
Modal Logic Foundations of Markup Structures in
Annotation Systems

Marcus Kracht
Fakultät LiLi

Postfach 10 01 31
33501 Bielefeld

Germany

January 21, 2011

Abstract

In this paper I explain how modal logic is used to talk about structured
documents and how this relates to markup languages, in particular XML.
It will be seen that there is a tight connection between XPath and dynamic
logic over ordered trees. This connection allows to get a good insight into
the semantics and complexity of XPath.

1 Introduction

Markup structures have established themselves as a quasi universal tool for stor-
ing and sharing data. Deriving ultimately from attribute value systems, they have
become very powerful through the use of recursive embedding. The most known
format is perhaps XML, but similar formats have been used before that. What is
more, typed feature structures—known mainly from computational linguistics—
are quite similar (see [4] and [5], for an introduction to XML see [18]).

Formal work on markup languages has focused on the computational behaviour
as well as the expressive power. On the one hand, one wants to allow for a rich
query language, on the other one would like to guarantee reasonably fast algorithms
considering the magnitude of the data that is being searched. The relationship be-
tween expressiveness of a language and its computational complexity is precisely
the field of finite model theory ([8]). Consequently, the quickest way to establish
results is to measure the strength of queries into XML documents against languages
studied in finite model theory. The queries are formulated in a special language of
the XML family called XPath. XPath is a language that allows to define and use

1

relations in a document. XPath is most directly connected with modal logic (see
[2]). Research has therefore proceeded by comparing XPath with various variants
of modal logic.

There is a very close connection between markup and linguistic structures. For
the idea of using modal logic for analysing semistructured data derives from the
research on the model theory of syntactic and phonological structures (see [12]).
This was part of a research agenda now known as model theoretic syntax (MTS).
Similar to finite model theory, MTS uses logical languages to describe the model
structures of linguistic theories. There are two plurals here: “logical languages”
means that there are alternatives. Indeed, [19] has used (weak) monadic second
order logic to do this. [17] has used predicate logic with an added transitive closure
operator. Similarly, “linguistic theories” means that there are several theories, not
just one. Indeed, not only is there a plethora of linguistic theories, it should also
be said that there are numerous other languages, each defining a different set of
constraints on structures.

The research into model theoretic syntax was mainly an exercise in formalising
linguistic theories. It has emerged, though, that there is a mutual benefit for markup
languages. There is now quite an active research area of query languages, where
techniques of finite model theory are being used to determine the strength and
tractability of query languages. The results can be applied almost directly also to
implementations of MTS.

The present paper serves as an introduction into the particular perspective of
modal logic on markup structures, or semistructured data. Its main purpose is to
explain the background and not to give a comprehensive overview over the litera-
ture and the results of the research.

Many thanks to Richard Schröder for helping me piecing the files together after
some data crash and reading earlier drafts. I also thank two anonymous referees
for carefully reading this paper and making many helpful suggestions. Remaining
errors and omissions are solely my own responsibility.

2 Some Elements of Modal Logic

Propositional modal logic is defined as follows. The set of symbols of the language
consists of

1. a set Var of propositional variables (typically Var = {pi : i ∈ N});

2. a set Con of propositional constants;

3. a set MOp of modalities;

2

4. and the boolean connectives >, ⊥, ¬, ∧, ∨,→.

So, we basically distinguish modalities from modal operators. In standard termi-
nology, when µ is a modality, the construct [µ] is a modal operator. The termi-
nology here makes the notation more user friendly and aligns modal logic with
dynamic logic (see the end of this section). Propositions are formed as follows.

1. Variables and constants are propositions.

2. > and ⊥ are propositions.

3. If ϕ is a proposition and µ a modality then ([µ]ϕ) is a proposition as well.

4. If ϕ and χ are propositions, so are (¬ϕ), (ϕ ∧ χ), (ϕ ∨ χ) and (ϕ→ χ).

There is another modal operator associated with the modality µ, namely 〈µ〉. It can
be defined as follows.

(1) 〈µ〉ϕ := (¬([µ](¬ϕ)))

Brackets are dropped when no confusion arises. Conjunction binds stronger than
disjunction and implication. Sequences of unary operators need not be disrupted
by brackets. There is another notational tool that I shall borrow from dynamic
logic, namely sequencing.

(2)
[µ1; µ2; · · · ; µn]ϕ := [µ1][µ2] · · · [µn]ϕ
〈µ1; µ2; · · · ; µn〉ϕ := 〈µ1〉〈µ2〉 · · · 〈µn〉ϕ

Propositions are evaluated in so-called pointed frames. A frame is a triple 〈W,R,U〉,
where W is a set (members of which are called worlds), R is a function assigning
each modality a binary relation on W, and U is a function assigning to every con-
stant a subset of W. A pointed frame is a quadruple 〈W,R,U,w〉 where 〈W,R,U〉
is a frame and w ∈ W. A valuation is a function β : Var → ℘(W). A model is a
quintuple 〈W,R,U, β,w〉 such that 〈W,R,U,w〉 is a pointed frame and β a valuation
into it.

3

In the following definition p ranges over variables, c over constants and µ over
modalities.

