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Abstract. The paper reviews the technical results from modal logic as well as

their philosophical significance. It focuses on possible worlds semantics in general

and on the notion of a possible world, of accessibility, and object.
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Since to belong and to belong of necessity
and to be possible to belong are different
(for many things belong, but nevertheless
not of necessity, while others neither be-
long of necessity nor belong at all, but it
is possible for them to belong), it is clear
that there will also be different deductions
of each and that their terms will not be
alike: rather, one deduction will be from
necessary terms, one from terms which be-
long, and one from possible terms.

Aristotle: Prior Analytics, Book I, 8 1

Introduction. Modal logic has a remarkable history indeed. Origi-
nally conceived as the logic of necessity and possibility, its philosophical
roots go back at least as far as Aristotle and the Stoic Diodorus Cronus.2

While Diodorus’s ‘Master Argument’ could be considered an early ex-
ample of modal propositional, more precisely temporal, reasoning,3 the
Stagirite’s investigations into modal syllogisms probably constitute the
earliest serious essay on combining modality with quantification.4 Interest
into modal distinctions kept very much alive during Mediaeval Scholastics,
notably in the form of ontological arguments such as St. Anselm’s,5 and
only seems to have slowed down with the dawn of the Renaissance. While
Leibniz, being an eminent contributor to the development of modern logic,
is usually credited with the introduction of the notion of a ‘possible world’,
the birth of modal logic as a technical discipline of mathematical logic is

1English translation by Robin Smith [4].
2Classic (and encyclopaedic) texts on the early history of logic are Bocheński’s [19]

and William and Martha Kneale’s [91].
3For the ‘Master Argument’ compare [197], as well as, for prominent modern recon-

structions, Arthur Prior’s [151], Oskar Becker’s [13], and Jaakko Hintikka’s [79].
4Modern attempts at interpreting and understanding Aristotle’s still puzzling elab-

orations in Prior Analytics include  Lukasiewicz’s [126] in the 1950ies, [188, 189], [146]
and [162].

5Of which we find variants in the work of, for example, Descartes and Leibniz,
and a modern counterpart in Kurt Gödel’s ontological argument, a descendent of the
argument given by Leibniz, being sketched in higher-order modal logic (second- or third-
order depending on the interpretation) and which was only posthumously published in
[70]. For details compare Melvin Fitting’s [53].



Logically Possible Worlds and Counterpart Semantics for Modal Logic 3

often considered to be Clarence Irving Lewis’s investigations into the
paradoxes of material implication in 19186, and, in the early thirties,
Kurt Gödel’s interpretation [68, 69] of Heyting’s version [77] of Brouwer’s
intuitionistic propositional logic [22, 23] in terms of the modality ‘it is
provable’7. Despite Quine’s early attempts at discrediting the intelligi-
bility of modal discourse [154, 155], its technical development went hand
in hand with the rise of analytic philosophy, and both its technical so-
phistication as well as its philosophical significance virtually exploded in
the 1970s with the unlikely success of Kripke’s possible worlds seman-
tics. In the early 21st century, modal logic is not only an important tool
in philosophy and linguistics, it also provides, in its many disguises, key
formalisms in Artificial Intelligence and Knowledge Representation.

In this contribution, however, we shall not review the history of modal
logic, nor do we delve deeply into the discussion of its metaphysics.8

Rather, we shall concentrate on the interplay between formal results
and analytical thought. As argued already in [75], formal semantic the-
ories such as Lewisian counterpart theory or Kripkean possible worlds
semantics are compatible with a wide spectrum of metaphysical views
concerning possible worlds, the nature of objects and possibility, and so
on. It is therefore pointless to ask whether or not a given formal semantics
is ontologically adequate. Besides, many of these questions quickly take
a different turn: they become questions of physical nature whose answers
often elude the specialists themselves. That theme will be touched upon
when we discuss the nature of time. Our main interest here is, however,
different and more modest. We shall simply ask in what ways the for-
mal structures reflect the intuitions that they are claimed to model, and
in what ways technical results can be interpreted from a philosophical
point of view. The most common semantics of modal logics introduce the
notions of a world, a possibility or a situation, and impose further
structure by means of more or less complex relations, e.g., by the notion
of an accessibility.

The nature and existence of ‘worlds’ has been an intensely debated
topic in analytic philosophy and metaphysics. Also, the nature of the
accessibility relation has largely been unscrutinised. Although nowadays
the idea of a binary relation between worlds is the most popular one,

6C. I. Lewis created his first correct modal calculus S3 of strict implication in 1920
[116] (an emendation of a system proposed earlier in his [115]), compare also [142].

7In fact, a similar interpretation can be found even earlier in Orlov’s [141].
8But compare [73] for the historical development of mathematical modal logic in the

20th century and [16] for the state-of-the-art as of 2005, [35] for the genesis of possible
worlds semantics, and [122] for a discussion of various early systems of quantified modal
logic. A good starting point for the reader interested in the metaphysics of modality
would be the anthologies [123] and [124], or John Divers’s [39].
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many alternatives have been tried (and are being tried). There is, how-
ever, a problem with Kripke-semantics, which is both of technical and of
philosophical nature: it is incomplete. There exist different logics with
the same class of Kripke-frames. This means that the choice of Kripke-
semantics encapsulates metaphysical commitments whose precise nature
is unfortunately difficult to explicate. This is unproblematic when the se-
mantics is given beforehand and the logic is derived from it. In all other
cases, however, we have committed ourselves to the complete logics from
the start without knowing whether that is justified. What is more, crite-
ria for completeness are almost impossible to give (a notable exception is
Kit Fine’s [46]). The remedy is to restrict the domain of interpretation
to admissible sets, but this approach is philosophically unsatisfactory as
long as there is no clear account of where these sets originate.

Another notion that has been met with suspicion is that of an object.
One problem with the notion of an object is the problem of transworld
identification. If there are possible worlds, then which objects in a
given world are the same as other objects in another world? The answer
depends in part on what we think an object is. Saul Kripke and many
with him have assumed that objects are transcendental, to use a rather
old-fashioned terminology here. This choice was influenced by a particular
school of thought which regards possible worlds as man made, constructed
out of the things that we know, namely the objects. The worlds contain
more or less the same objects, only the facts about these objects may
change. This view faces philosophical problems of its own, and has been
challenged on these grounds. Technically, its main disadvantage is that it
is highly incomplete. Most propositional logics become incomplete when
we move to predicate logic.

A different conception of objects is to view them as entirely world-
bound; this is embodied in the semantics of counterpart theory as origi-
nally conceived by David Lewis (see [117]). It can be shown to be more
general than Kripke-semantics, but it too carries ontological commit-
ments. The third way is two view objects (in type theoretic terms) as
individual concepts. This makes them both transcendental and world
bound. It can be shown that this semantics (in its generalised form) is
actually complete in the most general sense. A fourth way is to abandon
the notion of object altogether. This is the semantics advocated for by
Shehtman and Skvortsov [177]. In this semantics, a structure is an infinite
sequence of frames. These frames combine both the notion of object and
world in one; worlds can be identified with the elements at level 0; objects
are only approximated to a finite degree at each level. It is possible to
construct a frame with worlds and objects from it ([11]).
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Part 1. Worlds without Objects

§1. Basic Concepts of Modal Propositional Logic. The language
of modal propositional logic consists of a countable set V = {pi : i ∈
N} of sentence letters, a set C of propositional constants, the connectives
>, ¬, and ∧, and a set of so-called modalities or modal operators. A
modality can have an arbitrary finite arity. We consider here only the case
of a single operator � of arity 1. Many of the philosophical considerations
do not depend on that choice. For the technical side see [99]. A modal
logic is a set L which contains all Boolean tautologies, and is closed under
’modus ponens’ (MP): from ϕ ∈ L and ϕ → ψ ∈ L infer ψ ∈ L, and
substitution (sub): from ϕ ∈ L infer σ(ϕ) ∈ L. Here, σ is defined from
a function from variables to formulae; σ(ϕ) is obtained by replacing each
occurrence of a propositional variable pi by some formula σ(pi). (This
means that substitution is an admissible rule; a rule is admissible in L if
the tautologies of L are closed under this rule. (MP) is actually a derived
rule, that is, a rule applicable in reasoning from premisses.) L is classical
if the following rule is admissible.

(RE)
ϕ↔ χ

�ϕ↔ �χ
(1)

L is normal if it is classical, and additionally
1. �(p0 → p1) → (�p0 → �p1) ∈ L,
2. and (MN) is admissible in L:

(MN)
ϕ

�ϕ
(2)

A Kripke-frame is a triple 〈F,R, I〉, where F is a set, the set of worlds,
R ⊆ F 2 the accessibility relation, and I : C → ℘(F ) a function map-
ping propositional constants to subsets of F . In what is to follow, we
shall usually assume C = ∅.9 A valuation is a function β : V → ℘(F )
which assigns a set of worlds to each sentence letter. A pointed Kripke-
model is a triple 〈F, β, w〉, where F is a (Kripke-) frame, β a valuation,
and w a world. Truth of formulae in a model is then defined as follows:
〈F, β, w〉 � > always holds, and

〈F, β, w〉 � pi :⇔ w ∈ β(pi);
〈F, β, w〉 � c :⇔ w ∈ I(c);
〈F, β, w〉 � ¬ϕ :⇔ 〈F, β, w〉 2 ϕ;
〈F, β, w〉 � ϕ ∧ χ :⇔ 〈F, β, w〉 � ϕ and 〈F, β, w〉 � χ;
〈F, β, w〉 � �ϕ :⇔ for all v such that w R v: 〈F, β, v〉 � ϕ.

(3)

9Whenever propositional constants are left out of the language, a Kripke-frame is
just a pair 〈F, R〉.
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Write F � ϕ if 〈F, β, w〉 � ϕ for all β and w. Given a class K of frames,
let

Th(K) := {ϕ : for all F ∈ K : F � ϕ}.(4)

Th(K) is called the logic of K, for, whenever K is some class of Kripke-
frames, Th(K) is a normal modal logic. Conversely, if L is a normal modal
logic, we may define

Frm(L) := {F : for all ϕ ∈ L : F � ϕ}.(5)

These definitions can be applied to any type of semantics. (In that case,
if X is the class of structures, we index Frm with X to avoid confusion.)
These definitions technically equate a modal logic with its set of axioms
(or tautologies), and leaves the set of rules invariant.

§2. Translation into Classical Logic. In and of itself, modal logic
does not embody the commitment to possible worlds of any sort—rather,
the doctrines of modal realism and anti-realism are subject to consider-
able philosophical debate. For instance, while Charles Chihara’s book on
modal realism [31] contains an elaborate attempt at constructing a viable
position of modal anti-realism based on the idea to explain modalities not
in terms of possible worlds but rather in terms of ‘how the world could
have been’, the bulk of David Lewis’s ‘Plurality of worlds’ [120] consists
of an extended argument of why we cannot legitimately employ ‘possi-
ble worlds talk’ and enjoy its benefits for instance in the philosophy of
language without giving it a realistic interpretation [84].

However, both in technical philosophy and in mathematical logic, pos-
sible worlds have become a de facto indispensable tool. It was observed
that modal laws can be made plausible by using the notion of a possible
world and explicating modal operators using quantification over possible
worlds. This led to the well-known standard translation of modal logic
into classical logic (see [14]). By rendering the truth conditions given
in (3) into formal logic as well, we arrive at a translation into monadic
second-order logic, which runs as follows. For each proposition letter pi we
introduce a monadic second-order predicate letter Pi (which is a variable).

p†i := Pi(w)

(¬ϕ)† := ¬ϕ†

(ϕ ∧ χ)† := ϕ† ∧ χ†

(2ϕ)† := (∀v)(w R v → ϕ†(v/w))

(6)

A formula ϕ is satisfiable in a Kripke-frame 〈F,R〉 if and only if ϕ† is
satisfiable in 〈F,R〉 (viewed as a model for second-order predicate logic)
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iff (∃~P )ϕ† holds in it, where ~P contains at least the monadic second-
order variables free in ϕ†. Hence F � ϕ iff (∀~P )ϕ† is valid in F. Thus
frame validity is Π1

1. If this formula has a first-order equivalent then the
propositional logic is complete with respect to Kripke frames, by a result
of Kit Fine [46].

Second-order logic adds quantifiers to modal logic that it otherwise does
not have. Notice that the formulae on the right hand side of (6) contain
only two variables. Thus, the translation is into the two-variable fragment
of first-order logic whose satisfiability problem is known to be decidable
[137]. (Of course, this does not imply the decidability of modal logics
involving additional axioms—this is a science on its own, compare [140].)
From a philosophical point of view this translation raises questions. It
can be used to explain modal talk as talk of possible worlds in disguise;
this is a reduction from right to left. Modal logic is just talk about
possible worlds in a syntactic disguise. It cannot, however, be used to
explain talk about possible worlds through modal operators, because the
latter is less expressive. There are first-order formulae which have no
equivalent in modal logic. This has been observed in [117] already, noting
that this makes modal logic less expressive than it should be if it is to
render natural language statements. This point has been picked up by
[74], who extends modal logic by an actuality operator, and further by
[57], who allows to index possible worlds in order to be able to refer
back to them. The most expressive language is however that of nominals,
introduced by Arthur Prior, see also [25]. A comprehensive study of this
language has been made in [18]. Nominals are propositional variables
that have to be true at precisely one world—they can serve as names for
worlds. This essentially reifies the worlds inside modal logic and allows
the backward pointing devices argued for in [57] (possibly with the help
of the universal modality, whose interpretation is basically that of the
first-order quantifier over worlds).

