. This is however not our concern here.) This
should raise at least some suspicion: while the mediopassive overtly forms
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a diagonal predicate, it might not be always obvious that a predicate is di-
agonal. Say you form the following predicate: x inc y iff x is incident with
all the lines that go through x. Then this is in a diagonal predicate in stan-
dard Euclidean geometry and so our semantics should view this as a unary
concept, not a binary one. But it takes us a while to see this (if at all).
I fully agree. On the one hand, however, this is a performance problem:
we might not be aware of the consequences. On the other hand we should
realise that the model structure M is a private object (otherwise the com-
putations cannot be performed in the head at all). It follows that there is
no a priori reason to assume that a given predicate is seen as diagonal by
someone else. Only ostensibly diagonal predicates like mediopassives are
exempt from this problem. The example predicate inc and many others may
not be unary in someone else’s model structure.21 Hence we arrive at the
conclusion that for ostensibly diagonal predicates (mediopassives) there is
pressure for syntax to treat them differently from other binary predicates.

This is indeed the case; I mention here only one fact. Languages with
double agreement have interesting gaps in the paradigm. I give an exam-
ple. In Mordvin the verb has agreement markers for both subject and object
agreement (see [26]). Intransitive verbs conjugate only for subject agree-
ment, but transitives conjugate in addition for object agreement. However,
while there are agreement markers for 3rd subject and 3rd object agreement
(eg ‘he sees him’), there is no 1st subject and 1st object marker (eg ‘I see
myself’). Keresztes (p.c.) confirms that in such cases the verbs must be
reflexivised and then conjugated intransitively. This would be the same if
we want to express ‘he sees himself’ (as opposed to ‘he sees him’). This
shows that Mordvin really treats diagonal concepts differently. Similarly
the missing agreement markers in Potawatomi (cf. [19]) can be explained.

16. IM

The previous sections have exposed the standard techniques of systematic
argument linking: grammatical and thematic roles. We shall look briefly at
a method that defines linking independently of the actual syntactic structure.
It allows to perform linking of any number of arguments based on semantics
of the NPs alone. We remain in our original model. An NP denotes a subset
of this set. Let < be an ordering on this set; just any ordering, for example

21And be it only for the reason that the person is not fully aware of the standard princi-
ples of geometry. That people agree on all facts of the world, or at least on the denotation
of words, is wishful thinking.
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this one. (This ordering is to be kept constant.)

∅ < {A} < {B} < {C} < {D} < {A, B} < {A,C} < {A,D} < {B,C}
< {B,D} < {C,D} < {A, B,C} < {A, B,D} < {A,C,D} < {B,C,D}
< {A, B,C,D}

(85)

Then define the following function. It takes three inputs, a binary concept
m and two unary concepts p and q. We take a linking aspect Y .
Case 1. Y(p) < Y(q). Then put

(86) T (m, p, q) := JY(m) ∩ (Y(p) × Y(q))KM

Case 2. Y(p) ≥ Y(q). Then put

(87) T (m, p, q) := JY(m) ∩ (Y(q) × Y(p))KM

This algorithm does the following. The first step is as usual the choice of a
minimal set. The linking is now done independently of the surface order of
the arguments; rather, it is done on the basis of the linear order. It may be
checked that

(88) T (m, p, q) = T (m, q, p)

For suppose that Y(p) < Y(q). Then on the left hand side we are in Case 1,
while on the right hand side we are in Case 2. But the two cases link the
arguments inversely. Similarly if Y(p) > Y(q). The case Y(p) = Y(q) means
p = q, and so again the result follows. So the function does not care even in
which order the NPs are arranged.

Such systems do exist. Inverse marking is an implementation of this idea.
It starts with a notion of rank, typically animacy. Animacy is a semantic
notion: the rank is not decided on the basis of what a thing is called but on
the basis of what it is. In Plains Cree the following hierarchy is used:

(89) 2 > 1 > 1dual inclusive > 3prox > 3obv

Finally, the linking aspect is defined as follows. Let m = JMKM for some
binary relation M. We find (at least ‘normally’) that in M either for all
〈x, y〉 ∈ M x is higher in agentivity than y; or for all 〈x, y〉 ∈ M x is lower in
agentivity than y. In the first case let Y(m) := M; in the second let Y(m) :=
M`. This fixes the argument places. Now, the verb has two arguments, and
we assume that they are both immediate constituents of the sentence. Then
the verb combines with both arguments at the same time; there is no subject
and object. The meanings are combined using T . The two arguments may
or may not be positionally distinguished.
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If English were like Plains Cree, English could afford freer word order.
For the following sentences would equally mean ‘you see me’:

I see you.(90)
You see me.(91)

The system has an immediate problem: How do we express the meaning ‘I
see you’? For that we need different mode of composition. Define in Case
1 above:

(92) U(m, p, q) := JY(m) ∩ (Y(q) × Y(q))KM

In Case 2 put

(93) U(m, p, q) := JY(m) ∩ (Y(p) × Y(q))KM

Finally, here is the mode for sentence meanings:

c1(〈e,V, p〉, 〈e′,NP,m〉, 〈e′′,NP, n〉) := 〈ea�ae′a�ae′′,S,T (p,m, n)〉(94)

c2(〈e,VI, p〉, 〈e′,NP,m〉, 〈e′′,NP, n〉) := 〈ea�ae′a�ae′′,S,U(p,m, n)〉
(95)

Here, VI is the category of inverse marked verbs. There is an affix in Plains
Cree that tells us whether or not a verb is interpreted directly (that is, using
T ) or inversely (U).