(3)

〈W,R,U, β,w〉 � p :⇔ w ∈ β(p)
〈W,R,U, β,w〉 � c :⇔ w ∈ U(c)
〈W,R,U, β,w〉 � > :⇔ true
〈W,R,U, β,w〉 � ⊥ :⇔ false
〈W,R,U, β,w〉 � (¬ϕ) :⇔ 〈W,R,U, β,w〉 2 ϕ
〈W,R,U, β,w〉 � (ϕ ∧ χ) :⇔ 〈W,R,U, β,w〉 � ϕ

and 〈W,R,U, β,w〉 � χ
〈W,R,U, β,w〉 � (ϕ ∨ χ) :⇔ 〈W,R,U, β,w〉 � ϕ

or 〈W,R,U, β,w〉 � χ
〈W,R,U, β,w〉 � (ϕ→ χ) :⇔ 〈W,R,U, β,w〉 2 ϕ

or 〈W,R,U, β,w〉 � χ
〈W,R,U, β,w〉 � ([µ]ϕ) :⇔ for all w′: if w R(µ) w′ then

〈W,R,U, β,w′〉 � ϕ

It is an easy exercise left to the reader to check that

(4) 〈W,R,U, β,w〉 � (〈µ〉ϕ)⇔ there is w′: w R(µ) w′ and 〈W,R,U, β,w′〉 � ϕ

(Since 〈µ〉ϕ is an abbreviation, this is not a definition. Rather, it now follows from
the above definitions.) Note that only in the case of modalities does the world at
which we evaluate get changed. In XPath terminology, we change the focus (see
[10]).

Example 1. Linear Structures. Let the language L` be defined by Var := {pi :
i ∈ N}, Con := ∅, and MOp := {→,←,→∗,←∗}. Now let 〈W,R,U〉 be such that

1. W is finite.

2. R(→∗) is the reflexive and transitive closure of R(→).

3. R(←∗) is the reflexive and transitive closure of R(←).

4. R(←) is the converse of R(→).

5. For all v,w ∈ W: either w R(→∗) v or v R(→∗) w.

6. If w R(→∗) v and v R(→∗) w then w = v.

Recall that H is the transitive closure of K ⊆ W ×W if and only if it is the smallest
set that is transitive and contains K. The reflexive and transitive closure of K,

4

denoted by K∗, is the transitive closure of K ∪ {〈w,w〉 : w ∈ W}. Also, K` :=
{〈y, x〉 : 〈x, y〉 ∈ K} is called the converse of K. It is easy to see that (K`)∗ = (K∗)`.

The above conditions on the frames say that 〈W,R(→∗)〉 is a finite linear order.
We may think, for example, of a file as an instance of such a structure. (The frame
here supplies only the positions; I shall discuss below where the actual symbols of
the file come in.)

Example 2. Ordered Trees. Let the language Lt be defined by Var := {pi : i ∈
N}, Con := ∅, and MOp := {↑, ↓,→,←, ↑∗, ↓∗,→∗,←∗}. Now let 〈W,R,U〉 be
such that

1. W is finite.

2. R(↑∗) (R(↓∗), R(→∗), R(←∗)) is the reflexive and transitive closure of R(↑)
(R(↓), R(→), R(←)).

3. R(↑) is the converse of R(↓); R(←) is the converse of R(→).

4. There is exactly one w such that for all v: w R(↓∗) v. (This is called the root.)

5. For all v, the set of w such that w R(↓∗) v is linearly ordered by R(↓∗).

6. For all v, the set of w such that w R(→∗) v or w R(←∗) v is linearly ordered
by R(→∗).

This structure is therefore defined by only two of the eight relations, namely the
‘vertical’ R(↓) and the ‘horizontal’ R(→). For R(↑) is the converse of R(↓), and
R(←) the converse of R(→); and the other relations are reflexive and transitive
closures of these four.

Such a structure is easily recognised as an ordered tree. It will play a fun-
damental role in what is to follow. It is a tree because of the vertical relation
R(↓) satisfies the typical properties of immediate dominance; it is ordered since the
daughters of each node (in the tree sense) are linearly ordered with respect to each
other.

We conclude this section with some remarks on PDL. Propositional Dynamic
Logic or PDL, presents a substantial strengthening of modal logic. In PDL, modal-
ities are called programs. As before there is a fixed set MOp of programs; however,
programs can now be combined.

1. If α and β are programs, so are α∗, α; β and α ∪ β.

2. If ϕ is a proposition, ϕ? is a program.

5

We extend the function R as follows.

(5)

R(α; β) := R(α) ◦ R(β)
R(α ∪ β) := R(α) ∪ R(β)
R(α∗) := R(α)∗

R(ϕ?) := {〈x, x〉 : x � ϕ}

In PDL with converse we also have an operator ` on programs. Furthermore,
R(α`) := R(α)`. I note here the following properties of the converse, which I state
as identities between programs.

(6)

(α ∪ β)` = α` ∪ β`

(α; β)` = β`;α`

(α∗)` = (α`)∗

(ϕ?)` = ϕ?

Using PDL we can reduce the number of basic modalities as follows. ↑∗ can be
defined; in fact, the notation has now become transparent in the right way. Now we
have only four basic programs, ↑, ↓, →, and ←. With converse, just two of them
suffice.