§3. Ontology and Duality Theory. Ludwig Wittgenstein says in
the Tractatus that the world is everything which is the case, or, in mod-
ern terminology, a complete state of affairs. A view that identifies worlds
with complete (or partial) states-of-affairs denies them their own ontolog-
ical status, a position for which David Lewis coined the term ‘linguistic
ersatzism’ [120].10 Kripke-frames, on the other hand, treat worlds as
primitive objects. Prima facie this seems justified in the case of time
points or locations. They provide examples of entities that can in prin-
ciple serve as worlds in the sense of containers which are inhabited by
objects and relations (see [57]). If worlds exist and are not simply states-
of-affairs then the possibility arises of there being two different worlds in

10Compare also Sider’s [174] for a more recent proposal in this direction.
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which the same facts are true (call them twin worlds). Again, whether
this is a welcome situation is debated (see below). In duality theory,
one studies the construction of frames from algebras and algebras from
frames. It turns out that the two model structures are not identical. In
passing from frames to algebras, the distinction between twin worlds is
lost. On the other hand, the construction of a frame from an algebra may
now introduce new worlds to that frame. (They instantiate a complete
state-of-affairs that is only finitely satisfied in the original frame.)

A Boolean algebra with an operator is a structure of the form
B = 〈B, 1,−,∩,�〉, where 〈B, 1,−,∩〉 is a Boolean algebra. B is a modal
algebra if in addition

�1 = 1, �(a ∩ b) = �a ∩�b(7)

Given an assignment v : V → A, there is a unique homomorphism v
which assigns to every formula over V a value in A. We write A � ϕ
if v(ϕ) = 1 for all assignments v and Th(A) := {ϕ : A � ϕ}. Th(A) is
classical; it is normal iff A is a modal algebra. [89] have initiated the
study of such algebras and shown that they can be embedded in complete
Boolean algebras. The atoms of these algebras can be identified with the
worlds. Given a logic, modal algebras can be constructed as follows. Let
T(V ) be the algebra of formulae over the set of variables V . Put

ϕ ∼L χ :⇔ ϕ↔ χ ∈ L(8)

L is classical iff ∼L is a congruence on T(V ). FL(V ) := T(V ) is an
algebra, called the canonical or Lindenbaum-algebra. It turns out
that for countably infinite V ,

L = {ϕ : FL(V ) � ϕ}(9)

The construction of the algebra uses the language itself. Propositions are
formulae modulo equivalence, but there is no assumption on worlds nor
states-of-affairs. Propositions form an algebra. From this algebra it is
possible to construct worlds as follows. Let U(A) be the set of ultrafilters
of A. Put U R∗ V if and only if for all �a ∈ U we have a ∈ V . This
yields a frame. Unfortunately, the logic of this frame might be different
from the logic of the algebra. It therefore becomes necessary to define the
following. For a ∈ A let

â := {U ∈ U(A) : a ∈ U}(10)

The map a 7→ â is an isomorphism from A onto a subalgebra of the
powerset algebra over 〈U(A), R∗〉, with the additional operator

�a := {U : ∀V ∈ U(A) : if U R∗ V then V ∈ a}(11)

The subalgebra can be proper, and can have a different logic. The reason
is that the semantics of Kripke-frames is incomplete in the following sense.
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Definition 1. Let L be a class of logics, and K a class of structures.
K is complete for L if for every logic L ∈ L, L = Th(FrmK(L)).

If K is complete for L then for any two different L,L′ ∈ L the class of
associated structures from K must be different. Typically, one sets L to
be the extensions of some system (S4 for example). We shall take here
L to be the class of all normal modal logics. (9) shows that algebraic
semantics is complete (for the set of classical logics even). It has been
shown in the early 1970s that there are logics which are not completely
characterised by their Kripke-frames. In [191], Thomason has proposed
to refine the class of structures as follows. A general frame is a triple
F = 〈F,R,B〉, where 〈F,R〉 is a Kripke-frame and B ⊆ ℘(F ) a system of
sets closed under intersection, complement and the operation

�a := {v : for all w: if v R w then w ∈ a}(12)

So, put

F+ := 〈F, F,−,∩,�〉(13)

This is a modal algebra. A subset of F is called internal if it is in B.
Valuations into general frames may take only internal sets as values. Put

A+ := 〈U(A), R∗, {â : a ∈ A}〉.(14)

This is a general frame. A Kripke-frame 〈F,R〉 can be viewed as the gen-
eral frame 〈F,R, ℘(W )〉. From a general frame F we defined the algebra
F+, and from an algebra A the general frame A+. In general, (A+)+ ∼= A,
but (F+)+ is generally not isomorphic to F. Completeness with respect to
general frames is straightforward to show, using the standard complete-
ness results for algebraic logic and duality. For a logic is always complete
for its Lindenbaum algebra. General frames have both worlds and an al-
gebra of internal sets in them. We may view internal sets as propositions.
Then, a general frame is differentiated if from v 6= w it follows that
there is an a such that v ∈ a and w 6∈ a; it is tight if, whenever �a ∈ v
also a ∈ w, then v R w; it is compact if

⋂
U 6= ∅ for every ultrafilter

of internal sets. F is descriptive if is differentiated, tight and compact.
A+ always is descriptive. A world w defines a state-of-affairs H(w). v
and w are twin worlds if v 6= w and H(v) = H(w). F is differentiated
iff there are no twin worlds; it is tight if accessibility is definable from
possibility; and it is compact if every finitely satisfiable set is contained
in some H(w). Together with differentiatedness this means that S is an
ultrafilter iff S = H(w) for some w. The internal sets may be seen as
the clopen (= closed and open) sets of a topological space; its closed sets
are the (possibly infinite) intersections of internal sets. In a descriptive
frame, every singleton {w} is closed.
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3.1. Logical Consequence. The semantics is required to be adequate
not only in the sense that it handles the tautologies correctly, but that it
identifies the deductive rules properly. Again, algebraic semantics takes
the lead (see [199], [37] for the general theory of algebraic logic, and [95] for
a survey of modal consequence). A logical matrix is a pair M = 〈A, D〉
consisting of an algebra of appropriate type and a set D ⊆ A, the set
of designated elements. A valuation is a function v from the set of
variables to the domain A; we can also think of it as a homomorphism
from the term algebra into A. ϕ is true in M under v if v(ϕ) ∈ D.
Also, Γ �M ϕ if every v which makes all formulae of Γ true also makes
ϕ true. M is a matrix for L if D is closed under the rules of L. Since
the only rule of inference is (MP), this comes down to requiring that D
is a Boolean filter and that all tautologies map to an element of D under
every v. Filters correspond in the dual frame to topologically closed sets
of points. We can however specialise to ultrafilters, which in the dual
frame correspond to single worlds (more exactly, singleton sets). For
discussion see [93].

Theorem 2. For every normal modal propositional logic L there is a
class VL of matrices such that if Γ 0L ϕ then there exists a M ∈ VL such
that Γ 2M ϕ.

In fact, we can always choose the matrices to be of the form 〈FL(V ), U〉,
U an ultrafilter. This creates the necessary structures from the language
itself. Duality theory can be applied to the ontology as follows. Either we
look at worlds as primitive objects and define facts as sets of worlds, or
we consider facts as primitive and define worlds as maximally consistent
sets of facts (see [21] for a discussion).

3.2. Situations and Possibilities. In the philosophical and linguis-
tic literature, often an object quite like a possible worlds is used, namely
a situation, see [149] and references therein. In contrast to worlds, situ-
ations are only partial. Moreover, situations can be ‘small’ in that their
description may require only a single sentence. Situations can be ac-
commodated as follows. Let A be a modal algebra. The members of the
underlying sets are called situations. Given a valuation v and a situation
a, write

〈A, a, β〉 � ϕ :⇔ β(ϕ) ≥ a(15)

Technically, the definitions in [149] amount to taking as matrices only
those of the form 〈A, F 〉, where F = {b : b ≥ a} is a principal Boolean
filter. If that is the case, however, they are technically just a generalised
version of worlds. The use of situations has been defended in [9, 10]. The
reasons for pressing for situations against possible worlds has been in ad-
dition to the reasons just stated also the claim that possible worlds seman-
tics carries an ontological commitment of their existence. For a defense
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Table 1. Worlds and Situations

entity algebra language
situation filter deductively closed set
world ultrafilter maximally consistent set

of possible worlds against this criticism see [180]. Notice that while the
above matrices sacrifice bivalence, they do support the same tautologies
as the ones based on ultrafilters. Thus, they spell out a supervaluationist
account of truth. A related approach is that of [86]. A possibility is a
partial function from propositional letters to truth-values. The interpre-
tation (15) is not truth-functional. Moreover, it is not classical; both ϕ
and ¬ϕ can fail to hold in a. Much has been made of this fact in situa-
tion theory. In the present set-up, one can either declare situations to be
primitive and construct worlds out of situations, or do the converse. The
latter strategy will then treat the truth of a formula in a situation just like
supervaluations. Supervaluations are however not compositional. Com-
positional accounts can of course be given, but they support less formulae
than the supervaluation account (for example the law of excluded middle).
This is a dilemma also for quantum logic. Standardly, quantum logic
is supposed to be non-distributive since the algebras are orthomodular
lattices. It is however possible to use a supervaluation approach, simply
allowing only special filters as sets of designated elements (see [17]).

The correspondences are summarised in Table 1. Notice that from the
standpoint of duality there is no ontologically primary object. An element
of the algebra can be construed either as a set of worlds, or as a set of
ultrafilters. Also, an element corresponds to a finitely generated Boolean
filter, hence a particular kind of situation. We add that a general frame
contains not only worlds and an accessibility relation but also an algebra
of sets, whose members we may actually identify as the situations.

§4. Possible Worlds as an Analytic Tool. Modal logic has proven
to be a general tool to model nonclassical logic. This was already appar-
ent in the work of C. I. Lewis from the 1920s [114, 142]. Lewis’ systems
S1–S5 were systems of strict implication, which were attempts to cap-
ture the notion of relevant connection between premiss and conclusion of
ordinary language implications. Originally conceived as alternatives to
classical logic, it has been observed that one can reduce strict implication
to material implication by

ϕ � ψ := 2(ϕ→ ψ)(16)

Thus, the properties of � derive straight from the properties of 2. This
has fostered the development of modal logic, because the attention turned
to modal systems that had a classical background logic rather than to
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weakenings of classical logics. (Linear logics has brought weakenings back
into the game, since the reduction techniques do not work for resource
conscious logics.) This method was most successful with the reduction of
intuitionistic logic to modal logic. Kurt Gödel gave the following transla-
tion from intuitionistic language into monomodal logic [68, 69].

τ(p) := 2p

τ(ϕ ∧ χ) := τ(ϕ) ∧ τ(χ)

τ(ϕ ∨ χ) := 2(τ(ϕ) ∨ τ(χ))

τ(ϕ→ χ) := 2(τ(ϕ) → τ(χ))

(17)

Falsum is mapped to falsum, and ¬χ := χ→ ⊥. This translation reduces
intuitionistic logic to modal logic. In the background, however, we have a
second reduction, that of modal logic to first-order logic, the standard
translation. The possible worlds interpretation that results from this
cascaded reduction is actually not dissimilar to the interpretation that
Brouwer gave for his logic in the first place; the worlds exemplify stages
of knowledge, and it is assumed that knowledge grows as we move to
an accessible state (which also happens to be a later stage). Although
Brouwer would have opposed a reduction of intuitionism to classical logic
(he did oppose Heyting’s interpretation), the exactness of the reduction
shows that the interpretation is at least viable. Several decades of research
have culminated in the following result. Let Int be intuitionistic logic.
An extension of this logic is of the form Int + ∆, where ∆ is some set of
axioms. The system Grz is defined by

Grz := S4⊕2(2(p→ 2p) → p) → 2p(18)

Here, Grz ⊕∆ denotes the least normal logic containing both Grz and
∆.

Theorem 3 (Blok). The map Int + ∆ 7→ Grz ⊕ {τ(δ) : δ ∈ ∆} is
an isomorphism from the lattice of intermediate logics onto the lattice of
consistent normal extensions of Grz.

For details see [30]. This much should be enough to demonstrate that
modal logic is an exact tool to study intermediate logics. What is more,
the original intuitions supplied by Brouwer himself suggest that the formal
apparatus actually reflects the analytic notions rather well. Brouwer has
spoken about mathematics as a developing structure, where knowledge
grows, so that once a statement is accepted, it is accepted for good, while
it may be rejected and later come to be accepted. However, its negation
is accepted at w only if the formula is not accepted at any v later than
w. In intuitionism, facts are always positive; negative facts are in a sense
absence of certain positive facts. This asymmetry of positive and negative
facts has been removed in the constructive logic N of Nelson [138]. In
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constructive logic, a formula can be true or false or neither. It is accepted
if it is always true and it is rejected if it always false. This is used under
the name ‘vivid logic’ in computer science (see [147, 148]). There is a
general method to embed intermediate logics into extensions of N, which
allows to study intermediate logics as special kinds of constructive logics;
see [194], and for general results [169, 170].

There are also other alternatives to classical logic that cannot be in-
terpreted in terms of modal logic since they are based on the use of the
resources. This is exemplified in relevant logic ([2, 3]) and linear logic
of [67], see also [193]. Linear logic, for example, has a connective (;
ϕ ( χ allows to deduce χ, but the use of this inference means destroying
the truth of the antecedent formula, so that it cannot be used again. Ac-
tually, it is not impossible to interpret ( in classical logic. One can give
the translation:

if ϕ is true at t then χ will be true at u > t.

( is hiding the time parameter. It is clear in this interpretation that if
ϕ and ϕ ( χ hold, then the inference to χ means that χ holds at a later
time point, but then the truth of ϕ is not guaranteed any more.

§5. Accessibility. In the earliest models, which interpreted necessity
as logical necessity, the universe was just seen as a set of worlds, with one
world singled out as the actual one. However, different interpretations of
necessity require to put structure on this set.