Additional complications quickly arise. The ordering (89) is actually far
from linear. Basically, it fails to distinguish any 3rd participants from each
other. To make up for that one can mark them to be ‘proximate’ and ‘distal’
or ‘obviative’. The proximate takes the slot of the higher ranked argument.
There are ways to implement that strategy too (it is basically a form of case
marking).

Notice that as we have repeatedly argued, there can be no rule that sim-
ply exchanges subject and object. Inverse marking looks deceptively like
that. However, it turns out that direct and inverse are not syntactically iden-
tical. The pronouns are of a different grammatical category. In Plains Cree,
for example, the sentence ‘I hit the man’ cannot be used with proximate
marking on man, if the verb is marked ‘direct’; this is because 1st person is
higher and direct marking makes it the subject. Proximate marking is licit
with the inverse form, though. In this way, direct and inverse marked verbs
are syntactically distinct.

17. K  S O

The idea of quantifying an object away as soon as the function has been
applied, has been the basic principle of Montague Grammar. Montague
Grammar interprets every expression by a closed λ-term and the only ad-
missible interpretation is function application. If one is using relations
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rather than functions, then one has to translate λx. f (x) into x2 � f (x1),
and use identification of variables with additional quantification to achieve
the same result. If we systematically eliminate λ-abstraction, we end up
with functions of the form f (~x), which take as input a sequence of elements
of certain basic type and return a value of given type. (If you like, they
are elements of a many sorted algebra). Function application is a binary
schematic operation that takes two such functions and identifies the result
of the second with a given argument of the first and then quantifies away
the auxiliary variables.

Thus, function application becomes the following map:

(96) 〈x2 � f (x1, ~y), h(x3,~z)〉 7→ ∃x2.∃x3.x2 � f (x1, ~y) ∧ h(x3,~z) ∧ x1 � x3

One of the intermediate variables can be made to disappear by applying a
substitution:

(97) 〈x2 � f (x1, ~y), h(x3,~z)〉 7→ ∃x2.x2 � f (x1, ~y) ∧ h(x1,~z)

In this way we can keep the number of free variables rather low. However, in
order to solve the problem of inverted quantifier scopes, Montague departed
from the previous scenario as follows.

The function λx1.λx2.see′(x2, x1) (the meaning of sees) was applied first
to some variables, say x8 and x67 to give see′(x67, x8). These variables are
quantified away only later. With the names of variables now on display the
approach is vulnerable to the objections raised above. This is because the
name of the variables is immaterial and nothing in the surface string tells
us which one to choose. What is more, there is a popular doctrine (first
implemented in DRT) that the meaning of pronouns is something like xi �
x j, where xi is a fresh variable and x j is a variable previously introduced. If
this is so, and given that pronouns refer to elements outside of the sentence,
we cannot even assume that all variables are quantified away at the end
of the sentence. This has led to several changes in semantic theory, all
trying to capture the fact that variables are visible as far to the right as
possible by semantic principles. (For example, variables are not visible
if inside a negation or a universal quantifier, but they are visible if inside
an existential.) This means that the strategy we have employed above of
quantifying away variables when no longer needed does not work in natural
language. We should refrain from quantifying them away.

Again there are many ways in which this may upset the compositional
process. First, in keeping the variables alive we may create concepts of ever
increasing length. However, the linking mechanisms are generally defined
only for predicates of low arity; at a certain point the linking mechanism
becomes indeterminate. (This is factually behind the Theorem 4.) We shall
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give only one among many examples. Consider

(98) Alex thinks that Bert thinks that he is a fool.

The pronoun he has three potential antecedents: Alex, Bert or some other
individual. There are several ways in which we can remove the ambiguity
of the sentence. We may point at the person in question. This is tantamount
to adding more information to the pronoun; in order to deal with that we
need a more comprehensive treatment of meanings, one that includes ges-
tures. Similarly, in sign languages, arguments are put into virtual space,
they are assigned spatial positions and are retrieved from there. If I point at
a location, I mean the individual that has been assigned that location. This
is a way to establish indices without numbers; this is a viable procedure
but it is not the one that spoken languages use. Mathematical discourse is
again different: we assign names to things for the purpose of unique iden-
tification. (Let PQR be a triangle... is a way to introduce a triangle
defined by three points, P, Q and R.) Again, this is perfectly acceptable but
not the way languages work. Instead, languages operate by what [11] call
vehicle change. The expression used to identify an object may be differ-
ent depending on syntactic criteria. In the case of Fiengo and May they
are mostly interested in the question of pronouns versus reflexives versus
empty and the way that reflects on syntactic identity. But the metaphor
may be used here too: rather than use a pronoun one may use a description
that is enough to single out the correct antecedent. This is reminiscent of
the distinction between referential and attributive description. The referen-
tial part of the description actually serves in establishing the linking while
both the referential and attributive parts enter the semantic representation.
We shall not elaborate that further; suffice it to say that the present theory
predicts the necessity of descriptive content in referential expressions if a
potentially unbounded number of columns is kept.