3 Classes of Models

Given a proposition and a model we can evaluate the proposition and see whether
it is true; this is known as model checking, since we are checking the proposi-
tion in the model. Given a proposition, we can also ask which frames allow no
countermodel for it. This is used in axiomatising classes of structures. First a few
definitions. We write 〈W,R,U,w〉 � ϕ if for all valuations β: 〈W,R,U, β,w〉 � ϕ.
In this way, a pointed frame satisfies a formula if it satisfies the formula for all
valuations; with propositional quantifiers (which we do not use) we may write this
as 〈W,R,U,w〉 � (∀p)ϕ, where p collects all variables occurring in ϕ. We write
〈W,R,U〉 � ϕ if for all w ∈ W: 〈W,R,U,w〉 � ϕ.

Definition 1 (Axiomatisable Classes) Let K be a class of pointed frames. K is
called axiomatisable if there is a set ∆ of formulae such that 〈W,R,U,w〉 ∈ K iff
〈W,R,U,w〉 � δ for all δ ∈ ∆.

Similarly for classes of frames. I shall present here a few positive and negative
results. First, let us note the following. Given w, let Tr(w) denote the set of worlds
that can be reached from w using any of the relations. Formally, let S be the
reflexive and transitive closure of the union of all the R(µ). Then

(7) Tr(w) := {v : w S v}

6

Furthermore, let R′(µ) := R(µ)∩S and U′(c) := U(c)∩Tr(w). Then 〈Tr(w),R′,U′,w〉
is called the subframe generated by w. Given a valuation β into W, we put β′(p) :=
β(p) ∩ Tr(w). Then

(8) 〈W,R,U, β,w〉 � ϕ iff 〈Tr(w),R′,U′, β′,w〉 � ϕ

If β′ is a valuation on the generated subframe then we may put β(p) := β′(p). In
that case, (8) also holds.

Definition 2 〈W,R,U,w〉 is said to be generated if W = Tr(w). 〈W,R,U〉 is said to
be 1-generated if there is a w such that W = Tr(w).

It then follows that if K and L are axiomatisable classes of frames whose 1-
generated members are identical then the two classes are identical. Similarly, two
axiomatisable classes of pointed frames are identical if only their generated mem-
bers are the same. In view of this, it is perhaps better to axiomatise just classes of
generated pointed frames (1-generated frames).

It turns out that the classes of finite linear frames is axiomatisable (as a class of
1-generated frames).

Theorem 3 The following holds.

1. 〈W,R,U〉 � 〈µ〉p0 → 〈ν〉p0 iff R(µ) ⊆ R(ν).

2. 〈W,R,U〉 � 〈µ; µ〉p0 → 〈µ〉p0 iff R(µ) is transitive.

3. 〈W,R,U〉 � p0 → [µ]〈ν〉p0 iff R(µ) ⊆ R(ν)`.

4. 〈W,R,U〉 � [ν](p0 → [µ]p0) ∧ p0 → [ν]p0 iff R(µ)∗ ⊇ R(ν).

5. 〈W,R,U〉 � 〈µ〉p0 → [µ]p0 iff R(µ) is a partial function.

6. 〈W,R,U〉 � [µ]([µ]p0 → p0) → [µ]p0 iff R(µ) is transitive and conversely
well-founded.

I show the second claim. Suppose that 〈W,R,U〉 � 〈µ; µ〉p0 → 〈µ〉p0. Now let
x R(µ) y R(µ) z. Pick β such that β(p0) := {z}. Then 〈W,R,U, β, x〉 � 〈µ; µ〉p0.
Hence, by assumption, 〈W,R,U, β, x〉 � 〈µ〉p0. So there is a u such that x R(µ) u
and 〈W,R,U, β, u〉 � p0. By choice of β this means u = z, and so x R(µ) z.
Conversely, suppose that R(µ) is transitive. Pick x and β such that 〈W,R,U, β, x〉 �
〈µ; µ〉p0. Then there are y and z such that x R(µ) y R(µ) z and 〈W,R,U, β, z〉 � p0.
R(µ) is transitive, and therefore x R(µ) z, which means that 〈W,R,U, β, x〉 � 〈µ〉p0.

For a somewhat more difficult case, I turn to (6). Rather than proving the entire
claim, let me show that the formula is valid on a transitive, conversely well-founded

7

frame 〈W,R,U〉. To that end, let P0 be all the points that have no R-successor.
Inductively, define Pα to be the set of all points w such that all successors are in Pβ
for some some β < α and for every β < α there is some u ∈ Pβ which is a successor
of w. (This definition is over all ordinals, it does not require the frame to be finite.)
By ordinal induction it is shown that 〈W,R,U, β,w〉 � [µ]([µ]p0 → p0) → [µ]p0
for every w ∈ Pα. To that end, assume that the claim has been shown for all β < α.
Pick w ∈ Pα. Assume that 〈W,R,U, β,w〉 � [µ]([µ]p0 → p0). We need to show
that 〈W,R,U, β,w〉 � [µ]p0. To that end we pick a successor u. It is in Pβ for some
β < α. By assumption on w, we have 〈W,R,U, β, u〉 � [µ]p0 → p0. By transitivity,
we also have 〈W,R,U, β, u〉 � [µ]([µ]p0 → p0). Finally, by inductive hypothesis we
have 〈W,R,U, β, u〉 � [µ]([µ]p0 → p0)→ [µ]p0. This gives 〈W,R,U, β, u〉 � [µ]p0,
and finally 〈W,R,U, β, u〉 � p0. u has been arbitrary. This shows the claim. (Notice
that we do not need to prove the case α = 0 separately. It is however easy to see
directly that the claim holds in that case.)