5.1. Accessibility Relations. For example, if 2 is read as ‘it will al-
ways be the case that’ then the set of worlds must be ordered by temporal
precedence. Thus, in addition to worlds we also need an accessibility
relation. The nature of this relation may be an empirical matter, once
the interpretation is decided upon. For example, it is an empirical ques-
tion how time is structured: it may be discrete, continuous, branching in
the future, branching in the past, endless; perhaps we ought to model it as
part of relativistic space time rather than just time by itself. These ques-
tions are nowadays no longer pure speculation; the structure of space-time
is a domain of physics, and thus subject to exact inquiry. Nevertheless,
the matter is far from settled. The notion of ‘time’ continues to be elusive.
We may define time either objectively or operationally ([196] prefers
the word phenomenologically). An objective definition derives the tem-
poral relation from a manifold, typically the space–time continuum, the
phenomenological definition instead uses operational criteria in establish-
ing the structure of time. The nature and dimensionality of the space-time
manifold is debated. An extreme example is the theory by Hugh Everett
([43]) according to which the universe develops deterministically by split-
ting itself into as many worlds as there are possible outcomes for the ‘next’
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moment—the so-called many worlds interpretation of quantum me-
chanics. For such an (objective!) view, probably the most faithful model
is based on histories (see §5.3). A more standard approach is to take the
n–dimensional Minkowski space. The logic of Minkowski spacetime has
been identified in all dimensions by Robert Goldblatt in [71] to be S4.2
for the reflexive relation, and D4.2⊕♦p1 ∧♦p2 → ♦(♦p1 ∧♦p2) [171] for
the irreflexive relation. It follows that, in spacetime, the future and past
operators do not allow to discriminate different dimensions.

An objective deterministic interpretation is quite compatible with phe-
nomenological nondeterminism. The future may be open simply because
we cannot have access to enough facts that will exclude all but one possi-
bility. Many philosophers have been tempted to conclude that this does
not apply to the past. Events of the past leave traces (‘records’) and facts
about the past can be answered by looking at these records. However, as
[195] points out, these records are necessarily partial. Also, the records
exist here and now and are used to ‘unravel’ the present state into a de-
velopment that has brought it about (see also [121] on cognitive aspects
of this). This unravelling uses the laws of nature, the very laws that we
can only deduce by relying on past experience. This creates an abyss for
the foundations of physics that has troubled no lesser minds than Einstein
himself, see [196]. Objectively time may branch into the future while it
does not branch into the past; yet, technically it is not easy to explain
why that should be so. The only nonsymmetric law is the second law
of thermodynamics, which says that order decreases in direction of the
future.

On the other hand, notice also that sometimes special interpretations
of temporal logic are used which do not depend on the physical nature
of time, such as the temporal logic of programs. Here, the fact that
time is discrete is a design feature of computers.

While temporal interpretations allow the independent study of the ac-
cessibility relation, this is not so for the epistemic modalities. Belief
worlds cannot be claimed to exist in the same way as future worlds,
and their structure is most likely derived from the belief structure of the
agent(s). If A believes δ in v then every belief-alternative w must make δ
true. Here, the belief in δ comes first, and the accessibility is constructed.
Perhaps this is the reason why epistemic modalities generally fail most
common logical laws, in contrast to temporal modalities. Indeed, it has
been argued among others by Quine that there is a difference between
temporal modalities and epistemic modalities [156]. While it makes sense
to attribute de re in temporal logic this is meaningless for belief because
we lack a notion of sameness of objects across worlds.

5.2. Neighbourhoods. There are alternatives to accessibility rela-
tions and the standard conception of truth. [168] introduces the notion
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of a neighbourhood frame, which is a pair 〈W,N〉, where W is a set
of worlds and N a function from W to ℘(℘(W )). As before, valuations
are functions β : V → ℘(W ), and formulae are true in a frame at a world
relative to a valuation.

〈〈W,N〉, β, w〉 � 2ϕ :⇔ {v : 〈〈W,N〉, β, v〉 � ϕ} ∈ N(w)(19)

Neighbourhood frames are also called Scott-Montague frames, after
[167] and [134]. The theory of a class of neighbourhood frames is a
classical modal logic. Evidently, a Kripke-frame can be turned into a
neighbourhood frame (put N(w) := {S : S ⊇ {v : w R v}}). The con-
verse is not true, however. [64] has provided examples of neighbourhood-
incomplete logics, and [63] has shown that there are logics containing S4
which are determined by their neighbourhood frames but not by their
Kripke-frames.

The logic of conditionals is an example of a logic for which standard
relational semantics is inadequate. The semantics for counterfactuals
is therefore more complex. [182] for example use choice functions, [60]
introduces a relation that depends also on two propositions ([58] argues
that conditional logic has ‘hidden variables’ in the sense argued for in
quantum mechanics).

David Lewis defines structures in which every world has a set of sets
of worlds (set of ‘spheres’) around it [119]. The structures are special
neighbourhood frames, for it is assumed that the set of spheres around
w are concentric; that is, if S and T are spheres, then either S ⊆ T or
T ⊆ S. Worlds within the same sphere of w are thought of to be similar
to the same degree to w. Without having to specify numerical values
for how similar one world is to the next, it is possible to define that a
world v is more similar to w than a world v′. This is the case if all spheres
around w which contain v also contain v′. Lewis also considers alternative
structures, for example with a comparative similarity relation, but shows
that they are interreducible [118]. Now, ϕ > ψ is taken to be true at w if
in all worlds u most similar to w that make ϕ true, also ψ is true.

The notion of similarity between worlds is widely used. For instance,
an idea developed in [184] is to relativise accessibility by attaching the
relations with fuzzy numbers, thus talking about ‘degrees of accessibility’,
an idea that eventually turned into logics where accessibility is regimented
by metric spaces or similarity measures, compare e.g. [110]. Quite often,
one imagines a world that is as similar as possible to ours, while something
specific is different. So we consider worlds in which ϕ is true, despite the
fact that it is not. The spheres around the worlds are assumed by Lewis
to be given. Epistemologically, one would like to be able to say how to
find this structure, that is, to construe it from properties of the worlds
themselves. A primitive solution is that the spheres around w are the
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worlds of Hamming-distance ≤ n for every given n. (This means that
at most n values of the primitive letters can be changed in going from
w to a world in that sphere.) We could also say that the worlds in the
spheres result in the revision of the theory at w. Revision has been studied
extensively in recent decades, but this topic is outside the scope of this
article.11

A related phenomenon that requires more than basic modal logic is the
imperfective paradox, exemplified in ‘The dog was crossing the road
when it got hit by a car.’ If the dog was hit by a car how can we sensibly
attribute to the dog that it was about to cross the road? David Dowty,
in an attempt to explain the semantics behind the imperfective paradox,
takes recourse to inertia worlds [41]. These are worlds which are very
much like ours, in particular normal laws of physics and everyday life
hold. Angelika Kratzer develops another idea, whereby the actual world
lumps propositions together such that they cannot be given up indepen-
dently [100] . Kratzer makes this possible by introducing situations and
a refinement relation, the maximal members of which are the worlds. All
these are attempts at defining accessibility from notions that are verifi-
able hic-et-nunc. They are only gradually different from causality in the
sense that all of these notions are derived from directly observed facts of
the world. Causality is different only inasmuch as it is believed to be the
source of the regularity, not the other way around.

The clause (19) contains two quantifiers, an existential and a universal.
Moreover, the function N is type-theoretically second-order, therefore al-
lowing for greater expressivity. The idea of modal operators with complex
interpretive clauses of any level has been pursued by Mark Brown, with
applications to various interpretations (group knowledge, ability, among
other, see [24]). His interpretations are different from the one above,
though. It can be shown that modal logic of the ordinary sort can inter-
pret these complex ones [99].

5.3. Histories. It has been argued that propositions are not true at
a world simpliciter but only at a history. This conception, called Ock-
hamist, has been revitalised by Arthur Prior in [153] and formalised in
[27]. Call a history a maximal set of worlds linearly ordered by time
(this definition presupposes a particular structure of the frame to begin
with). A formula is evaluated in a frame at a pair 〈h, v〉 where h is a
history and v ∈ h. Then

〈〈W,R〉, h, v, β〉 � [F ]ϕ(20)

:⇔ for all w ∈ h such that v R w : 〈〈W,R〉, h, w, β〉 � ϕ

11But compare [1] for the proposal now referred to as the AGM theory of revision
(named after its inventors), and [122] for an overview.



Logically Possible Worlds and Counterpart Semantics for Modal Logic 17

〈〈W,R〉, h, v, β〉 � [P ]ϕ(21)

:⇔ for all w ∈ h such that w R v : 〈〈W,R〉, h, w, β〉 � ϕ

〈〈W,R〉, h, v, β〉 � 2ϕ(22)

:⇔ for all h′ such that v ∈ h′ : 〈〈W,R〉, h′, v, β〉 � ϕ

One may additionally complicate these frames by allowing only certain
bundles of histories to be values of propositions. In computer science
these systems have received growing attention. It has been shown only
fairly recently that Ockhamist temporal logic is more expressive [158]
and complete axiomatisations have been given among others in [201] for
discrete time and (for real lines and branching in the future) in [159].
A different interpretation, the Peircean interpretation (see [26]) accepts
a future statement as true if and only if for for every history through
the given world, it will be true at a later point. This means that ϕ is
certain to happen in the future. This can be rendered in an Ockhamist
interpretation as 2〈F 〉ϕ.

Part 2. The World of Objects

Combining modality with quantification is a subtle affair. According to
Alonzo Church [32], the year 1946 should be considered to be the birth of
the discipline as a modern logical enterprise, with Ruth C. Barcan pub-
lishing ‘A Functional Calculus of First Order Based on Strict Implication’
[8] and, almost simultaneously, Rudolf Carnap publishing ‘Modalities and
Quantification’ [28], these two papers being the first modern systematic
treatments mixing unrestricted quantification as introduced to logic by
Gottlob Frege with modalities, taking up a subject that Aristotle left
more than two millennia ago.

Barcan’s paper also introduced the now famous Barcan formulae which
mix de re modalities attributing a necessity to a thing (as in ‘Every-
thing necessarily exists’) with de dicto modalities, attributing necessity
to what is said (as in ‘Necessarily, everything exists’); a distinction which
essentially goes back to Aristotle’s distinction between composition and
division [145, 176].

§6. Modal Predicate Logic. The languages of modal predicate logic
that we shall consider first differ from the language of modal proposi-
tional logic as follows. First, there are neither propositional variables
nor propositional constants. Second, we shall distinguish between first-
order and second-order languages of modal predicate logic which differ
syntactically as well as with respect to the substitution principles as-
sumed, and which are defined thus. In the first-order case, we have a set
U = {xi : i ∈ N} of object variables (we postpone the discussion of
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object constants to Section 7) and, instead of the propositional variables,
a set of predicate constant letters together with a map Ω assigning to
each letter P its arity Ω(P ). Though it is possible to add function sym-
bols, we shall not do so, as they are technically eliminable. In that case,
terms are just variables. If Ω(P ) = n, and the ti, 1 ≤ i ≤ n, are terms,
then P (t1, . . . , tn) is a proposition. A set L is a normal first-order
modal predicate logic (first-order MPL) if

1. L contains all instances of the axioms of predicate logic.
2. L contains the first-order instantiations of the tautologies of K.
3. L is closed under (MP) and (MN).

Since L comprises standard predicate logic, it is closed under the usual
substitution of terms for variables; call this closure under first-order
substitution. For the treatment of equality, see below, §6.3.

In the second-order case, we replace the propositional variables with
sets {Pn

i : i ∈ N} of predicate variables of arity n for each n. A set
L of formulae in this language, then, is called a normal second-order
modal predicate logic if it is closed under substitution of any formula
ϕ(y1, · · · , yn) for an occurrence of Pn

i (x1, · · · , xn) in a formula χ; call this
closure under second-order substitution.12

Notice that the second-order MPLs thus defined are not truly second-
order since there are no second-order quantifiers. In general, the terms
‘modal predicate logic’ or ‘first-order modal logic’ are typically taken to
mean second-order modal predicate logic in the sense above, for instance
in [85] and [55].13

Much of the previous discussion of modal propositional logic transfers
to the predicate setting. It does, however, introduce complications of
its own. In what is to follow we shall review some of the proposals for
semantics of modal predicate logic that have been made. The standard
Kripke-style semantics can obviously never be complete for the reason that
already not all propositional logics are complete. The best one can hope
for is therefore that a modal predicate logic is complete on condition that
its propositional counterpart is. Below, we shall exhibit such a semantics.

While the notion of a predicate is generally taken to be unproblematic,
the notion of an object has been the subject of considerable controversy.
Part of the controversy can be retraced in type theory as follows. In
addition to the type t of truth values and the type of individuals e

12This substitution must be formulated with care to prevent accidental capture of
the yi. The best way to do this is to rename any bound occurrence of yi, 1 ≤ i ≤ n, in
χ prior to substitution. For a detailed discussion consult [97].

13Other types of first- or higher-order intensional logics that we will not discuss here
include Alonzo Church’s attempt to formalise Frege’s logic of sense and denotation [32],
and, growing out of this, the work of Richard Montague [135], Daniel Gallin [61], and
Melvin Fitting [53]; compare [122] and [20] for more details.



Logically Possible Worlds and Counterpart Semantics for Modal Logic 19

(for predicate logic) we introduce a new type, s, that of possible worlds.
Propositions have type s→ t. The question is: what type do we associate
with object variables? Kripke assumes they have type e simpliciter; oth-
ers have argued they should be seen as having type s → e (individual
concepts). In the latter case, predicates may either be regarded as rela-
tions of individuals or as relations of individuals under a concept. In the
first case, a binary predicate letter is interpreted as s → (e → (e → t)),
in the second case as s→ ((s→ e) → ((s→ e) → t)). Once the types are
fixed, one can actually infer from Henkin’s completeness proof for Simple
Type Theory [76] a general completeness theorem for various semantics.
However, the resulting structures are rather unintuitive.