18. D A

Now we are ready to face the question: is there a compositional context
free grammar for Dutch? Even though there can be no formal proof that
no such grammar ever exists (which in turn can be proved) there are good
reasons why such grammar is not available for Dutch. The present proof is
based on the following assumptions.

(1) Dutch has cross serial dependencies which are unbounded in length.
(2) Meanings are concepts (in the technical sense of this paper).
(3) The admissible operational meanings are: identification of argu-

ments and existential quantification.
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The last point needs emphasis: I am restriction the behaviour of the mean-
ings that the construction alone can add to the following: an operation that
takes, say, two concepts c and d as input, may only align them using a link-
ing aspect (possibly different aspect for different arguments), then identify
certain columns (intersect with some of the diagonals di, j), and apply some
of the projections Πi. Finally, it must return the concept. In this way we
ensure that semantics is not destructive: every concept created is used in an
essential way in the structure.

Suppose there is a compositional context free grammar; then by the Pump-
ing Lemma large enough strings can be decomposed into

(99) ~u~v~x~y~z

such that all of the following strings are also in the language:

(100) ~u~vn~w~xn~y

It is not hard to see that ~v must consist of a sequence of noun phrases, and
~y of a sequence of verbs. In what is to follow we need one more piece: the
existence of some ~v1 with different meaning that can be put in for ~v. In other
words, the following should be a subset of Dutch:

(101) {~u~cn
i ~w~x

n~y : n ∈ N, for all i ≤ n:~ci ∈ {~v,~v1}}

To see that we can indeed have ~v1, notice that there are at least two different
NPs (in fact, many more). Even if we assume that there is only one raising
verb, the number of sentences of length n grows exponentially in n, since
any noun phrase slot can be filled with at least two members (irrespective
of the structure that we assign to it; this just concerns the number of Dutch
sentences). If only the pumping pair 〈~v, ~x〉 existed, not enough strings could
be generated. (Their number would in that case be linear.)22 The same ar-
gument can be used to show that also some ~x1 exists with meaning different
from ~x, but we do not need that.

Now we turn to the semantics to see whether this grammar allows for
compositional interpretation. We assume that the meaning of ~w has been
established and is «ϕ»M . In the next step we take in the meanings of ~v and
~x. However, notice that since we can have any number of ~v and ~x in a row,
we cannot simply identify the variables. Let us look at this in more detail.
To make matters simple, we assume that the meaning of ~v is «β(x1)»M , with
just one free variable, the meaning of ~v1 is «β1(x1)»M , and the meaning of
~x is «γ(x1, x2)»M (these verbs have a subject and an object). Also, we think
of the ~v and ~v1 as noun phrases (rather than sequences thereof) and of ~x as a

22There is a loophole in the argument: it could be that we have a pumping pair 〈~v1, ~x1〉

which simply adjoins at different places than 〈~v, ~x〉. We have sidestepped that possibility,
the proof will go through regardless.



46 MARCUS KRACHT

verb, with a subject and an object (in addition to a complement infinitive).
Once the argument is established it is straightforward to extend it to the case
where the formulae contain more free variables and the constituents are less
simple. For simplicity we also ignore variables present in other formulae.
Let’s align strings and meanings.

(102)

~u ~v1 ~v1 ~v
«α»M «β1(x1)»M «β1(x1)»M «β(x1)»M

~w ~x ~x ~x ~y
«ϕ»M «γ(x1, x2)»M «γ(x1, x2)»M «γ(x1, x2)»M «δ»M

Now, the minute we enter these constituents into the derivation we have to
replace the variables in the formulae to avoid a clash. First of all, since the
verbs link subject and object, we can use the γ’s to establish an order on the
variables. So, we fix the variable names by looking at the γ. Namely, re-
name the variables such that you only have formulae of the form γ(xi, xi+1).
Now, if the first variable on the left is eventually called x1, too, it becomes
the highest subject, and if the second variable on the left receives the same
name x2 it becomes the second highest subject, and so on. This means that
the lower row is as follows:

(103)
~w ~x ~x ~x ~y
«ϕ»M «γ(x1, x2)»M «γ(x2, x3)»M «γ(x3, x4)»M «δ»M

(To make this clear: the actual name of the variable is arbitrary, so we are
allowed to fix their names arbitrarily at this point. It would be more exact
to use the brackets [−]M , since we want to use the names later. Nothing
should hinge on the choice of names, though.) Thus, trusting that we can
in this way identify the variables used the γs, let’s turn to the β formulae.
In a nested structure, their order would be x3x2x1 in the first row. Notice
however that the assignment x2x1x3 yields a nondistinct meaning from the
assignment x1x2x3:

«α ∧ β1(x2) ∧ β1(x1) ∧ β(x3) ∧ ϕ ∧ γ(x1, x2)
∧γ(x2, x3) ∧ γ(x3, x4) ∧ δ)»M

=«α ∧ β1(x1) ∧ β1(x2) ∧ β(x3) ∧ ϕ ∧ γ(x1, x2)
∧γ(x2, x3) ∧ γ(x3, x4) ∧ δ)»M

(104)

Let us now trace the steps in the derivation. We start with ~w and meaning
«ϕ»M . The first step is to form the constituent ~v~w~x with meaning

(105) «β(x3) ∧ ϕ ∧ γ(x1, x2)»M .

Thus, the variables of the noun phrases are not identified with any of the
variables of the verbs. Assume that in the second step we get ~v2~w~x2 with
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meaning

(106) «β1(x2) ∧ β(x3) ∧ ϕ ∧ γ(x1, x2) ∧ γ(x2, x3)»M .

with the variables correctly identified. Then we have committed ourselves
to the identification of the leftmost noun phrase as the first level object (and
second level subject), and the rightmost noun phrase with the second level
object (and hence the third level subject). This is not in itself dangerous;
however, we do also need to care about the case in which we want to iterate
more than three times. In this case, we do not identify and instead get

(107) «β1(x4) ∧ β(x5) ∧ ϕ ∧ γ(x1, x2) ∧ γ(x2, x3)»M .

Suppose we continue on this line, keeping all the variables distinct, up to
level n, where we want to start identifying. In comes a constituent ~x with
meaning γ(x1, x2) and either a constituent ~v with meaning β(x1) or ~v1 with
meaning β1(x1). We quickly rename the variables in γ(x1, x2) to γ(xn, xn+1).
We now however also want to identify the variable of the rightmost β(x1)
with the lowest subject, which is now called xn. The situation is now this:
the variables occurring in a β-formula form a set U, the variables occurring
in a β1-formula form another set U1 disjoint from U. One of U∪U1 must be
identified with xn. But which one? It must be in U if the last member of the
noun phrase series is ~v, and U1 otherwise. But precisely this information is
lost. This completes the argument.

Recall also that the meaning you have in your hands is quite a weak one:
it is something like there is a Mary, there is a John, there is a child, someone
lets someone (do something), someone helps someone (to do something),
someone is swimming and so on. But any indication as to who is doing
what to whom is missing. It was encoded in the order but now it has been
lost. The only way to make the order information available to semantics is
by projecting it into the syntactic derivation. That is, if you need to com-
municate to semantics the fact that the string for x2 precedes the string for
x3 in syntax, you must see to it that x2 is processed before x3. This is why
Dutch cannot be context free.

Notice that I have not assumed that merge is obligatorily accompanied by
any identification of variables, as I did in [27]. Although I think the latter
view is the correct one, the argument goes through anyway.

19. V S  D

The previous discussion was still a little informal. Moreover, it is not
clear which structures if any would allow for a compositional interpretation.
We shall therefore take a second look at the matter. We shall study again
the cross-over dependencies. The constituents in a sentence each contribute
a meaning «ϕ(~x)»M containing at least one variable. The NPs are different
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from infinitives in the following way. The different NPs each contribute at
least one new variable, but the variables they contribute are independent of
each other. The infinitives however contribute two variables each (at least),
and they introduce a dependency relation between them.

We make the following assumption. The meanings of raising predicates
have the form «γ(e, x1, x2)»M , for some event e and objects x1, x2. If e
and e′ are different events, or if x1 , x′1 or if x2 , x′2 then we assume
«γ(e, x1, x2)»M , «γ(e′, x′1, x

′
2)»M . (If this does not hold, matters can only

get worse.) A meaning that does not involve a raising predicate is said to be
of level 0; an event is of level n+ 1 if it has the form «γ(e, x1, x2)»M , where
γ is a raising predicate, and e is of level n. This allows for every meaning
m to say which level it has. In what is to follow we shall suppress the event
variable.

Suppose we want to compositionally attribute meanings to a sentence.
We assume that constituents are any sets of occurrences of the sentence, not
necessarily a continuous one. The constituent has an associated meaning
m, which is computed from the immediate subconstituents, using the above
operations. We assume that the NPs contribute formulae of the form α(x1)
(just one variable free). Possible NPs are Jan, een kind (‘a child’), een
vrouw (‘a woman’), and so on. A verb contributes a formula of the form
γ(x1, x2). Let the entire sentence be as follows.

(108)

NP1 NP2 NP3 · · · V1 V2

α1(x1) α2(x1) α3(x1) · · · γ1(x1, x2) γ2(x1, x2)
V3 · · ·

γ3(x1, x2) · · ·

A constituent consists in a subset of the NPs and a subset of the Vs. Let
NPi be in a constituent H with meaning m = «ϕ»M . We say that NPi is
unattached if there is j such that ϕ � αi(x j) and moreover: if ϕ � δ(x j)
then αi(x j) � δ(x j). This means that the NP-meaning is concatenated, no
identification of variables has been applied. This means that the NP does
not know to which of the verbs it belongs. The notion of unattachedness is
translated into structure as follows.