Corollary 4 The following holds.

À The class of linear orders is axiomatisable in L` (as a class of 1-generated
frames).

Á The class of (ordered) trees is axiomatisable in Lt (as a class of 1-generated
frames).

Let me also say a few words about the relationship between frames and pointed
frames. We say that ξ is a master modality in 〈W,R,U〉 if R(ξ) is reflexive, transi-
tive, and for all µ ∈ MOp, R(µ) ⊆ R(ξ).

Proposition 5 Let 〈W,R,U,w〉 be generated and assume that ξ is a master modal-
ity. Then 〈W,R,U, β,w〉 � [ξ]ϕ iff 〈W,R,U, β〉 � ϕ. Also, 〈W,R,U,w〉 � [ξ]ϕ iff
〈W,R,U〉 � ϕ.

It is possible to axiomatise the class of frames where a given modality is guaran-
teed to be a master modality. In linear frames, there is no such master modality.
However, it turns out that we have something that is effectively the same. Namely,
if both R(→∗) and R(←∗) are linear and each others converse, then for every x, y
there is a z such that: x R(→∗) z R(←∗) y. Thus, in place of the above we have

(9) 〈W,R,U, β,w〉 � [→∗;←∗]ϕ ⇔ 〈W,R,U, β〉 � ϕ

4 Modal Logic and DOMs

Now we turn to more realistic models. First of all, we like to define a realistic
theory of a file. To this end, all we need to do is to take the language of our first

8

example and supplement it with constants. There are many ways to go. Given our
alphabet A of letters, we can define a constant a for each letter of A. (The alphabet
is usually assumed to be finite.) Then we add the axioms a → ¬b for all a, b ∈ A
such that a , b; moreover we shall add

∨
〈a : a ∈ A〉. In raw (that is, binary)

format, we can take A to be just {0, 1}. The worlds are then the positions of the
individual bits. But different structures can be used (say, with a constant for each
alphabetical symbol of Unicode).

A given file is therefore a 1-generated frame for this logic. It has the form
〈W,R,U〉, where W is a finite set, and R(→) is a partial function with inverse R(←).
Since the frame is 1-generated, every point is connected with every other, which
means that we have a finite linear order in the standard sense. The worlds can
thus be identified with an initial segment of the natural numbers. The function U
assigns to each constant a, with a ∈ A, a set U(a). If i ∈ U(a) the file is said to
carry the letter a at position i. The axiom a → ¬b guarantees that every position
carries exactly one letter.

Consider a generated pointed frame 〈W,R,U, i〉. Here, the members of W are
numbers, and i is a particular number. This is equivalent to a file plus cursor po-
sition. The commands that move the cursor to the right and left can be interpreted
as changing the world i to i + 1 and i − 1, respectively. More complex motions
of the cursor can be defined, though the present language may be too limited for
that. Without the modalities, we can only determine what symbol is present at the
current position; the modalities present something of a lookahead. For example,
〈→〉a is true at i if i + 1 carries the letter a, equivalently, if a is true at i + 1.

Let me now turn to XML. For readers unfamiliar with this format, I advise to
get hold of a book on XML, for example [18]. An XML-document is a file, that is,
in first instance a string. The data in the file combines both the primary data itself
and the metadata in the form of annotation tags. The tags may carry any additional
information about this data. But first and foremost they serve to structure it. They
turn it into a tree.

(10)

<library>

<book>

<author>Hugo</author>

<title>Les Misérables</title>

</book>

<book>

<author>Flaubert</author>

<title>Madame Bovary</title>

</book>

</library>

9

For each opening tag, say <author> there must be a corresponding closing tag,
</author>. In principle, tags can be inserted anywhere as long as they are prop-
erly nested. However, from a theoretical point of view it is best to require that text
can only be inserted between deepest embedded tags. (This is the default in XSL
Schema, by the way.) A slight modification of the structure is enough to get this
form. Say we have the following line.

(11) <p>This was an <i>inspiring</i> discussion.</p>

This line is then transformed as follows, where <text> is a tag reserved for text
input.

(12)
<p><text>This was an</text>

<i><text>inspiring</text></i>

<text>discussion.</text></p>

This is the form we shall assume here. In XML talk, we disallow the mixed type.
The linear structure (10) is converted into a tree structure in the following way.

A tag <τ> together with the next corresponding closing tag </τ> define a con-
stituent of type τ. In this way, a linguistic representation of the above structure
might look like this:

(13)
[library[book[authorHugo][titleLes Misérables]]
[book[authorFlaubert][titleMadame Bovary]]]

However, this is not entirely adequate. For disregarding order the structure is a
node labelled directed graph. These are triples 〈N, E, `〉, where E ⊆ N × N and
` : N → L, where L is a labelling domain.