6.1. The Classical View. Models for modal predicate logic are de-
fined by Saul Kripke as follows. A frame is once again a pair 〈F,R〉,
with F a set of worlds, and R ⊆ F 2. Each world is however now a pair
w = 〈Dw, Iw〉, where Dw is a set (the domain of w) and Iw an interpre-
tation of the predicates and constants in Dw. If w R v then Dw ⊆ Dv.
This means every valuation into Dw is a valuation into Dv as well. This
allows for a straightforward definition of the truth of 2ϕ:

〈〈F,R〉, β, w〉 � 2ϕ :⇔ for all v � w : 〈〈F,R〉, β, v〉 � ϕ(23)

The condition on growing domains corresponds to the validity of the con-
verse Barcan formula 2∀xϕ(x) → ∀x2ϕ(x). The converse of this im-
plication, the Barcan formula, ∀x2ϕ(x) → 2∀xϕ(x), is not generally
valid.14 It is, however, if we have Dv = Dw for all v R w so that domains
are effectively constant. Another principle generally true in these frames
is the necessity of identity

(x = y) → 2(x = y)(24)

which is defended by Saul Kripke in the context of arguing for his causal
theory of reference [104].15

It follows from the strong version of Leibniz’ Principle (see §6.3 below):

s = t→ (ϕ(s/x) ↔ ϕ(t/x))(25)

In this interpretation, objects are transcendental, and so the question
of trans-world identity does not arise. This fact is responsible for the
necessity both of identity and nonidentity. Also, domains have to grow;
objects cannot be removed once they have been introduced.

14This appeared first in 1946 as Axiom 11 in Ruth C. Barcan’s [8], although as the
notational variant 3∃xϕ(x) � ∃x3ϕ(x) involving the existential diamond 3 and strict
implication.

15Which is closely related to Ruth Barcan Marcus’ theory of ‘contentless directly
referential tags’ account of proper names developed in her [127], a famous discussion
of which appeared in [129], listing R. B Marcus, W. V. Quine, S. Kripke, J. McCarthy,
and D. Føllesdal as discussants. For a historical account, compare [179].
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The logic of these structures, QK, is characterised over the languages
introduced above by the following additional axioms.

1. The converse Barcan formula.
2. x = y → 2(x = y).
3. x 6= y → 2(x 6= y).

If a strengthening is obtained by adding only purely modal propositional
axioms, we refer to it as quantified L, where L is the modal counter-
part. Often, the symbol QL is used. Other strengthenings involve inter-
actions between quantifiers, identity, and modal operators. These are the
most popular logics under investigation. The remaining option, to just
strengthen the predicate logical axioms, is rarely considered, partly be-
cause these axioms can easily be eliminated by conditionalising the other
axioms.

6.2. Free Logic. There are many problems with the converse Barcan-
formula. Obviously, objects that exist in this world need not exist in
others. One way to fix this is to introduce free logic (compare [112] for
an overview). Free logic adds to predicate logic an existence predicate,
denoted here by E, which is interpreted like an ordinary 1-place predicate.
The set I(E) is called the domain of existence, and its members are
said to exist. Objects outside of I(E) exist only in a weaker sense. The
standard quantifiers range only over existing objects. Therefore, some
laws of predicate logic, notably the law of universal instantiation, have
to be weakened.16 The axiomatisation is as follows. In addition to the
axioms and rules of K we assume (where fv(ϕ) denotes the variables free
in ϕ)

1. If x 6∈ fv(ϕ), then ϕ→ (∀x)ϕ is a tautology.
2. (a) (∀x)E(x).

(b) If y is free for x in ϕ(x, ~z) and y 6∈ ~z, then
(∀x)ϕ(x, ~z) → (E(y) → ϕ(y, ~z)) is a tautology.

3. The tautologies are closed under (UG): ϕ/(∀x)ϕ.
If equality is a symbol of the language, we add the following.

1. x = x is a tautology.
2. x = y → (ϕ(x) → ϕ(y//x)) is a tautology, where ϕ(y//x) denotes

the result of replacing one or more free occurrences of x by y, where
y does not become accidentally bound in that occurrence.

The last is the strong Leibniz’ Principle, see the discussion below. [80]
has observed that existence can be defined by

E(x) ↔ (∃y)(y = x)(26)

16Historically, this weakening of the rule of universal instantiation goes back to the
work of Saul Kripke [103] and Karel Lambert [111].
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Alternatively, one can introduce quantifiers
∧

and
∨

, which range over
the entire universe, and define

(∀x)ϕ :=
∧
x

E(x) → ϕ(27)

(See for example [83].) The difference between these two types of quanti-
fiers is often labelled possibilist (

∧
) versus actualist (∀), cf. [152, 85].

Using free logic one can eliminate a problem that besets the standard
semantics. If domains have to grow, there is no way in which some object
may cease to exist at some point. However, we do want to say that
Aristotle does not exist now, even though at some point he did. Rather
than trying to accommodate for this using different model structures, it
seems better to use free logic. (The advice to use free logic in the context
of modal logic was explicitly given in [167], compare also [62].) Once
free logic is introduced we may even assume that Dw = Dv if w R v, so
that one may effectively assume that all models have the same domain.
However, notice that free logic is more flexible; neither the Barcan formula
nor its converse hold any more because objects can freely pass in and out
of existence. The converse Barcan formula holds only if Iw(E) ⊆ Iv(E)
for w R v.

There are two ways to go from here. [57] allows predicates to take
as values in a given world any set of n-tuples drawn from the domain,
regardless of their existence, thus contradicting the Falsehood Principle
of Kit Fine [48] which states that the extension of a predicate at a given
world is a set of existing n-tuples. This principle can be reinstated in the
form of the axioms∧

x1

· · ·
∧
xn

(P (x1, . . . , xn) → E(x1) ∧ · · · ∧ E(xn))(28)

for every primitive n-ary predicate letter P .
It should be clear, however, that the semantical problems related to

nonexistents or fictional discourse in general (or talk of ‘impossible’ ob-
jects such as the infamous ‘round square’ for that matter) are rather
complex and not simply solved by moving to free logic, as witnessed, for
instance, by Gideon Rosen’s ‘Modal Fictionalism’ [160] (which builds on
David Lewis’s counterpart theory while trying to avoid its ontological
commitments) or Terence Parsons’s ‘Nonexistent Objects’ [144].

6.3. Identity, Substitution and Leibniz’ Law. Leibniz’ Law as-
serts that identicals are substitutable ‘salva veritate’. In modal predicate
logics, this applies both to propositions and to objects. We shall look at
propositions first. Standardly, Leibniz’ Principle is rendered as follows,
which we call the strong Leibniz’ Law:

p↔ q �L ϕ(p/r) ↔ ϕ(q/r)(29)
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Boolean logic satisfies this. A modal logic satisfies (29) iff it satisfies

p↔ q � �p↔ �q(30)

Since the only rule of inference is (MP), this is equivalent to p→ �p ∈ L.
The notion is therefore trivialised. [94] argues that Leibniz’ Principle is
not about accidental truth but about meaning. From this perspective, the
principle actually amounts to the admissibility of the rule (RE), repeated
here for convenience.

ϕ↔ χ
�ϕ↔ �χ

(31)

Leibniz’ Law in this form is valid in every classical, and hence in every
normal modal logic (as opposed to the strengthened version (29), which
is valid only if p→ �p ∈ L).

When talking about identity and Leibniz’ law with respect to objects,
typically Leibniz’ Principle is spelled out in the strong version. The weak
version is this.

s = t
ϕ(s/x) ↔ ϕ(t/x)(32)

Notice that such a substitution principle is actually derivable in the
case of classical first-order logic and more generally for any logic that
is axiomatised by unrestricted schemata. Nevertheless, by assuming un-
restricted second-order substitution for a given logic L one automati-
cally extends the underlying modal theory of identity. E.g., given that
(x = y) → (P (x, x) → P (x, y)) is an admissible instance of Leibniz’ Law,
second-order substitution yields (x = y) → (2(x = x) → 2(x = y)) and
hence (x = y) → 2(x = y). Actually, this situation is one of the reasons
for introducing a weaker base logic than the usual QK. [96] worked with
a system called FK which is a combination of propositional modal logic
K and positive free logic, PFL.17

If equality is introduced, the base logic is enriched by a weak form of
Leibniz’ Law, which we called the Modal Leibniz’ Law. This basically
results from the usual Leibniz’ Law by restricting the Quinean principle
of the ‘substitutability of identicals’ to those instances that do not entail
‘transworld-identifications’ of individuals of any kind. Briefly, if x = y
and the variable x appears free within the scope of a modal operator,
then either all or no occurrence of x may be replaced by y. Hence,
(x = y) → (2(x = x) → 2(x = y)) is not an admissible substitution,
which blocks the provability of the necessity of identity.18

17For a more detailed discussion and an argumentation why free logic is not only
useful but necessary, cf. [96] or [106].

18Thus, the modal operators behave quite similar to what is known as an unselective
binder in linguistics.
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A natural solution to the above problem of generating possibly unin-
tended theorems involving equality is therefore to deal with second-order
logics without identity and to add a modal theory of identity, or, alterna-
tively, to incorporate the theory of identity into the logic while restricting
substitution in an appropriate way.

Since closure under second-order substitutions has a quite different
flavour in a propositional as opposed to a predicate logic setting, there
are a number of reasons to be interested in first-order MPLs and to treat
them as genuine logics. We list just a few of them. First, if atomic
propositions/predicates enjoy a special status—like in certain logics of
time—then substitution of complex formulae for atoms may not be ad-
missible. Actually, this was one of the reasons for Robert Goldblatt to
introduce a similar distinction in the propositional case and to call it a
‘significant conceptual change’ (compare his [72]). Similarly for the case
where basic predicates may be intensional. Second, if one works with a
weak logic of identity, then a restriction of substitution is unavoidable.
Last but not least, if generalised semantics are considered, there are natu-
rally defined frame classes whose logic is only first-order closed. However,
one can also argue in favour of closure under second-order substitution
as a defining property of the general concept of a ‘logic’, which has been
attempted for the case of MPL in [12].19

To make this discussion less theoretical, let us have a brief look at
arguably the most prominent logic for which general substitution fails:
Rudolf Carnap’s logic of logical truth (L-truth) [28, 29]. Let us call the
propositional version of Carnap’s logic C, following Schurz [165] where a
detailed discussion can be found. C as well as the quantified version QC
of Carnap’s logic are often mistaken to be versions of (quantified) S5, but
they are in fact much stronger and have rather unusual logical properties.

The source of the differences between S5 and C is, however, easily
located. While Carnap considers a sentence to be logically true if it is valid
in a fixed set W of all possible interpretations of the language, in Kripke’s
account [101], a sentence is logically true if it is valid in each variable
subspace V ⊂ W.20 Thus, while in Carnap’s logic we have for every
satisfiable sentence A the logical truth 3A as a theorem of C, Kripke’s
S5 does not contain any non-trivial possibility theorems at all. Whenever
3A is in S5, so is A. And exactly these non-trivial possibility theorems
of C account for the fact that substitution fails in general, as should

19According to Alfred Tarski [185], the idea to define logical truth syntactically as the
requirement of closure under all substitution instances goes back to Bernhard Bolzano,
compare also [164].

20This was further analysed by Nino Cocchiarella [33] with his distinction between
primary and secondary semantics. Notice also the analogy to the frame/general frame
distinction.
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be obvious.21 As [165] argues, if one identifies necessity with logical
necessity then C is the only complete modal logic, compare also [34].

In fact, as Carnap [28] and Thomason [192] independently showed, S5
corresponds exactly to the substitutionally closed fragment of C.

6.4. Completion. Propositional modal logics are not always complete
with respect to Kripke-semantics. The same holds a fortiori for modal
predicate logics. There is a general procedure for turning an algebraic
model for the propositional language into a model for the predicate lan-
guage, which goes back to [113], and ultimately to the completeness proof
by Henkin for Simple Type Theory. This will be discussed in Sec-
tion 11.

There is an idea analogous to the construction of a general frame: we
start with a Kripke-frame and restrict the interpretation of predicates.
This is a purely linguistic restriction; there is nothing in the ontology
itself that suggests why such a restriction is warranted. The technical
details are as follows. We introduce a ‘tower’ of sets that represent the
possible values for predicates. Before we can give a precise definition, some
technical preliminaries are necessary. If σ : {1, . . . ,m} → {1, . . . , n} is a
map, and ~a is an n-tuple, put σ(~a) := 〈aσ(1), . . . , aσ(m)〉. This defines a
map from n-tuples to m-tuples; it is lifted to sets as follows.

σ(c) := {σ(~a) : ~a ∈ c}(33)

Also, the cylindrification Em for m ≤ n is defined by

Em(c) := {〈a1, . . . , an〉 : ∃d.〈a1, . . . , am−1, d, am+1, . . . , an〉 ∈ c}(34)

A generalised Kripke-frame is a structure 〈W,R,C〉, where 〈W,R〉 is
a Kripke-frame and C = {Cn : n ∈ N} is a sequence of sets Cn ⊆ ℘(Dn)
satisfying the following postulates.

1. Cn is a modal algebra for every n.
2. If c ∈ Cn and σ : m→ n then σ(c) ∈ Cm.
3. If c ∈ Cn and n ≥ m then Em(c) ∈ Cn.

We call such a system a tower. Now, the condition is that for a predicate
P , the interpretation Iw(P ) is a member of Cn. The following clause is
added.

〈W,R,C, β, w〉 � P (xσ(1), . . . , xσ(m)) ⇔ 〈x1, . . . , xm〉 ∈ σ(Iw(P ))(35)

By assumption, the interpretation of a formula is a member of the tower.
The sets of the tower do not change from world to world.