Lemma 9. NPi is unattached in H iff H does not contain Vi or Vi+1 (the
latter only if Vi+1 exists).

Proof. Let O be the set of i such that NPi is in H; and P the set of i such
that Vi is in H. The meaning of H is (n large enough):

(109) «
∧
i∈O

αi(xn+i) ∧
∧
i∈P

γi(xi, xi+1) ∧
∧

i∈O∩P

xn+i � xi»M

(This applies when H does not contain the lowest, nonraising verb, but the
other case is quite similar.) When NPi is entered, the variable of NPi is
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identified to some other variable iff there is a verb that takes the NPi as its
argument. �

Lemma 10. For every compositional grammar of Dutch there is a bound
on the number of unattached NPs.

Proof. Suppose that we only have one function for the composition of
meanings. We shall show that the bound is 1. Suppose the contrary. Then
there is a constituent H′ containing H at which either of the NPs, say NPi,
is attached. Without loss of generality we may assume that H′ is the imme-
diate constituent above H. To form the correct meaning of H′ we must add
the clause xi = xn+i. However, nothing prevents us from adding x j = xn+i

and thus end up with the wrong meaning.
The argument goes as follows. Case 1. H′ does not contain NP j. Form

the sentence S ∗ by exchanging NPi and NP j, and assume that it has the
constituents that S has, with NPi and NP j exchanged. In particular, it has
a constituent H∗ and a constituent H′∗. It turns out, though, that since H∗

also contains NPi and NP j, and since both are unattached, H∗ has the same
meaning as H. When H′ is formed, NPi becomes attached. This can be so
only because Vi or Vi+1 is added. Therefore, NP j becomes attached in H′∗

(because it takes the place number i in S ∗). This time, however, we want
to add the equation x j = xi+n. Case 2. H′ does contain NP j. Similarly.
Contradiction.

It thus turns out that in order to do the next step we need to know some-
thing about the order of NPi with respect to NP j. In principle, there could
be a convention that orders any two sets of objects, so that if we have some
number of unattached NPs, they are implicitly ordered. The meaning func-
tion that assembles them uses that ordering to determine which equation to
add. However, if that function is to do its job properly, we need at least n
different functions if the number of unattached NPs is at least n. Since the
number of functions is finite, this concludes the proof. �

Let us see why we could not prove the stronger claim that the bound is 1.
We may introduce an ordering on sets of individuals. At each stage, when
we have two yet unattached NPs, say een kind and een vrouw, we use
the convention to implicitly order them. Notice namely that our meaning so
far is something like

(110) «woman′(x1)»M • «child′(x1)»M • «ϕ»M = [W ×C × M]

where P is a relation in «ϕ»M . This allows us to use names on the variables
again to say which one should be identified with the subject or object of
some verb. We have a function f• that always chooses the variable of the
lowest ranked NP, and a function f • that always chooses the higher ranked
variable. Suppose that W < C. Then f• will attach the variable x1 of the
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first argument, f • the variable of the second. This is precisely the strategy
of inverse marking that we have talked about earlier, now taken to its limit.

Notice however that all this means that the order to the NPs has been
coded, though in some hidden fashion. How can that be? It can be in the
following way: the category of a constituent H is different from that of
H′ if H arises from permuting two unattached NPs. Thus, by devising a
suitable category system it is possible to encode into the syntactic category
what permutation has been applied to deviate from the ‘standard’ order. So
far, nobody has proposed such a system at full scale and it does not seem
to be realised in languages except for monoclausal verbs. In this linking
system, the arguments may come in any order, and when they are merged
into the verb it is decided on their relative rank whether they will be subject
or object. Notice however that in order to keep a bound on the number of
syntactic categories, the system can apply effectively to a bounded number
of arguments only. This is virtually the same with all the systems that we
have looked at (grammatical roles, thematic roles). Dutch at any rate does
not have such a system.23

The interested reader is asked to verify that CFGs require the introduction
of constituents with an unbounded number of unattached NPs, thus proving
again our claim. Now however we shall propose two structural accounts
that work in the correct way.

À The verb clustering account (due to [9]): form a constituent from the
verbs, taking them in either from left to right or from right to left.
After having formed the verb cluster, take in the NPs in descending
order. These are the structures that CCGs generate (see [41]).

Á Form the constituents by taking in NPi together with Vi. This is
the approach proposed by Mike Calcagno in [3] for Swiss German.
This leads to discontinuous constituents.