•author

Hugo

�
�
��

•title

Les Misérables

@
@

@@
•book �
�
�
�
�•

library

• author

Flaubert

�
�
��

• title

Madame Bovary

@
@

@@
• bookQ

Q
Q

Q
Q

10

However, in semistructured data we like to think of these structures as edge labelled
graphs ([1]). These are triples 〈N, E, `〉, where E ⊆ N × N and ` : E → L. These
graphs are called the DOMs (document object models).

•

author

Hugo

�
�
��

•

title

Les Misérables

@
@

@@
•

book

�
�
�
�
�

•

library

•

• author

Flaubert

�
�
��

•

title

Madame Bovary

@
@

@@
•

book

Q
Q

Q
Q
Q

This necessitates the introduction of a root node since we need an edge with label
library. Now, in this structure the tags correspond to edge labels. This does not
apply to the attributes, though. Furthermore, types and content are properties of
the nodes, not the edges. Thus the following tag represents a mixture of edge and
node labels:

(14)

< author︸ ︷︷ ︸ ID="VH07"︸ ︷︷ ︸ nationality="French"︸ ︷︷ ︸ >

↑ ↑ ↑

edge node node
label label label

In fact, as noted in [1], the notation is not fully transparent with respect to the
structure that it represents. First, ID and IDREF should be treated separately; they
deal with so-called oids (object identifiers). Attributes on the other hand should
also be seen as edge labels, so that they are basically equivalent to tags. However,
one difference remains: attributes are not recursive; and they are not ordered. I
remark briefly that in a tree there is a simple correspondence between edge labels
and labels on nodes other than the root. Observe that every node has a unique
parent, so if we make the edge label a label of the endpoint of the edge, the edge
labelling can be recovered except of the root node. The document root however is
added on top of the root node of the tree; and this makes the correspondence exact.
Also note that in practice, XPath seems to treat DOMs rather as node labeled trees.

11

I shall first present a formalism for fixed tag sets (for example, HTML). In
the next section I shall return to XML. The tags are at present undecorated (no
attributes, no identifiers). Hence, for each tag τ we take a separate modal operator
with the same name. So, we have, in the case of HTML, modal operators h1, p,
and so on. The following is assumed: the union over all R(τ), where τ is a tag,
corresponds to the relation R(↓). Second, for different tags τ and τ′, R(τ)∩R(τ′) =

∅ (though, surprisingly, this is not modally axiomatisable unless all daughters of
a node are linearly ordered with respect to each other). Third, x R(→) y only if
there is z and a tag τ such that z R(τ) x, y. This is a known situation: only the
siblings are ordered with respect to each other. (Thus R(→) is the sibling ordering,
not the linear precedence in the file defining the model.) A different proposal is
to assume that x R(→) y if x and y have ancestors that are neighbouring siblings.
(So, using the previous definition, we take the ordering to be R(↑∗)◦R(→)◦R(↓∗).)
The sibling order is derived from the linear precedence in the XML-document (the
file), which specifies a linear order on the entire set of nodes.

5 XPath

In XML the tagset is not fixed. Yet we still can encode XML structures with a
finite set of modalities. The trick is as follows. We return to the language of
ordered trees. The edge label no longer defines a modality in its own right. Rather,
we make the edge label a property of the node to which the edge points. This is
exactly how it is done in XML. (And it is the reason why in the DOM we need
an extra root node.) We introduce a new modality, τ, which relates a node with its
tag. XPath has a function called name() to return the name of a node. However,
notice that there is no limit on the number of tags, so we need to convert tags into
structures as well. This we can do by representing the tag in the model as a string.
Thus we arrive at a new sort of language and structures. They extend the ordered
trees. The additional postulates are as follows. Say that z is a tag node if there are
x and y such that x R(τ) y, and z ∈ Tr(y). Then we add the condition that if z is a
tag node, there is no y such that z R(τ) y or z R(↑) y or z R(↓) y. This makes Tr(y)
in effect a linear structure, for any tag node y. It is important to note that if z is not
a tag node and z R(µ) y for µ ∈ {↑, ↓,→,←}, then y also is not a tag node. Thus, the
only way to enter tag nodes is via the relation τ. Finally, the tag nodes are treated
as coding a string, so the letters are basically introduced via constants. It must then
be specified that the constants are false at ordinary tree nodes.

With this in mind we shall now turn to the analysis of XPath. XPath is a lan-
guage for selecting nodes from a tree, based on various properties. These properties
need not be local to the node (like the tag), mostly they involve ways in which the

12

node is embedded in a structure. We can define the set of nodes that have a particu-
lar parent node, for example. We can also find nodes based on their linear position
in the DOM. The expressive power of XPath is therefore quite rich; too rich to
receive a comprehensive logical treatment. (In fact, [21] show that adding numeric
comparisons quickly leads to undecidability.) [9] have therefore proposed to define
a subset, called Core XPath, where only the relational properties are studied. It is
this language that we shall look at below. XPath itself nowadays has two versions:
there is XPath 1.0 and XPath 2.0. Consequently, there is Core XPath 1.0, and Core
XPath 2.0. The discussion below treats Core XPath 1.0, and takes only a brief look
at Core XPath 2.0.