So far, we have discussed the syntactic definition of modal predicate
logics, some of the standard semantical approaches including Kripkean
possible worlds semantics and free logic, as well as related problems, as

21Clearly, ⊥ cannot be substituted for A in 3A. It also follows that, unlike QS5,
the theorems of QC are not even recursively enumerable.
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for instance the validity of the Barcan formulae in standard semantics and
the problems with substitution and identity. Many of the more general
semantics that have been proposed are designed to deal with one or the
other of these problems, with the eventual goal of very general complete-
ness theorems encapsulating a minimum of ontological presuppositions,
or—as Johan van Benthem has formulated it—referring to the merits of
completeness proofs in general, that ‘embody conditions of adequacy on
empirical theories in semantics’ [15].

The term Kripke-type semantics, as introduced in [177], refers to a
family of semantics that, rather than introducing purely algebraic struc-
tures, tries to keep as much as possible of the basic intuitions of ‘possible
worlds semantics’ (the ‘geometric approach’) while transcending its scope
[107].

The main differences to the standard semantics are twofold: first, in-
stead of taking a Kripke frame, that is, a set of possible worlds together
with an accessibility relation, and to enrich it by assigning domains to
worlds, one starts with a family of first-order domains and adds some
set of functions or relations between the domains, which in turn define
accessibility between worlds. Hence, a plain accessibility relation is no
longer a primitive of the frame but rather depends on (can be defined by)
the functions/relations being present. This leads to the second funda-
mental difference, namely that there may indeed be many distinct func-
tions/relations between two given worlds, a feature that we will label
‘modes of transgression’ in the context of counterpart semantics that we
will investigate in the next section. Figure 1 shows some of the different
proposed Kripke-type semantics and their interdependencies. An arrow
from A to B indicates that the semantics A is a special case of (can be
simulated by) semantics B.

§7. Counterpart Semantics. David Lewis [117] provided the first
formal theory of counterparts. It is a two-sorted first-order theory, whose
sorts are objects and worlds, and which has four predicates: W (x) says
that x is a world, I(x, y) that x is in the world y, A(x) that x is an
actual object, and C(x, y) that x is a counterpart of y. The postulates
codify that every object is in one and only one world, that counterparts
of objects are objects, that no two different objects of the same world can
be counterparts of each other, any object is a counterpart of itself, and
that there is a world that contains all and only the actual objects and
which is non-empty.

The connection to the standard modal language is obtained by trans-
lating sentence of MPL to the counterpart theory via the so-called Lewis
translation (for details compare [117]).
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Shehtman/Skvortsov 1993

Standard Kripke Semantics

Constant Domains Varying Domains

Functor Semantics

(General) Counterpart Frames

(General) Coherence Frames
Kracht/Kutz 2001

Kripke Bundle Semantics

Cartesian Metaframes

Modal Metaframes

Shirasu 1998

Counterpart Theory

Actualist Quantifiers

Kracht/Kutz 2000

Hyperdoctrinal Semantics/General Metaframes

Ghilardi 1989

Lewis 1968

Possibilist Quantifiers

Shehtman/Skvortsov 1990

Shehtman/Skvortsov 1993

Figure 1. An overview of various semantics for modal
predicate logics ordered by relative generality.

For instance, an expression of the form [3ϕ(t1, . . . , tn)]v (‘3ϕ(t1, . . . , tn)
holds in world v’) is recursively translated to

(36) ∃w∃s1 . . .∃sn(W (w) ∧ I(s1, w) ∧ C(s1, t1) ∧ . . .
. . . ∧ I(sn, w) ∧ C(sn, tn) ∧ [ϕ(s1, . . . , sn]w)

However, there are several problems related to this translation ap-
proach. First, in its original form, counterpart theory does not validate
all theorems of the smallest quantified modal logic QK since it fails to
generally support the principle of Box distribution

2(ϕ→ ψ) → (2ϕ→ 2ψ),

which is valid in all normal modal logics, compare [85]. In fact, the simul-
taneous quantification over both worlds and individuals in counterpart
theory obscures the notion of accessibility between worlds and thus leads
to the semantic refutability of certain K-theorems [106].

Further, it has often been argued that the standard modal languages
are not expressive enough. For instance, the natural language sentence

‘There could be something that doesn’t actually exist’

can only be rendered in a language comprising an actuality operator
A as well as an existence predicate E [81, 82], namely as 3∃x¬AE(x).22

22This example is related to an ontological objection raised by Plantinga [150] as well
as Konyndyk [92], namely that the standard interpretation of modal language implies
the existence of fictional, non-existent objects, which is at odds with several varieties
of modal actualism. Compare also [31].
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Extensions of the modal language, however, require modification to the
Lewis translation scheme, as has been attempted for instance by Graeme
Forbes [56] and Murali Ramachandran [157].

But these translations are only partially faithful, as Fara and Williamson
argue [44] who translate inconsistent sentences of modal predicate logic
involving an actuality operator (interpreted in standard Kripke seman-
tics) to satisfiable sentences of counterpart theory via different transla-
tion schemes. (Yet, this is not too surprising given that the semantics of
counterpart theory is more flexible than the standard Kripkean semantics
of modal predicate logic.)

We will not follow this line of research here any further. Rather, we
are interested in the ideas underlying counterpart theory as a semantical
framework for quantified modal logic in general, an approach that was
initiated by Allen Hazen [75]. From this perspective, counterpart theory
can be reformulated as follows.

We assume that a frame is a collection of first-order structures over
pairwise disjoint domains, and add a relation C on the union of the do-
mains. If x and y are from the same domain, then C(x, y) if and only if
x = y. Thus, a counterpart frame is a pair 〈W,C〉, where W is a set
of worlds such that

Dv ∩Dw = ∅ iff v 6= w,(37)

and C ⊆ (
⋃

w∈W Dw)2 a relation such that, for each v

C ∩D2
v = {〈x, x〉 : x ∈ Dv}.(38)

Instead of specifying actual objects we make use of the actual world. The
formula ♦ϕ(~a) is true at w if there is a world v and counterparts ci for
ai in v, i.e. 〈ai, ci〉 ∈ C(w, v) for all i, such that ϕ(~c) is true at v. The
following are not theorems in counterpart frames, though they are valid
in standard constant-domain Kripke-frames.

1. (x = y) → 2(x = y)
2. (x 6= y) → 2(x 6= y)
3. ∀x2ϕ(x) → 2∀xϕ(x)

The necessity of identity and distinctness fail because counterpart rela-
tions need not be functional nor do they need to be injective. Also, the
Barcan formula is not valid for there could be individuals in an accessible
world w that are not the counterpart of any individual in v (counterpart
relations are not assumed to be ‘surjective’). The converse Barcan for-
mula 2∀xϕ(x) → ∀x2ϕ(x), however, is also a theorem of counterpart
theory, for if everything in w makes ϕ true so does a fortiori everything
that is a counterpart of something in v.

Notice that Lewis considers only counterpart relation from one world
to another world. However, there may be many ‘different ways’ to move
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from one world to another. This distinguishes Kripke-type semantics also
significantly from standard counterpart theory (cf. [117]) and its derived
possible worlds semantics (cf. [75]).

That this feature of multiple functions or relations is not eliminable is
due to the fact that there are second-order closed MPLs that are complete
only with respect to frames having at least two counterpart relations
between worlds, cf. [97].

Counterparts need not be unique, an object can have several coun-
terparts in another world. Neither are counterpart relations assumed in
general to be symmetric or transitive. If counterparts were unique both
ways, the theory would be exactly like that of Kripke’s, only that we have
changed the ontology. Objects in the Kripke-frames become equivalence
classes of the counterparts relation. Although that seems to be just a
technical move, Lewis did try to identify criteria for establishing whether
an object is a counterpart of another. One principle may be explicated
as follows (see [57]).

For c ∈ Du and d ∈ Dv, d is a counterpart of c only if nothing
in v is more similar to c as it is in u than is d as it is in v.

This is only a necessary condition and it is not clear what would be suffi-
cient. Furthermore, interpretations of counterparthood based on similar-
ity face several problems in general. For instance, as Feldman discusses
in [45], how could we possibly translate a sentence such as ‘I could have
been quite unlike what I in fact am’ when counterparthood is understood
solely as a relation of similarity?

Another problem is that the counterparts are defined for each object
individually. This creates technical problems. Suppose we only have
equality, and axioms that say ‘there are exactly three individuals’ and
‘there is exactly one world’. Then the counterpart relations must be
functions, despite the fact that the above definition would predict that any
object can serve as a counterpart for any given object. Another problem
is this. If similarity is defined in terms of how many of the properties the
objects share, we can only use 1-place properties to determine similarity
and must exclude properties such as ‘a is father of b’. However, once we
have chosen a counterpart for b in the next world there is only one way
to choose a counterpart for a, despite the fact that prior to the choice of
b, we might have had more than one counterpart.

Thus, we see that we must actually specify the counterparts for all
objects at once. This leads to the presheaf semantics outlined in [65].
The original definitions worked only for extensions for S4, but they can
be generalised easily. Consider a category C. A category has objects,
which are here considered as worlds, and morphisms or maps between
objects, which define what we call modes of transgression. The idea
is that from a world u there are several ways to transgress into the world
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v. Now, a presheaf is a functor F from C to the category of sets and
functions. This means that every world u is mapped to a set F (u), and
every map f : u→ v is mapped to a function F (f) : F (u) → F (v). There
are two further conditions: F (f ◦ g) = F (f) ◦ F (g), and for the identity
idu we have F (idu) = idF (u). We consider for simplicity valuations at a
single world. If u is a world, then a valuation β at u is a function from the
object variables to F (u). The clause for the modal operator is as follows.

〈F, u, β〉 � ♦ϕ :⇔ there is f : u→ v such that 〈F, v, F (f) ◦ β〉 � ϕ(39)

Thus, one thinks of F (f) as the function that takes each object in u into
its counterpart in v under the mode of transgression f . If β is a valuation
at u, and f : u → v a mode of transgression, then F (f) : F (u) → F (v)
can be composed with β to give a valuation at v. The following is valid
in presheaf semantics:

1. All axioms of QS4 are tautologies.
2. (x = y) → 2(x = y).
3. The tautologies are closed under (MP), Universal Generalisation and

Leibniz’ Principle.
[96] take one more step of generalisation. Rather than using functions,
they employ once again relations, but allow a set of them. We give a
slight adaptation of the definitions of that paper to take care of the fact
that we now deal with possibilist quantifiers plus an existence predicate as
opposed to ‘proper’ free-logical quantifiers. Furthermore, we shall make
more explicit the world dependence of the universes.

Call a relation R ⊆M ×N a CE-relation (CE stands for ‘counterpart
existence’) if for all x ∈ M there exists a y ∈ N such that x R y and,
likewise, for all y ∈ N there exists an x ∈ M such that x R y. Since
we assume free logic, this is a harmless complication (it does not entail
claims about existence, but is needed to avoid truth-value gaps).

Definition 4. A poly-counterpart frame is a quadruple 〈W,T,U,C〉,
where W,T 6= ∅ are non-empty sets, U a function assigning to each v ∈W
a non-empty subset Uv of T (its domain) and, finally, C a function as-
signing to each pair of worlds v, w a set C(v, w) of CE-relations from
Uv to Uw. A pair 〈W, I〉 is called a counterpart structure if W is a
counterpart frame and I an interpretation, that is, a function assigning
to each w ∈W and to each n-ary predicate letter a subset of Un

w.

We say that v sees w in F if C(v, w) 6= ∅—thus the notion of ‘acces-
sibility’ is completely reduced to the existence of a counterpart relation.
A valuation is a function η which assigns to every possible world v and
every variable an element from the universe Uv of v. We write ηv for the
valuation η at v. A counterpart model is a quadruple M = 〈F, I, η, w〉,
where F is a counterpart frame, I an interpretation, η a valuation and
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w ∈ W . If ρ ∈ C(v, w), write η
ρ→ η̃ if for all x ∈ V : 〈ηv(x), η̃w(x)〉 ∈ ρ.

Truth in a counterpart model is defined as follows. Let v ∈ W and η be
a valuation.

(40) 〈F, I, η, v〉 � 3ϕ(~y) there are w ∈W,ρ ∈ C(v, w) and η̃

such that η
ρ→ η̃ and 〈F, I, η̃, w〉 � ϕ(~y)

This semantics can be enriched by towers in the sense above to obtain
general structures. The minimal logic of these structures can be axioma-
tised as follows. On top of free logic and modal logic, we require the truth
of the following principles for identity.

1. x = x.
2. If y is free for ϕ(x), then x = y → (ϕ(x) ↔ ϕ(y//x)), where ϕ(y//x)

denotes the result of replacing one or more free occurrences of x not
in the scope of a modal operator by y.

3. x = y ∧ ♦> → ♦(x = y).
The last postulate is true generally of counterpart theory. However,
it can hardly be considered valid when one thinks of the quantifiers
as quantifying over intensional rather than extensional (trace-like) ob-
jects (see the discussion of constants below). The necessity of identity,
(x = y) → 2(x = y), as well as the necessity of difference are both invalid.
To see the first, let u be a world containing just a with two counterparts
b and c in v. Then we can choose for x the counterpart b and for y the
counterpart c.

Notice that for constants the situation is different. For suppose that the
language contains constants and that they are interpreted by individual
concepts. Then neither principle is valid. For let in the same model the
interpretation of d be a in u and b in v, but for e it is a in u and c in
v. Then (d = e) ∧ ♦> → ♦(e = e) as well as (d = e) → 2(d = e)
are both invalid. This disparity of constants and variables is a rather
worrying aspect of counterpart semantics. Presheaf semantics does not
have this defect since counterparts are unique. On the other hand, in
presheaf semantics the necessity of identity is valid.

The modal Leibniz’ law of [96] allows for simultaneous substitution of
all free occurrences of x by y in 3χ (denoted by 3χ(y//x), provided that
x = y is true. ∧

x.
∧
y.x = y.→ .3χ(x) → 3χ(y//x)(41)

Now, notice that in Kripke-semantics the rule of replacing constants for
universally quantified variables is valid. In counterpart frames this creates
unexpected difficulties.