Recently Hubert Haider [18] has argued in favour of an account that cycli-
cally reorders the sequence of verbs. This is also compatible, provided that
we accept compositionality. One can mix these strategies. Notice that Ger-
man can be both generated using a CFG and using verb cluster formation,

23This requires proof even though the matter is only of peripheral interest. Effectively,
if any two NPs with different meaning give rise to the same linking so that linking is com-
pletely dependent on the position in the linear string, this eliminates any hope of finding
an inverse system in Dutch. This is seen as follows. In the inverse linking scheme there is
no difference in NP1NP2 and NP2NP1. Thus, if order has an effect on linking this must be
made known to semantics. The only way to this is to establish enough syntactic categories
to discriminate the linking patterns. Again, using the Identity of Indiscernibles we see that
Dutch does not have them.
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but there seems to be evidence (from coordination) that both structures ex-
ist concurrently. Structures that definitely do not work include the LFG
analysis of [2], which uses an NP-cluster.

20. C  T G

Let us return to the issue of compositionality in transformational gram-
mar. There are two notion of compositionality here: one is based on the
derivational cycle, and the other is based on the final output (LF). The first
conception starts with meaning assigned by the lexical items and applies
semantic rules in tandem with syntactic rules. This is historically the older
proposal. Meanings were established at deep structure. Furthermore, it was
assumed that transformations do not change the meaning of the sentence.
The latter is as far as I can see an additional stipulation, not warranted by
the requirement of compositionality. It is this latter stipulation that led to
the new conception after it was shown that the two assumptions were not
cotenable. It is nowadays agreed that meanings are assigned to structures
at LF and that at LF the assignment is compositional in the sense that it
can be computed bottom up. To the extent that LF is itself derived in the
transformational cycle it may be possible to make the latter algorithm truly
compositional: it may be possible to transform it into a procedure that is
coroutined with the actual structure building operation. This would require
the following setup: we start with meanings assigned in the lexical signs
and apply move and merge to them. Transformations can be effect by oper-
ations on meanings of the component signs, just like merge. I am not aware
of such a proposal within the current framework but it seems to me the only
viable one.

[20] present the now current approach to semantics in transformational
grammar: meanings are assigned to LFs and are computed bottom up. Inas-
far as that computation of meaning is a process (here: a mental process)
that involves meanings, the only difference between proposals inside MP
and others are that the first assumes a different constituent structure as a
basis for computation. In order to show that this proposal is successful, two
things need to be established. The first: that LF can be generated by itself,
without recourse to semantics. The second: that the structures generated
at LF are compositionally interpretable. I think that it is possible to define
syntactic structures that meet all these criteria. This follows for example
from a combination of three results: that minimalism can be given the form
of [38], that this version of minimalism is weakly equivalent with Linear
Context Free Rewrite Systems (LCFRSs) [33] with enough overlap in con-
stituent structure and that the sentential structures of Dutch can be described
using a 2-LCFRS.
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Notice that weak equivalence is not enough, for we need to be able to
have the constituents that allow for computation of the meanings. For ex-
ample, the classical GB analysis of Dutch (and German for that matter) has
been the following. Clauses are derived in centre embedding fashion, like
this (constituents shown using brackets):

(111) [NP1 [NP2 [NP3
· · ·V3] V2] V1]

Next the verbs move, starting with the lowest and adjoin to the next higher
head either to the left (German) or to the right (Dutch). This gives

[NP1 [NP2 [NP3
· · · tn−2] tn−1] tn][[[· · ·V3

n−2] V2
n−1] V1

n](112)

[NP1 [NP2 [NP3
· · · tn−2] tn−1] tn][V1

n [V2
n−1 [V3

n−2 · · · ]]](113)

These structures unfortunately will not qualify. Both effectively create an
NP-cluster and a V-cluster. As we have shown above, there is no way to
create the meanings compositionally. This incidentally also holds for the
constituent structure argued for in [2]. However, the double-structure ap-
proach of LFG calls for the application of the principle of compositionality
to the derivation and not the c-structure. It is beyond the scope of this paper
to do that.

Let us look in a more detail at the approach that is advocated in [20]. The
algorithm is bottom up. Syntactic structures are trees where the labels con-
tain categories and indices. The terminal strings contain the lexical entries,
complete with a typed λ-term for the denotation of the respective entries.
Some empty categories are interpreted as variables whose index is the one
that syntax assigns them. (The text employs a different notation; that is a
matter of superficial detail.) There are a handful of operations (see Page
95). However, like Montague’s T14 and T16 ([6]), there are formation rules
that are parametric. They use a number as a parameter (see [28], p. 440ff.,
for an analysis in relation to compositionality). The basic schema is this.
The sentence

(114) Paul loves every woman.

is given the structure

(115) Every woman5 [Paul [loves t5]]

In the first step, t5 is translated as x5 and fed to the function love′. Then
Paul is translated into the constant p and fed as well:

(116) Jevery womanK5love′(p, x5)

At this point the choice of indices becomes relevant. The phrase ‘every
woman5’ is interpreted as quantifying over some variable, namely x5, and it
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is the same variable that sits inside the VP, producing accidental capture of
x5.24

Jevery womanK5(love′(p, x5))
=(λP.∀x5.woman′(x5)→ P)love′(p, x5)
=∀x5.woman′(x5)→ love′(p, x5)

(117)

Under the current approach, it is not possible to share names of variables in
this way. It actually does not matter whether one thinks of the previous as
being derived as given or whether one likes to insert an abstraction, as [20]
suggest. It only shifts the problem to the definition of abstraction. Namely,
Heim & Kratzer suggest that the meaning of ‘every woman’ is

(118) JeveryK = λQ.λP.∀x.Q(x)→ P(x)

The structure is now the following in place of (115).