XPath contains so-called axes. These are relations between nodes in a tree.
Here are the main axis relations:

(15)

XPath PDL
parent ↑

ancestor-or-self ↑∗

ancestor ↑; ↑∗

child ↓

descendant-or-self ↓∗

descendant ↓∗; ↓
following-sibling →∗;→
following ↑∗;→;→∗; ↓∗

preceding-sibling ←∗;←
preceding ↑∗;←;←∗; ↓∗

There are three more: self, namespace and attribute. The actual surface syn-
tax of XPath is somewhat different. There are first of all two types of path expres-
sions: relative and absolute. We deal with the relative pattern first. The relative
pattern is composed from so-called step patterns by means of / and //. A step
pattern in turn is a sequence consisting of (a) an axis specifier, (b) a node test, and
(c) a sequence of predicates. The axis specifier says whether the node test speci-
fies the value of an attribute or the label. The predicates are properties of nodes.
They are enclosed in square brackets. These properties can be even numeric, but
it is customary to restrict them to what is expressible to the relational language de-
scribed here. The absolute paths are obtained from the relative paths by prefixing
them with / or // (as is customary in Unix). This makes / and // both unary and
binary symbols. Finally, it is important to realise that path expressions can have
a short form and a long form. What appears in short as author is in long form
self::node()/child::author. In the long form the symbol / is interpreted
as relational composition while in the short form it effectively takes the meaning

13

”compose with child-of”, as it does in Unix. (More on the precise syntax and the
relationship to modal logic and relational algebras can be found in [21].)

One big problem area in the theory of markup language is fast algorithms for
the path containment problem. This is the problem to determine, given two path
descriptions p and q, whether or not in every tree all the p-paths are included in
the q-paths. One of the reasons to be interested in this problem is in reformulating
queries either to speed them up or to discover if thery are consistent ([7], [16]).

Since the full language is quite difficult to tackle one is therefore interested in
fragments of it. A popular fragment is one where the horizontal axes are elimi-
nated. One can then in effect only talk about hierarchy, not about linear order. An
XP-expression is an expression generated by the following grammar, taken from
[16]. It is based on the short forms and does not use upward directed axes.

(16)

p := p1|p2 (disjunction)
| /p (root)
| //p (descendant)
| p1/p2 (child)
| p1//p2 (descendant)
| p1[p2] (filter)
| σ (element test)
| * (wildcard)

Here, σ is a basic boolean constant. The queries are evaluated as relations in
Kripke-models. Let T be a tree with root r and 〈W,R,U, β,w〉 a Kripke-model.

(17)

Jp1|p2KT =Jp1KT ∪ Jp2KT
J/pKT =JpKT ∩ {r} ×W
J//pKT ={〈r,w〉 : ∃u : 〈u,w〉 ∈ JpKT}
Jp1/p2KT =Jp1KT ◦ R(↓) ◦ Jp2KT
Jp1//p2KT=Jp1KT ◦ R(↓+) ◦ Jp2KT
Jp1[p2]KT={〈v,w〉 ∈ Jp1KT : ∃u : 〈w, u〉 ∈ Jp2KT}
JσKT ={〈w,w〉 : w ∈ β(σ)}
J∗KT ={〈w,w〉 : w ∈ W}

Based on work by [15], [16] establish the following. The first, standard, case is
when the set L of labels is infinite:

Theorem 6 The following holds.

1. Containment of XP(/, //, [], ∗, |) is in conp.

2. Containment of XP(/, |) is conp-hard.

14

3. Containment of XP(//, |) is conp-hard.

A problem P is in conp if it can be verified in nondeterminstic polynomial time (=
np) whether a given structure is a counterexample to P.

Theorem 7 Let L be finite.

1. Containment of XP(/, //, [], ∗, |) is in pspace.

2. Containment of XP(/, //, |) is pspace-hard.

[16] contains many more results. Additional complexity comes from the addition
of DTDs, which describe the structure of documents. The problem becomes the
following: given a DTD d and two path expressions p, q say whether JpKT ⊆ JqKT
for all T satisfying d. Effectively, DTDs are some kind of axioms. Thus adding a
DTD may in fact increase the complexity of the problem.

Theorem 8 The following holds.

1. Containment of XP(DTD, /, []) is in conp.

2. Containment of XP(DTD, /, []) is conp-hard.

3. Containment of XP(DTD, //, []) is conp-hard.

4. Containment of XP(/, //, [], ∗) is exptime-complete.

5. Containment of XP(/, //, |) is exptime-complete.

6 Paths in Dynamic Logic

Based on the results of Sections 2 and 3 we can conclude.

Theorem 9 The class of ordered forests is axiomatisable in PDL over ↑, ↓,→ and
←. The logic is denoted by PDLt.

It is possible to extend this to edge labelled forests. Just add one more operator,
node, and the axioms

(18) [node; node]⊥, 〈node〉p→ [node]p

This makes the interpretation of node a relation R such that if x R y then y has no
R-successor, and if x R z then y = z. The value at this node is any text (the edge
label). If there are only finitely many tags available, then we can mimic the edge

15

labels by a fixed set of boolean constants. Otherwise, we need to encode the strings
over an alphabet.