For suppose that constants are present and may be substituted for
variables. Then we may derive from (41), using the substitution of c for
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x and d for y:

(c = d ∧3>) → 3(c = d)(42)

Since a constant has a fixed interpretation in each world, this means that if
two constants are equal in a world and there exists some accessible world,
then there will also be some accessible world in which they are equal. This
is not generally valid. What is happening here is a shift from a de re to a
de dicto interpretation. If we follow the traces of the objects, the formula
is valid, but if we substitute intensional objects, namely constants, it
becomes refutable. Notice that this situation is also reflected in the way
non-rigid constants are treated in [55]. There, the two possible readings
of the above formula, the de dicto and de re reading, are distinguished
by actually binding the interpretation of the constants to the respective
worlds by using the term-binding λ-operator.23

Applied to Hesperus and Phosphorus, this means that if they are equal,
then there is a belief world of George’s in which they are equal. However,
if George believes that they are different, this cannot be the case. So, the
counterpart semantics cannot handle constants correctly—at least not
in a straightforward way, i.e., without restricting the possible values of
constants in accessible worlds. This paradox is avoided in Kracht and
Kutz [96] by assuming that the language actually has no constants.

Counterpart theory as well as modal predicate logic were originally in-
tended to formalise natural language statements involving modalities, but
their expressive richness make them also obvious candidates for knowledge
representation in Artificial Intelligence. Thus, let us make a few comments
about their computational properties.

Counterpart theory is formulated as a first-order theory. While the
monadic fragment [125] (containing only unary predicates) or the two-
variable fragment [166, 137] of classical predicate logic are decidable,
the fragment of predicate logic with binary predicates and three vari-
ables is already undecidable [183], which means that only a very limited
fragment of counterpart theory is decidable.

When we move to modal predicate logic, though, the situation does not
improve. Kripke already showed in 1962 that the monadic fragment of
MPL is undecidable [102]. Later, it was shown that also the two-variable
fragment of practically all standard MPLs based on Kripkean constant
domain semantics are undecidable [40], which seemed to imply that the

23λ-abstraction was introduced to modal logic by Robert Stalnaker and Richmond
H. Thomason in [181, 190] and corresponds to Bertrand Russell’s scoping device used
to analyse definite descriptions, originating in [161] and systematically used in Prin-
cipia Mathematica [198]. More recently, λ-abstraction was studied by Melvin Fitting
[51], who also investigated modal languages that comprise λ-abstraction for constants
but without allowing quantification, thus defining languages that are situated between
modal propositional and predicate logics [52]. For a discussion compare also [20].
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decision problem for modal predicate logic is almost hopelessly difficult.
Only fairly recently has the search for decidable fragments of MPL been
successful, namely with the definition of so-called monodic fragments24

[200]. These are languages of MPL where at most one free variable is
allowed in the scope of a modal operator; and basically any extension of
a decidable fragment of classical predicate calculus to its monodic modal
language yields a decidable formalism [59].

In general, more subtle combinations of languages have been studied,
such as fusions [98, 50] or products [59] of modal logics (where modal
predicate logic can be understood as the product of first-order predicate
logic and modal propositional logic). But again, while fusions behave very
nicely both computationally and logically, they are rather inexpressive,
and, on the other hand, products, being quite expressive, are once again
computationally very difficult in general [59].

Interestingly, then, the general idea of counterpart relations being based
on a notion of similarity also gives rise to a framework of knowledge rep-
resentation languages that is rather expressive, natural from a semantical
point of view, and which is very well-behaved computationally, namely the
theory of E-connections [108, 109]. In E-connections, a finite number
of formalisms talking about disjoint domains are ‘connected’ by relations
relating entities in different domains, intended to capture different aspects
or representations of the ‘same object’. For instance, an ‘abstract’ object
o of a description logic L1 can be related via a relation R to its life-span
in a temporal logic L2 (a set of time points) as well as to its spatial ex-
tension in a spatial logic L3 (a set of points in a topological space, for
instance). As with poly-counterpart frames, the presence of multiple re-
lations between domains is essential for the versatility of this framework,
the expressiveness of which can be varied by allowing different language
constructs to be applied to the connecting relations. E-connections ap-
proximate the expressivity of products of logics ‘from below’ and could,
perhaps, be considered a more ‘cognitively adequate’ version of counter-
part theory.

§8. Individual Concepts. We have noticed above that in many anal-
yses there is an asymmetry between variables and constants. This asym-
metry is easily explained. A constant is standardly interpreted by an
individual concept, while variables are often used to refer to objects.
In counterpart theory, objects are world bound, so the notion of an object
is different from that of an individual concept. There are proposals which
argue that the values of variables should likewise be individual concepts.

24A ‘monody’ is a kind of music distinguished by having a single melodic line and
accompaniment.
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Recent proposals to this effect are the worldline frames of [163] and the
coherence frames of [97].

A coherence frame is a quintuple 〈W,R,O, T, τ〉, where 〈W,R,O〉 is
a predicate Kripke-frame, consisting of a set W of worlds, an accessibility
relation R, and a set O, the set of objects, and where T is a set, the set
of things, and τ : U ×W → T a surjective function. We call τ the trace
function and τ(o, w) the trace of o in w. The set Tw = {t ∈ T : t =
τ(o, w), o ∈ O} is the set of things constituting the world w, i.e. the set
of things which can bear properties. In [163], a worldline is defined to
be a function W → T . It turns out that objects can be identified with
worldlines, and we shall simplify our exposition accordingly.

An interpretation is a function I mapping each predicate letter P
of arity Ω(P ) to a function from W to TΩ(P )

w and each constant symbol
c to a member of U . Let us call an interpretation I equivalential if
for all ~a,~c ∈ UΩ(P ) and w ∈ W , if τ(ai, w) = τ(ci, w) for all i < Ω(P )
then ~a ∈ I(P )(w) if and only if ~c ∈ I(P )(w). (This condition is enforced
only for extensional predicates.) A coherence structure, then, is a pair
〈W, I〉 where W is a coherence frame and I an equivalential interpretation.
A coherence model is a triple 〈C, β, w〉, where C is a coherence structure,
β : V → U a valuation, w ∈ W . Every term t evaluates into a unique
object ε(t) (which depends on the valuation).

〈C, β, w〉 � P (~t) :⇔ ε(~t) ∈ Iw(P )
〈C, β, w〉 � s = t :⇔ τ(ε(s), w) = τ(ε(t), w)
〈C, β, w〉 �

∨
x.ϕ :⇔ for some γ with γ ∼x β : 〈C, γ, w〉 � ϕ

〈C, β, w〉 � 3ϕ :⇔ there is w′ � w such that 〈C, β, w′〉 � ϕ

(43)

In worldline semantics, predicates are interpreted as sequences of n-tuples
of traces. The following is put in place of the first condition:

〈C, β, w〉 � P (~t) :⇔ 〈τ(ε(t1), w), · · · , τ(ε(tn), w)〉 ∈ Iw(P )(44)

This allows to drop the condition of equivalentiality. However, it removes
the flexibility in dealing with intensional predicates. It is a matter of
straightforward verification to show that all axioms and rules of the min-
imal MPL are valid in a coherence frame. Moreover, the set of formulae
valid in a coherence structure constitutes a first-order MPL. Notice that
the fourth postulate for equality holds in virtue of the special clause for
equality and the condition that the interpretation must be equivalen-
tial. For if 〈C, β, w〉 � yi = yn, then τ(β(yi), w) = τ(β(yn), w). So, if
〈C, β, w〉 � P (y0, . . . , yn−1) for P ∈ Π, then 〈β(yi) : i < n〉 ∈ I(P )(w).
Let β′ ∼yi β be such that β′(yi) = β(yn). By equivalentiality, 〈β′(yi) :
i < n〉 ∈ I(P )(w). This means that 〈C, β′, w〉 � P (y0, . . . , yn−1), and so
〈C, β, w〉 � [yn/yi]P (y0, . . . , yn−1). If F is a coherence frame, put F � ϕ if
〈F, I〉 � ϕ for all equivalential interpretations I. Evidently, {ϕ : F � ϕ} is
a first-order MPL.
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The frames allow two objects to share the entire worldline, just as worlds
can support the same propositions. This means that in a coherence frame
the objects are not mere constructions, they exist in their own right. We
say that o = o′ is true at w if and only if τ(o)(w) = τ(o′)(w). It follows
that the formula

x = y ∧ ♦> → ♦(x = y)(45)

is not valid in coherence frames, since there is no way to predict how the
worldline of an object develops from one world to the next. If we turn
to predicates, their interpretation is now a function I(P ), which assigns
to each world w a subset of Dn

w. Thus predicates, like identity, are pred-
icated not of the objects themselves, but of the traces in their worlds.
Thus if τ(o)(w) = τ(o′)(w) then o and o′ satisfy the same nonmodal
formulae. The semantics is generalised using towers. This leads to the
notion of a generalised coherence frame. Free logic is assumed as well.
[97] show that the semantics of generalised coherence frames is complete
for all modal predicate logics. Moreover, similar to the case of standard
Kripke semantics, a variant of the well-known Henkin construction yields
a general completeness result with respect to structures involving inter-
pretations (rather than with respect to frames). The difference, however,
to standard Kripke semantics is that coherence frames also cover various
logics of identity, for details compare [97].

This semantics eliminates on the one hand the asymmetry between vari-
ables and constants and on the other the possibility of speaking of things
(‘res’) simpliciter. A thing can only be understood as the materialisation
of an individual concept, and is not conceptualised itself. This is espe-
cially noticeable in the light of the criticism leveled against counterpart
theory. It has namely been observed that counterpart theory makes ev-
ery actual property of an object at a world w a necessary one, for the
reason that no object of another world is identical to it (see [150] for the
argument and [139] for a rebuttal). Thus, the condition that attributions
are exclusively of the individual concept remove that problem. The se-
mantics based on the interpretation of variables as individual concepts is
complete and provides a rather elementary completeness proof for modal
predicate logic. Also, the notion of an individual concept is not more sus-
picious than the counterpart theory. Counterpart relations can be seen
as the traces of these functions. On the other hand, given a counterpart
relation, we can define individual concepts in the following way. Given a
counterpart relation C, a compatible worldline is any function f such that
if v R w then f(v) C f(w). However, if v R v it may become impossible
to choose enough worldlines. However, one can always first unravel the
counterpart frame before extracting the worldlines (see [97]).
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Note that since trace functions are assumed to be surjective, every trace
has to be the trace of some object. This is a natural condition, because
objects are considered to be the primary entity, and traces a derived
notion. The notion of equivalence is perhaps a curious one. It says that
the basic properties of objects cannot discriminate between objects of
equal trace. So, if Pierre believes that London is beautiful and Londres
is not, while at the same time Londres is London [105], we have two
objects which happen to have the same trace in this world, though not
in any of Pierre’s belief worlds. Hence they must share all properties in
this world. So, London and Londres can only be both beautiful or both
ugly. This seems very plausible indeed. From a technical point of view,
however, the fact that they cannot simply have different properties is a
mere stipulation on our part. On the other hand, it is conceivable that
there are basic predicates that are actually intensional, which would mean
that they fail the substitution under (extensional) equality.

The difference with the counterpart semantics is that we have disentan-
gled the quantification over objects from the quantification over worlds.
Moreover, objects exist independently of worlds. Each object leaves a
trace in a given world, though it need not exist there. Furthermore, two
objects can have the same trace in any given world without being identi-
cal. However, identity of two objects holds in a world if and only if they
have the same trace in it. If we also have function symbols, the clauses
for basic predicates and equality will have to be generalised in the obvious
direction.

§9. Objects in Counterpart Frames. One of the main intuitions
behind counterpart frames is that objects do not exist in more than one
world, they are, in Lewis’ terminology, worldbound. We call such ob-
jects individuals. Variables are interpreted in them as individuals, with
no connection between the values at different worlds assumed. A more
abstract, transworld notion of an object can only be reconstructed by fol-
lowing an individuals’s counterparts along the counterpart relations being
present. It turns out, however, that counterpart frames may have very
few objects in this sense.

Definition 5 (Objects). Let F = 〈W,T,U,C〉 be a counterpart frame.
An object is a function f : W → T such that (i) f(v) ∈ Uv for all v ∈W ,
(ii) for each pair v, w ∈ W with C(v, w) 6= ∅ there is ρ ∈ C(v, w) such
that 〈f(v), f(w)〉 ∈ ρ.

So, objects are constructed using the counterpart relation. If the trace
b in world w is a counterpart of the trace a in world v, then there may be
an object leaving trace a in v and trace b in w. If not, then not. However,
there are frames which are not empty and possess no objects. Here is an
example. Let W = {v}, T = {a, b}, Uv = {a, b}, and C(v, v) = {ρ} with



36 MARCUS KRACHT AND OLIVER KUTZ

ρ = {〈a, b〉, 〈b, a〉}. It is easy to see that this frame has no objects. The
crux is that we can only choose one trace per world, but when we pass
to an accessible world, we must choose a counterpart. This may become
impossible the moment we have cycles in the frame.

Thus, the connection between coherence frames and counterpart frames
is not at all straightforward. Since the logic of a counterpart frame is a
first-order modal predicate logic, one might expect that for every coun-
terpart frame there is a coherence frame having the same logic. This
is only approximately the case. It follows from Theorem 7 below that
for every counterpart structure there is a coherence structure having the
same theory. This is not generally true for frames. However, adopting
a modification of coherence frames proposed by Melvin Fitting in [54],
namely balanced coherence frames (in [54] the corresponding frames are
called Riemann FOIL frames in analogy to Riemann surfaces in com-
plex analysis), it can indeed be shown that for every counterpart frame
there is a balanced coherence frame validating the same logic (under a
translation).

Let us begin by elucidating some of the connections between counter-
part and coherence frames. Note again that since counterpart structures
as defined above do not interpret constants, we have to assume that the
language does not contain any constants.