(119) Every woman [5 [Paul [loves t5]]]

The interpretation of the constituent [i α] is λxi.JαK. It is at the abstraction
step where we need information about the index.

The mechanism assumes that syntax supplies the indices to semantics
which then uses them in whatever way it pleases. The same holds for [23].
Effectively, syntax assigns indices to constituents which get translated into
variables; the index i at mani says that the variable xi must be fed to the
function man′. (In DRT, it is taken to mean that xi must replace some
canonical variable, say x1, in the open formula, here man′(x1). But these
are questions of detail.) DPL and subsequent proposals have not managed
to change that. Alphabetic innocence has not been regained, except in the
form that Kees Vermeulen gave it in [43].

Apart from the use of indices in predicting the distribution of reflexives
and pronouns, indices are actually a purely semantic device. Their only
reason of existence is to get the interpretation right. Surface strings do
not contain indices. There is no expression man1 in English. (That’s why
the meanings are assigned to LF, where such things are claimed to exist...)
But suppose we grant the use of variables. Suppose we grant that syntax
happily assigns indices: it still won’t help. For as I have been arguing at
length, semantics does actually not use them. Even if syntax passes down
certain numbers, semantics will kindly ignore them. The variables are there
only for the eye. Not only does it not make a difference whether you call
a variable x1 rather than x5 in a formula—I claim that there is no variable
with that name to begin with. I will not repeat the arguments given so
far. Here I will point out a few facts about the present view that one must

24Although it the capture of the variable is intended, you should think of it rather as an
effect of the way syntax supervises semantics. For semantics the capture looks accidental.
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address before rejecting it. The first is that the present proposal shows why
languages employ devices such as θ-roles, for example. Transformational
grammar as far as I see has only been concerned with the question of how
θ-roles function rather than why they are there to begin with. Similarly for
agreement, diathesis and many other basic traits of languages. If it seriously
envisages their elimination from syntax this only narrows the scope of the
theory, although technically it is the correct move to make. It would not,
of course, make it any easier to say why languages have them. Under the
official view, it is the job of semantics to do that. However, I see no theory
in formal semantics that would explain the existence of θ-roles rather than
telling us how they function if they were to exist.

The next objection I raise is that the use of indices results in a misun-
derstanding of the role of the languages of logic. It is a nice thing to use
logical formulae to explicate meanings, as Montague did; it is another to
couple that with a mentalist conception of language. The use of indices for
our mental language in the way they function in logical languages encap-
sulates assumptions about the human mind that may well turn out be false.
Indeed, I claim that they are.

But now I hear my critics say: listen, surely we need some kind of regis-
ter, a peg that unites all the information concerning a certain individual, and
it is precisely the index that provides this peg. Can we not simply point at an
abstract location and keep it fixed for a while like names in a mathematical
proof? Fair enough, I say, but that does not mean that we use numbers to
do that. What if you have to call a variable by a property in the sense of a
θ-role? What if there is a limited array of names that you may use to call
a variable? Moreover, there are different ways that variables may be used.
Maybe it so happens that what we are really using are anonymous variables,
of the sort occurring in Prolog, whose name is given by Prolog itself, so you
cannot make prior reference to it since you cannot call it by its name. Or
perhaps we are dealing with the variable _ or the backreferences \1, \2 etc.
of Perl, whose value changes depending on the context? To use variables
does not mean you use them the way that logicians use them.

These questions are not minor issues. To request an unlimited resource
of memory locations together with a device to manage them is no small
wish. Recall that you can code any amount of data into a number, so there
is unlimited communication between syntax and semantics possible, at least
in principle. Thus, anyone wishing to give the principle of compositionality
some bite will have to exclude this device.
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21. C

The present work argues for a radical rethinking of what the semantic
representations are. I claim that these representations do not contain any in-
dication of variable names, nor of their multiplicity. This move complicates
the algorithm of meaning composition substantially; one must so to speak
establish a temporary naming scheme for the variables, and then manipulate
the meanings before the variables sink back into anonymity. In view of the
fact that the variables are anonymous, the temporary naming scheme must
be established using some kind of meaning based criteria, be it in form of
a critical set that aligns the variables by using concrete tuples, or by means
of thematic roles that manage to single out the variable we look for in a
sufficiently precise way. This plot motivates a number of devices that one
finds on a regular basis in languages: thematic roles, grammatical roles,
diathesis, and so on. Furthermore, principles like UTAH, predicting a uni-
form deep structure for verbs with identical θ-grids suggest that our view
is correct. For they say that at the interface between syntax and semantics
all that matters are thematic roles. It also shows us that the composition al-
gorithm trades on an understanding of how to extend the relevant concepts
to yet unseen cases and expand the linking aspect. Though the theory may
become technically difficult, I claim that the complexity is not an artefact
of the theory. It is a result of the way things are. It puts our noses right into
the middle of the problems that natural languages actually face on a daily
basis.