We can offer an analysis of path expressions by translating them into PDL
expressions. Recall that in XPath expressions are evaluated into node sets. The set
contains the nodes satisfying the expression. Since the syntax of path expressions is
somewhat different from PDL, we must first translate them. This must be done with
care. For in the previous section we have just translated them as relations. Here
we must reduce them to formulae. Given an expression book/author we must
decide whether we look at the set of nodes where the path originates or whether
we look at the set of nodes where the path ends. In a template, for example, we
look at the nodes where the path ends. So, for each path we have two translations,
{·}o (looking at nodes where the paths originate) and {·}g (looking at nodes where
the paths end). These can be derived, though, from a direct translation {·}δ into
relations, which runs as follows (based on the long form).

(19)

{p1|p2}
δ := {p1}

δ ∪ {p2}
δ

{p1/p2}
δ := {p1}

δ ◦ {p2}
δ

{p1[p2]}
δ := {p1}

δ ◦ {〈x, x〉 : (∃y)(〈x, y〉 ∈ {p2}
δ)}

{ρ :: τ}δ := ρ ◦ τ?

Now {·}o can be obtained, translating ◦ by ; and ∪ by ∪:

(20)

{p1|p2}
o :={p1}

o ∪ {p2}
o

{p1/p2}
o :={p1}

o; {p2}
o

{p1[p2]}
o:={p1}

o; (〈{p2}
o}〉>)?

{ρ :: τ}o :=ρ; τ?

To see the rationale behind this translation note that 〈α〉> is true at a point iff there
is an α-path starting at that point. Also, 〈α;ϕ?〉> is true iff there is an α-path ending
in a node satisfying ϕ. With the converse operator we can now write as follows.
If x � 〈α〉> selects the nodes at which α can successfully start, {x : x � 〈α`〉>}
selects the nodes at which α ends. Thus we have

(21) {π}g = ({π}o)`

Applying this to path expressions gives the following.

(22)

{p1|p2}
g := {p1}

g ∪ {p2}
g

{p1/p2}
g := {p2}

g; {p1}
g

{p1[p2]}
g := 〈{p2}

o〉>?; {p1}
g

{ρ :: τ}g := τ?; ρ`

16

The third line is noteworthy (the derivation makes use of the equations (6)).

(23)

{p1[p2]}
g = ({p1[p2]}

o)`

= ({p1}
o; 〈{p2}

o〉>?)`

= (〈{p2}
o〉>?)`; ({p1}

o)`

= 〈{p2}
o〉>?; {p1}

g

Absolute paths can be defined as follows.

(24) {/p}o := ¬〈↑〉>?; {p}o

The program ϕ?;α effectively restricts the set of nodes to those where ϕ is true.
Here is a classical result.

Theorem 10 ([22]) The satisfiability problem for PDL is in exptime.

By reducing it to the original result, [2] show that the same complexity holds for
the logic of trees.

Theorem 11 ([2]) The satisfiability problem of PDLt is in exptime.

Path inclusion can be reduced to the negation of a satisfiability problem. Namely,
π * ρ in some structure iff [{π}o]p ∧ 〈{ρ}o〉¬p is satisfiable in PDLt. Formulated
differently, π ⊆ ρ in every structure iff [{ρ}o]p → [{π}o]p ∈ PDLt. According to
Theorem 11 the problem is decidable in exptime. Notice that the actual queries that
can be issued in XPath are a proper subset of the queries that are definable in PDLt

([13]).
An interesting property of PDLt is that we can define nominals. Nominals are

special kinds of propositional variables that may be instantiated to a single point
([3]). That is, if i is a nominal and 〈W,R,U, β,w〉 a model then β(i) = {v} for some
v ∈ W. Given a formula ϕ(i) which contains such a nominal, we can replace the
nominal by a standard variable p as follows. We put

(25) , := ↓+ ∪(↑∗; (→+ ∪ ←+); ↓∗)

It is not hard to see that R(,) = {〈v,w〉 : v , w}. Then suppose that the following
is true at w:

(26) 〈↑∗; ↓∗〉(p ∧ [,]¬p) ∧ ϕ(p)

Then at some point v, v � p ∧ [,]¬p, which is to say that β(p) = {v}, as required.
Since an added nominal can be recoded at constant expense, the complexity does
not rise in PDLt if we add nominals.

17

Formally, the argument runs as follows. Let NPDLt be the extension of PDLt

by nominals. Then one can show that for every formula ϕ there is a formula ϕ] such
that ϕ ∈ NPDLt iff ϕ] ∈ PDLt. The complexity of NPDLt can be bounded from that
of PDLt using the properties of the map ϕ 7→ ϕ]. Since in this case |ϕ]| ≤ c|ϕ|
for some constant c, if PDLt is decidable in f (x) time, NPDLt is decidable in f (cx)
time. The same argument can be used to show that the logic with an added constant
axiom ξ has the same complexity. Here we take ϕ → ϕ ∧ [↑∗; ↓∗]ξ. The function
is f (d + x), where d is a constant (1 plus the length of [↑∗; ↓∗]ξ. Likewise, mak-
ing a program deterministic or adding the converse typically have no effect on the
complexity (see [11]). Let us close this section with a quick look at Core XPath
2.0. This language extends Core XPath 1.0 by operators on paths. There are new
constructs union, intersect, and except to form the union, intersection and dif-
ference of relations or path sets. Paths can be combined using these expressions.
This exceeds the syntactic means of PDL, so [21] turn to relation algebras instead.
This language is decidable, and expressively complete for first-order logic. This
means that if a property of nodes is first-order definable it is also definable in Core
XPath 2.0 ([14]). Since the paths definable in Core XPath 1.0 are not closed under
negation ([6]), this language is therefore stronger. [21] give a complete axiomati-
sation of path equivalence.