First, fix a coherence structure C = 〈W,�, U, T, τ,I〉. We put Uv :=
{τ(o, v) : o ∈ U}. This defines the domains of the world. Next, for
v, w ∈ W we put ρ(v, w) := {〈τ(o, v), τ(o, w)〉 : o ∈ U} and C(v, w) :=
∅ if v � w does not obtain; otherwise, C(v, w) := {ρ(v, w)}. Finally,
〈τ(ai, w) : i < Ω(P )〉 ∈ I′(P )(w) iff 〈ai : i < Ω(P )〉 ∈ I(P )(w). Then
〈W,T,U,C, I′〉 is a counterpart structure. We shall denote it by CP(C).
Notice that there is at most one counterpart relation between any two
worlds.

Conversely, let a counterpart structure N = 〈W,T,U,C, I〉 be given.
We put v � w iff C(v, w) 6= ∅. U := T . Let O be the set of all objects
o : W → T . Further, τ(o, w) := o(w). This defines a coherence frame if
the set of objects is nonempty.25 Finally, 〈oi : i < Ω(P )〉 ∈ I′(P )(w) iff
〈oi(w) : i < n〉 ∈ I(P )(w). It is easy to see that this is an equivalential
interpretation. So, 〈W,�, O, U, τ, I′〉 is a coherence structure, which we
denote by CH (N).

Unfortunately, the logical relation between these two types of structures
is rather opaque, not the least since the notion of satisfaction in them is
different. Moreover, the operations just defined are not inverses of each
other. For example, as we have already seen, there exist counterpart
structures with nonempty domains which have no objects. In this case

25Strictly speaking, we have to reduce the set U of traces to those elements t ∈ T
that actually are the trace of some object o, but this makes no difference semantically.
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CP(CH (N)) � N. Also let C be the following coherence frame. W :=
{v, w, x, y}, T := {1, 2, 3, 4, 5, 6}, U = {a, b}, � = {〈v, w〉, 〈w, x〉, 〈x, y〉}.
Finally, τ(a,−) : v 7→ 1, w 7→ 2, x 7→ 4, y 7→ 5, τ(b,−) : v 7→ 1, w 7→
3, x 7→ 4, y 7→ 6. Generating the counterpart frame we find that 2 and
3 are counterparts of 1, and 5 and 6 are counterparts of 4. Hence, there
are more objects in the counterpart frame than existed in the coherence
frame, for example the function v 7→ 1, w 7→ 2, x 7→ 4, y 7→ 6.

Definition 6 (Threads). Let N be a counterpart frame. A sequence
〈(wi, ti) : i < n〉 is called a thread if (1) for all i < n: wi ∈ W , ti ∈
Uwi, and (2) for all i < n − 1: wi � wi+1 and 〈ti, ti+1〉 ∈ ρ for some
ρ ∈ C(wi, wi+1). N is rich in objects if for all threads there exists an
object o such that o(wi) = ti for all i < n.

Notice that if � has the property that any path between two worlds
is unique then N is automatically object rich. Otherwise, when there
are two paths leading to the same world, we must be able to choose the
same counterpart in it. Using unravelling one can always produce an
object rich structure from a given one. Additionally, we can ensure that
between any two worlds there is at most one counterpart relation. We call
counterpart frames that satisfy the condition |C(v, w)| ≤ 1 for all worlds
v, w ∈ W Lewisian counterpart frames. The proof of the following
theorem makes use of the unravelling technique.

Theorem 7. For every counterpart structure N there exists a Lewisian
counterpart structure N′ rich in objects such that N and N′ have the same
first-order modal theory.

For a proof, let N = 〈〈W,T,U,C〉, I〉 be a counterpart structure. A
path in N is a sequence π = 〈w0, 〈〈wi, ρi〉 : 0 < i < n〉〉 such that
ρi ∈ C(wi−1, wi) for all 0 < i < n. We let e(π) := wn−1 and r(π) = ρn−1

and call these, respectively, the end point and the end relation of π.
Let W ′ be the set of all paths in N and T ′ := T . Further, let U′

π := Ue(π)

and for two paths π and µ put C′(π, µ) := r(µ) if r(µ) ∈ C(e(π), e(µ))
and empty otherwise. Finally, let P be an n-ary predicate letter. Then
I′(P )(π) := I(P )(e(π)). Now let N′ = 〈〈W ′, T ′,U′,C′〉, I′〉. This is a
Lewisian counterpart structure and clearly rich in objects. It can be
verified by induction that if β is a valuation on N and w a world, and if β′

is a valuation on N′ and π a path such that e(π) = w and β′π(xi) = βw(xi),
then 〈N, β, w〉 � ϕ iff 〈N′, β′, π〉 � ϕ for all ϕ.

Notice by the way that for second-order closed logics this theorem is
false. This is so because the interpretation of a predicate in π must be
identical to that of µ if the two have identical end points. We will re-
encounter this problem in the next section when we will modify Kripkean
semantics to match counterpart frames in terms of generality. However,
if we are interested in characterising MPLs by means of models, it follows
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from the above result that we can restrict ourselves in the discussion to
Lewisian counterpart structures that are rich in objects.

But we can also strike the following compromise. Let us keep the coun-
terpart semantics as it is, but interpret formulae in a different way. We
say that M = 〈〈F, I〉, β, v〉 is an objectual counterpart model, if F is a
counterpart frame as before, I is an objectual interpretation, that is,
a counterpart interpretation that additionally assigns objects to constant
symbols, β an objectual valuation into F, i.e., a function that assigns to
each variable an object in a given a world. In this context, εv(o) := βv(o)
if o is a variable and εv(o) = I(o)(v) if o is a constant symbol.

Write β →~y
v,w β if for some ρ ∈ C(v, w) we have 〈βv(xi), βw(xi)〉 ∈ ρ

for all xi ∈ ~y. Furthermore, write β →~y
v,w γ if for some ρ ∈ C(v, w) we

have 〈βv(xi), γw(xi)〉 ∈ ρ for all xi ∈ ~y, where γ is an objectual valuation.
Terms ti denote either variables or constants, ~y tuples of variables and ~c
tuples of constants. The symbol �∗ is called the weak objectual truth-
relation and is defined thus:

〈M, β, v〉 �∗ R(~t) :⇔ 〈εv(t0), . . . , εv(tn−1)〉 ∈ Iv(R)
〈M, β, v〉 �∗ 3ϕ(~y,~c) :⇔ there is β →~y

v,w γ : 〈M, γ, w〉 �∗ ϕ(~y,~c)
〈M, β, v〉 �∗ ∨

y.ϕ(y,~c) :⇔ there is β̃ ∼y β : 〈M, β̃, v〉 �∗ ϕ(y,~c)

(46)

The strong objectual truth-relation �† is like �∗ except for the clause
for 3 which is now

〈M, β, v〉 �† 3ϕ(~y,~c) :⇔ there is β →~y
v,w β : 〈M, β, w〉 �† ϕ(~y,~c)

(47)

These interpretations remove the asymmetry between variables and con-
stants in the sense that constants and variables are now assigned the same
kind of values. However, while the strong objectual interpretation brings
us very close to coherence semantics, the weak interpretation still bears
essential properties of counterpart semantics, namely that we may move
via a counterpart relation to a new object. More precisely we have the
following:

Proposition 8. The rule of substituting constants for universally quan-
tified variables is valid in the strong objectual interpretation. More specif-
ically, for every counterpart frame F

F �† (
∧
x.ϕ) → [c/x]ϕ.(48)

Furthermore, there is an objectual counterpart model M such that

M 2†
∧
x.

∧
y.(x = y) → (ϕ(x, ~z) ↔ ϕ(y, ~z))(49)

Both claims are false for the weak objectual interpretation.
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In object rich frames, the weak objectual interpretation gives the same
theorems as the standard interpretation:

Theorem 9. Let N be a counterpart structure rich in objects, v a world
and let β be an objectual valuation and β̃ a counterpart valuation such that
βv(xi) = β̃v(xi) for all variables. Then for all ϕ:

〈N, β, v〉 �∗ ϕ ⇔ 〈N, β̃, v〉 � ϕ(50)

§10. Dual Ontologies, or, The Semantical Impact of Haec-
ceitism. No two philosophers agree on the nature of individuals, even
when restricted to the more mundane question of what a material ob-
ject is. The same, unsurprisingly, holds true for the notion of a modal
individual—a concept which some would even claim to be nonsensical
or inconsistent, but which, nevertheless, is central to the metaphysics of
modality.

For instance, the discussion concerning the question of how spatio-
temporal objects can persist in time, currently divided between adher-
ents of endurantism (also called 3-dimensionalism, the view that an
object exists at a time by being wholly present at that time, and persists
by being wholly present at more than one time [87]) versus perduran-
tism (also called 4-dimensionalism, roughly, the view that a material
object has temporal as well as spatial parts, and persists by having dis-
tinct temporal parts at different times), consists essentially in competing
ontologies as concerns the notion of a spatio-temporal object [143, 173]—
and these conceptions of object correspond roughly to the different on-
tologies as represented in coherence frames versus standard semantics.26

Obviously, this discussion can be specialised to the question whether ob-
jects in Minkowski space-time should be considered as perduring or rather
as enduring, where, prima facie, special relativity seems to support the
four-dimensional ontology, compare [6, 7].

Another metaphysical doctrine that has been subject to considerable in-
quiry is (first-order) Haecceitism, the view that there might be worlds
that are distinguishable only by what individuals play what roles,27 first
introduced by David Kaplan [90], and elaborated on for instance by

26There is some controversy on which terminology is more appropriate (or less con-
fusing). David Lewis and Mark Johnstone used the endurantism/perdurantism distinc-
tion [120, 88], while many later authors, including Theodore Sider [173], preferred the
3/4-dimensionalism distinction.

27As expected, philosophers disagree on this notion. According to [133], David Lewis
[120] and David Armstrong [5] should be regarded as anti-haecceitists, while the later
Kaplan [90] is a haecceistist. Brian Skyrms, on the other hand, accepts haecceitism for
actual entities, but not for merely possible ones [178].
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Joseph Melia [131] in connection with determinism and the ‘hole argu-
ment’ of Earman and Norton [42]. In [131], he defines D-Haecceitism
to be the view that a theory may be indeterministic, even if all the differ-
ent possible futures open to any world which makes the theory true are
qualitatively identical. In [132, 133], Melia also discusses second-order
Haecceitism, which may be defined as the position that there could be
distinct worlds that agree on which second-order properties are occupied,
but which disagree on which properties play which roles.28

A recurrent theme of this article was the idea that a semantics for
modal logic should make as little ontological commitments as possible. It
should not be necessary to define a new semantics once you commit to a
new theory of identity across worlds, for example. The most flexible se-
mantics in this respect so far (without moving to an algebraic semantics)
was the generalised counterpart theory embodied in the notion of a poly-
counterpart frame. In the following, we analyse how we can achieve the
same kind of semantical generality while sticking to the more conventional
Kripkean picture of possible worlds semantics. Curiously, this modifica-
tion of Kripkean semantics requires to build a notion of Haecceitism into
the frames, namely the notion of a world-mirror, see below.

By the theorems above we can introduce the notion of an object into
counterpart frames, which then makes them rather similar to coherence
frames. However, counterpart structures with object valuations are still
different from coherence structures. A different approach is to translate
3 in order to accommodate the truth relation �∗ within the language of
counterpart structures.

(51) (3ϕ(y0, . . . , yn−1))γ :=
∨
z0. . . .

∨
zn−1.z0 = y0 ∧ z1 = y1 ∧
· · · ∧ zn−1 = yn−1 ∧3ϕ(~z/~y)γ

Here, yi (i < n) are the free variables of ϕ and zi (i < n) distinct variables
not occurring in ϕ. This is actually unique only up to renaming of bound
variables. This translation makes explicit the fact that variables inside a
3 are on a par with bound variables.

Proposition 10. Let N be a counterpart structure and x a world.
Then for any ϕ:

〈N, x〉 � ϕγ ⇔ 〈N, x〉 � ϕ

In object rich structures also � and �∗ coincide, which makes all four
notions the same. So, while in counterpart structures the formulae ϕ and
ϕγ are equivalent, they are certainly not equivalent when interpreted in
coherence structures.

28David Lewis and David Armstrong both accept this version of Haecceitism.
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In [163], it is shown that worldline semantics provides for the same
class of frame complete logics in the absence of extra equality axioms
as standard constant domain semantics. It follows that the same holds
for coherence frames. This means that while coherence frames allow for
a more natural treatment of non-rigid designation for example, unlike
counterpart frames, they do not enlarge the class of frame complete logics
unless one moves to the full second-order semantics involving towers as
sketched above. But there is a different approach to this problem. Instead
of introducing algebras of admissible interpretations we can assume that
certain worlds are isomorphic copies of each other. So, we add to the
frames an equivalence relation between worlds and require that predicates
are always interpreted in the same way in equivalent worlds. This idea is
due to Melvin Fitting (see [54]). Call a relation E ⊆ W ×W a world-
mirror on F if E is an equivalence relation and whenever v E w and
v � u1, there is a u2 such that w � u2 and u1 E u2. Intuitively, two
mirrored worlds v and w may be understood as a situation seen from two
different perspectives (because v and w may have ‘different histories’, but
have the ‘same future’).

Definition 11. A pair 〈F,E〉 is called a balanced coherence frame,
if F = 〈W,�, U, T, τ〉 is a coherence frame and E is a world-mirror on
F. An interpretation I is called balanced, if it is equivalential and
〈u0, . . . , un−1〉 ∈ Iv(P ) iff 〈u0, . . . , un−1〉 ∈ Iw(P ) for all n-ary rela-
tions P and for all worlds v, w such that v Ew. A balanced coherence
model is a triple 〈〈B, I〉, β, w〉, where B is a balanced coherence frame,
I a balanced interpretation, β a valuation and w a world.