As a particular benefit I have looked at the sentential structure of Dutch.
This is an interesting case insofar as the theory exposed here actually pre-
dicts that Dutch is not strongly context free even if weakly CF. Previously,
such claims were mere speculations.
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22. A: HMM?

To get used to these new concepts, let us calculate a few of the meanings
in the above sense. First we need a few definitions on permutations. A
permutation can be written in two ways. The first, more explicit version is
this.

(120)
(

1 2 3 4 5 6 7
3 1 2 4 7 6 5

)
This says that the permutation maps 1 to 3, 2 to 1, 5 to 7, and so on. A more
compact way of saying this is as follows. We write the numbers down in the
order the permutation maps them to each other. We start with 1. It is mapped
3, 3 to 2, 2 to 1; once we have returned to an already existing number, we
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enclose the sequence in brackets like this: (132). In this sequence, each
element is mapped to the next in the sequence, and the last is mapped to the
first. Next we pick an element that we have to yet mentioned, say 4. It is
mapped to itself, so we add (4). Next we pick 5. It is mapped to 7 and 7 to
5, so we add (57). This is now the complete representation:

(121) (132)(4)(57)(6)

Each bracketed sequence is called a cycle. The number of elements are the
length of the cycle. Cycles of length 1 are generally dropped, so we arrive
at the following notation.

(122) (132)(57)

The identity function will have an empty representation (all cycles have
length 1 and may be dropped). We write it as (). Notice that the order inside
the cycles is important, while the order of the cycles is not.

If π and π′ are permutations of the same set, then π ◦π′ also is a permuta-
tion, where (π◦π′)(i) = π(π′(i)). Also, the inverse π−1 is a permutation. The
set of permutations of a set is thus closed under composition (also called
multiplication) and inverse; such sets are called groups. 25

Now let U = {a, b} be a universe with just two objects. There are ex-
actly two 0-ary relations, ∅ and {∅}. They are the denotation of «⊥»M

and «>»M . As for unary relations, notice that {a, b} is the universe, and by
(S2) the same as {∅}. Trivially, the empty unary relation is the same as the
empty 0-ary relation, so have added only two meanings: «x1 � a»M and
«x1 � b»M .

Next we look at binary relations. There are four pairs of objects:

(123) A := 〈a, a〉, B := 〈a, b〉, C := 〈b, a〉, D := 〈b, b〉

If we permute the first and the second column, we map A to itself, B to
C, C to B and D to itself. There are 16 sets that can be formed from the
four entries. However, the empty set and the set {A, B,C,D} are already 0-
ary meanings; similarly, {A, B}, {A,C}, {B,D} and {C,D} are already unary
meanings, by (S2). This leaves us with the following:

M1 := {A},M2 := {B},M3 := {C},M4 := {D},M5 := {A,D},(124)
M6 := {B,C},M7 := {A, B,C},M8 := {A, B,D},M9 := {A,C,D},
M10 := {B,C,D}

M1, M4, and M5 are subject to contraction and therefore eliminated. The
permutation maps M2 to M3, and M8 to M9. This gives us the following

25More precisely, the quadruple 〈G, ·,−1 , 1〉 is a group, where · is a binary associative
operation, x−1 the inverse with respect to ·, and 1 the unit.
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2-sets with corresponding formulae (for the given universe {a, b}).

{M2,M3} = «(x1 � a) ∧ (x2 � b)»M(125)
{M6} = «¬(x1 � x2)»M(126)
{M7} = «¬(x1 � b) ∨ ¬(x2 � b)»M(127)

{M8,M9} = «¬(x1 � a) ∨ ¬(x � b)»M(128)
{M10} = «¬(x1 � a) ∨ ¬(x2 � a)»M(129)

Thus, there are only 5 2-sets, or 5 genuinely binary relations up to equiva-
lence.

Let us now turn to ternary relations. Put

(130)

A :=〈a, a, a〉 E :=〈a, b, b〉
B :=〈a, a, b〉 F :=〈b, a, b〉
C :=〈a, b, a〉 G :=〈b, b, a〉
D:=〈b, a, a〉 H:=〈b, b, b〉

There are 28 = 256 subsets. However, these quickly reduce. First, notice
that there are six permutations of positions: (), (12), (13), (23), (123), (132).
Here is how they permute the triples:

(131)

() (12) (13) (23) (123) (132)
A A A A A A A
B B B D C C B
C C D C B D D
D D C B D B C
E E F G E F G
F F E F G G E
G G G E F E F
H H H H H H H

We can exclude right away all sets that contain just one triple; this is because
in a triple two elements must be equal, to the set is subject to contraction.
This leaves us with sets of cardinality 2 to 7. As it turns out, there are 65
3-sets. To give just one more number: there are 3983 4-sets (out of a total of
216 = 65536 sets of 4-tuples). The numbers are large, but far smaller than
the sets of all relations.
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