7 Conclusion

A logical analysis of computer languages is important in many respects: it gives us
a clear idea of what is expressible and what is not; it also gives us a clear notion of
the sort of structures we are using; and third, it allows to prove precise results about
the complexity of algorithms. The analysis of XML, in particular Core XPath, in
terms of modal logic is a good example of this. The relational character of the
models for modal logic make it very useful in studying DOMs from an abstract
point of view. Also, expressive and computational properties of Core XPath can be
addressed succinctly. Although quite different in detail, the two languages share
a large enough core to allow for useful results. Since the model theory of PDL is
well understood, results can be transfered almost immediately.

References

[1] Serge Abiteboul, Peter Bunemann, and Dan Suciu. Data on the Web. From
Relations to Semistructured Data and XML. Morgan Kaufmann, San Fran-
cisco, 2000.

18

[2] Loredana Afanasiev, Patrick Blackburn, Ioanna Dimitriou, Bertrand Gaiffe,
Evan Goris, Maarten Marx, and Maarten de Rijke. PDL for ordered trees.
Journal of Applied Non-Classical Logics, 15:115–135, 2005.

[3] Patrick Blackburn. Nominal tense logic. Notre Dame Journal of Formal
Logic, 39:56–83, 1993.

[4] Bob Carpenter. The Logic of Typed Feature Structures. Cambridge Tracts in
Theoretical Computer Science 32. Cambridge University Press, 1992.

[5] Anne Copestake. Implementing Typed Feature Structure Grammars. CSLI,
2000.

[6] Maarten de Rijke and Maarten Marx. Semantic characterisation of naviga-
tional XPath. Transactions of the ACM, 34:41–46, 2005.

[7] A. Deutsch and V. Tannen. Containment and integrity constraints for XPath.
In Maurizio Lenzerini, Daniele Nardi, Werner Nutt, and Dan Suciu, editors,
Proceedings of the 8th International Workshop on Knowledge Representation
Meets Databases (KRDB 2001), 2001.

[8] Hans-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Perspectives
in Mathematical Logic. Springer, 1995.

[9] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing
XPath queries. In VLDB’02, pages 95–102, 2002.

[10] Michael Kay. XPath 2.0. Programmer’s Reference. Wiley Publishing, Indi-
anapolis, 2004.

[11] Marcus Kracht. Tools and Techniques in Modal Logic. Number 142 in Studies
in Logic. Elsevier, Amsterdam, 1999.

[12] Marcus Kracht. Mathematics of Language. Mouton de Gruyter, Berlin, 2003.

[13] Maarten Marx. XPath and Modal Logic of DAGs. In M. Cialdea Mayer and
F. Pirri, editors, Automated Reasoning with Analytic Tableaux and Related
Methods, number 2796 in SpringerLecture Notes in Computer Science, pages
150–164, 2003.

[14] Maarten Marx. Conditional XPath. ACM Transactions on Database Systems,
30:929–959, 2005.

19

[15] G. Miklau and Dan Suciu. Containment and equivalence for an XPath frag-
ment. In Proceedings of the 21st Symposium on Database Systems, pages
65–76, 2002.

[16] Frank Neven and Thomas Schwentick. XPath containment in the presence
of disjunction, DTDs and variables. In Diego Calvanese, Maurizio Lenzerini,
and Rajeev Motwani, editors, 9th International Conference on Database The-
ory (ICDT), number 2572 in Springer Lectures in Computer Science, pages
312–326, 2003.

[17] Adi Palm. Tranforming Tree Constraints into Formal Grammars. The Ex-
pressivity of Tree Languages. PhD thesis, Universität Passau, 1997.

[18] Eric T. Ray. Learning XML. O’Reilly, Sebastopol, CA, 2003.

[19] James Rogers. Studies in the Logic of Trees with Applications to Grammar
Formalisms. PhD thesis, University of Delaware, Department of Computer
& Information Sciences, 1994.

[20] W. W. Stead, W. E. Hammond, and M. J. Straube. A Chartless Record–Is It
Adequate? In Proceedings of the Annual Symposium on Computer Applica-
tion in Medical Care, pages 89–94, 1982.

[21] Balder ten Cate and Maarten Marx. Axiomatizing the Logical Core of XPath
2.0. In Database Theory - ICDT 2007, number 4353 in SpringerLecture Notes
in Computer Science, pages 134–148, 2006.

[22] Moshe Vardi and P. Wolper. Automata theoretic techniques for modal logics
of programs. Journal of Computer and Systems Sciences, 32:183–221, 1986.

20

	Introduction
	Some Elements of Modal Logic
	Classes of Models
	Modal Logic and DOMs
	XPath
	Paths in Dynamic Logic
	Conclusion