Theorem 12. For every counterpart frame F there exists a balanced
coherence frame F∗ such that for all formulae ϕ:

F � ϕ ⇔ F∗ � ϕγ .(52)

The details of the proof are rather technical and can be found in [97].
This result has interesting consequences. For example, since counterpart
semantics is frame complete with respect to all first-order extensions QL
of canonical propositional modal logics L (compare [66]), the same holds
true for the translation QLγ with respect to balanced coherence frames.
Now we noted above that coherence frames per se characterise the same
logics as standard constant domain semantics if no extra equality axioms
are involved. But it is known that already rather simple canonical propo-
sitional logics have frame incomplete predicate extensions. In [36] it is
shown that to complete frame incomplete MPLs by adding appropriate ax-
ioms, one needs mixed de re formulae rather than substitution instances of
purely propositional formulae. So, the above result gives a hint on where
the source for frame incompleteness with respect to standard semantics is
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to be found. In particular, note that the translation .γ leaves propositional
formulae untouched, whereas de re formulae of the form 3ϕ(y0, . . . , yn−1)
are transformed into formulae

∨
z0. . . .

∨
zn−1.

∧
i<n zi = yi ∧ 3ϕ(~z/~y)γ ,

which are de re formulae involving equality.
So what we need if we want to use standard possible worlds semantics

to characterise a large class of logics via frame completeness are basically
three things: firstly, the distinction between trace and object, secondly a
different understanding of the modal operator as given by .γ , and, thirdly,
the assumption that certain worlds are copies of each other.

Let us make this claim more explicit. Given a standard constant do-
main frame 〈W,�, U〉, we may add, as before, an equivalence relation
E relating worlds. Furthermore, we technically do not need traces but
can add a family of equivalence relations (µw)w∈W interpreting equality
at each world. Let us call frames of the form F = 〈W,�, U, (µw)w∈W ,E〉
balanced standard frames. An interpretation I is called admissible if
interpretations agree on worlds related by E and, moreover, they respect
the equivalence relations µw in the sense that ~a ∈ I(w)(P ) iff ~b ∈ I(w)(P )
whenever aiµwbi for all i. We may think of objects being related by µw as
indiscriminable with respect to world w and basic extensional predicates.
Call a valuation γ̃ a w-ignorant ~x-variant of γ, if γ̃(xi)µwγ(xi) for all
xi ∈ ~x. The truth definition for balanced standard frames is as usual
except for the equality and modal clauses, which are as follows:
• 〈F, I, γ, w〉 � x = y iff γ(x)µwγ(y);
• 〈F, I, γ, w〉 � 3ϕ(~x) iff there is a w-ignorant ~x-variant γ̃ and a world
v � w such that 〈F, I, γ̃, v〉 � ϕ(~x);

It should be rather clear that there is a bijective correspondence between
balanced coherence frames and balanced interpretations on the one hand
and balanced standard frames and admissible interpretations on the other.
Furthermore, for every 〈W,�, U, T, τ,E〉 there is a 〈W,�, U, (µw)w∈W ,E〉
such that for all ϕ

〈W,�, U, T, τ,E〉 � ϕγ iff 〈W,�, U, (µw)w∈W ,E〉 � ϕ.

Hence, the following theorem is an immediate corollary to Theorem 12.

Theorem 13. For every poly-counterpart frame there is a balanced stan-
dard frame having the same logic.

Table 2 gives a comparison of the different ontologies embodied in poly-
counterpart frames versus balanced standard frames. It shows that if we
want to avoid counterpart theory but still strive for a semantics that is of
the same generality, we arrive at a framework where we not only have to
give up numerical identity and replace it with equivalence relations, but
where we are also committed to a certain form of Haecceitism, namely the
one that corresponds to the notion of a world-mirror. (However, similar
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Table 2. Competing Ontologies

poly-counterpart balanced standard
accessibility relations between individuals relations between worlds
objects worldbound individuals global universe of objects
identity between individuals equivalence between objects
Predication locally globally (but admissible)
Haecceitism No Yes, world-mirrors

assumptions are arrived at in the many-worlds interpretation of quan-
tum mechanics, although, obviously, with entirely different motivations,
compare [187].)

§11. Metaframes. The most radical shift is presented in the seman-
tics proposed by Valentin Shehtman and Dmitrij Skvortsov in [177], which
we alluded to in §6.4. Once again, it turned out in retrospect that the
idea had an algebraic precursor in the hyperdoctrines of [113]. Though
hyperdoctrines were originally defined as model structures for Int, the
generalisation to other logics is straightforward (see [172]). Consider the
category Σ of natural numbers and mappings between them. A modal
hyperdoctrine is a covariant functor H from Σ into the category MA of
modal algebras. H(n) may be thought of as the algebra of meanings of
formulae containing n free variables. To be well–defined, H must satisfy
among other the so–called Beck-Chevalley-condition, which ensures
that cylindrification has the same meaning on all levels. We shall not spell
this out in detail; instead, we shall look at the natural dual F := (−)+◦H
of H, where (−)+ is defined as in (14). This maps n into the frame dual
of H(n). F is a contravariant functor into the category GFr of generalised
frames. The system {F (n) : n ∈ N} provides a ‘tower’ of admissible
systems of sets of their respective frames. In general, a metaframe is
simply a contravariant functor from the category Σ to the category of
general frames. Here is a recipe to obtain a metaframe which is adequate
for the logic L. For every natural number n, let H(n) be the algebra
of the formulae which contain only x1 to xn free (under logical equiva-
lence); and let H(σ) be the result of substituting via σ. This defines a
hyperdoctrine whose logic is L. To obtain a metaframe whose logic is
L, simply take M := (−)+ ◦ H. The world of M(n) are the n-types of
L, and they constitute the worlds. The maps M(σ)+ are the pre-images
under the substitutions. They are p-morphisms between these frames.
In general, for a metaframe M , M(0) may be thought of as the frame
of worlds in the usual sense. The frame of 1-types is different. First,
since there is a map σ : 0 → 1 (the empty map), there is a p-morphism
M(σ) : M(1) →M(0). This map associates a 0-type to every 1-type. We
may view each member of M(1) as a world bound individual, but only
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up to logical equivalence. Similarly, M(2) contains the world bound pairs
of individuals, up to equivalence. An interpretation is a function ξ which
maps every n-ary predicate letter P to a member of the internal sets of
M(n). Let v be in M(k) for some k, and let σ : n→ k.

〈M, ξ, β, v〉 � P (xσ(1), . . . , xσ(n)) :⇔ 〈β(x1), . . . , β(xk) ∈ σ(ξ(P ))(53)

Notice that worlds of M(n) can support the truth or falsity of formulae
only if the free variables of that formula are within {x1, . . . , xn}. Thus,
the clause for ∃ requires care, while the clause for ♦ is actually straight-
forward. The problem with the existential is that it requires to shift to
another world v′, since eliminating the quantifier makes a variable free
that need not be supported by v.

The method yields a metaframe M for each logic L. Moreover, if the
propositional counterpart of L is canonical, so is L (simply pass from
M(n) to the corresponding full frame). Thus, from a technical point of
view this construction is rather well understood. Unfortunately, from a
metaphysical point of view it is not. It dispenses completely with the
notion of an object and in some sense also with that of an ordinary pos-
sible world. What we are left with is possible states-of-affairs relating
n individuals. Notice that accessibility relations are defined over these
states-of-affairs for every n. So, if a and b are such state-of-affairs at level
n, then a R b means that b is possible for a. Now, a can be expanded to
a member of M(n+ 1), and it can be reduced to a member of M(n− 1),
and these operations are p-morphisms. This allows to reconstruct some of
the classical notions. First, we can identify worlds as members of M(0).
Given a world v and n > 0, the set On(v) := M(n)−1(v) is the set of
n-tuples of v. Now, ideally we would like to think of On(v) as the n-
fold cartesian product of O1(v). If that is so, [177] call the metaframe
cartesian. [11] has shown that under mild conditions it is possible to
construct a cartesian metaframe with the same n-types for all n out of
a given metaframe. It then follows that all modal predicate logics are
complete with respect to cartesian metaframes.

§12. Essence and Identity. An object is said to have a property
P essentially if whenever x fails to have P it also fails to exist.29 It
has P accidentally in a world w if it has P . [150] has criticised counter-
part theory of eliminating the distinction between accidental and essential
properties of an object. [26] paints a different picture. In his view, we
can certainly speak of sortal objects and essential properties that these
objects have even if there is no identity in the strict sense. The problem is
partly due also to the question of what an object actually is. In coherence
frames objects are interpreted as individual concepts. Now, we effectively

29A discussion of various notions of ‘essence’ can be found in [49].
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have two sorts of identification: two objects can be identical in this world
iff they have the same trace, while transworld identity is simply identity
as object (identity of the whole worldline). How this changes matter is
best seen with the theory of sets. [57], as well as [47], expose a theory
of sets, which embodies the idea that the essence of the set X is the fact
that it contains the elements that it contains (extensionality). Moreover,
if the fact that it has the given objects as members is an essential property,
then we should have the following postulate to start, called membership
rigidity.

x ∈ X → �(x ∈ X), x 6∈ X → �(x 6∈ X)(54)

(Notice that since we do not work with a distinguished actual world, our
principles need not be prefixed by a box.) Additionally, it is assumed that
x ∈ X implies the existence of both x and X (the falsehood principle):

(∀x)(∀X)(x ∈ X → E(x) ∧ E(X))(55)

How can finally transworld identity be expressed? In counterpart theory
we need to go back and forth between worlds, assuring us that if x ∈ X
in w, say, then this is the case in v (for the respective counterparts) and
conversely. In coherence frames we only need to state the principle in its
original form.

(∀X)(∀Y )(X = Y ↔ (∀x)(x ∈ X ↔ x ∈ Y ))(56)

However, in this reading identity depends on the world we are in. If X
is the set containing the morning star and the evening star, and Y the
set containing only the evening star, then X = Y is true at w iff, in w,
the trace of the evening star is identical to the trace of the morning star.
Of course, it is possible to retroactively introduce a stronger notion of
identity, as with objects (see [167] on identity).

Coherence frames and worldline frames alike use identity in trace as a
criterion of identity at a world. However, from a metaphysical point of
view the introduction of traces is a dubious thing. What for example, is
the trace of Yuri Gagarin in this world right now? Or that of Clark Kent?
How do we decide whether or not Clark Kent is Superman on the basis
of traces? If one is troubled by traces, one may do without them. All
it takes is to introduce a binary predicate Eq whose interpretation is an
equivalence relation in every world. The interpretation of Eq will hardly
be that of identity. This has caused great concern; however, it must be
borne in mind that Eq is a predicate of objects, not of individuals. All
it takes is to consider objects to exist independently of their realisation
(‘individual’). This move is virtually forced on us when we want to sup-
ply metaframe semantics for logics that do not validate the necessity of
identity (see [97]).
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§13. On the Status of the Modal Language. [130] exposes three
views one can have with regards to modal language; one can be a prim-
itivist, a eliminativist and a reductionist. A primitivist holds that
talk about modality is not reducible to anything else, and that modal
statements have the same status as nonmodal ones. They are meaningful
and they do not lack truth values. A reductionist believes that modal
talk can be eliminated by talk about something else, for example possi-
ble worlds. Such a reduction might proceed along the lines of the stan-
dard translation. Finally, an eliminativist denies the meaningfulness of
modal talk altogether. For him, modal talk is meaningless. For exam-
ple, one might hold that there is no way to attach verification procedures
to modal statements in the way that one does with ordinary, nonmodal
statements. From a formal point of view, the reductionist works with
the presupposition that modal talk is just proxy for talk about possible
worlds, using the standard translation (6). But we have seen that modal
logic is incomplete; the second-order interpretation in Kripke-frames con-
fuses certain logics (namely the incomplete logics with their completion).
The reductionist thus is committed to the rejection of incomplete logics,
unless he agrees to yet another entity, the internal sets. It is the task of
the reductionist to either show that the need for these sets does not arise
(by showing that the logic of the modal operator is complete), or, if he
cannot do this, he is committed to a kind of entity that we have shown
to be equivalent in character with that of the propositions themselves.
This actually strengthens the primitivist position, since the primitivist
can point out that these objects he had in the first place. We do not aim
at discussing the eliminativist’s position here. It is mostly rejected on the
grounds that it fails to explain human communication. Suffice it to point
out that even Quine did consider certain interpretations of modal oper-
ators as unproblematic, for example those relating to time and space.
While he rejected an ‘intensional ontology’ proper, he accepted modal
discourse about real-world objects [156]. In his view, this does not con-
stitute transgression into another world. (This is implicit in other work
as well.) It is unclear, though, which interpretation of modality requires
the addition of possible worlds in this sense, and which one does not.
For example, suppose future is indeterminate and you might either toss
head or tail in the next moment. Now, if that moment arrives and you
have tossed head, does the other outcome in which you tossed tail exist
or not? And, if it exists, does it exist in another world or in this one? On
the many worlds interpretation of quantum mechanics it is really part of
this world (despite the name ‘many worlds interpretation’). If so, most
counterfactual reasoning is actually perfectly acceptable because it talks
about how things are in some other history. If one is inclined to reject
this line because it is in principle impossible to know what happens in
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another history, notice that verificationism frequently employs proce-
dures that cannot be carried out even in principle. The formulation of
these principles involves modal talk, as [130] points out, so there seems
to be something irreducible about modal language. Interestingly, notice
that much of set theory is founded around the idea that every potentially
infinite chain defines an actual object. The natural numbers exist as soon
as we have the infinite ascending chain of numbers 1, 2, 3, · · · . Georg
Cantor addressed the distinction between potential and actual infinity by
saying that the principle of potential infinity cannot be formulated with-
out conceiving of the totality of numbers in the first place (for example,
by saying that for every number there is a larger number).

Still, the interpretations of modality seem to present different degrees
of ontological commitment. Also, they might operate on different lines.
Epistemic modalities seem to be very different from what we may call
‘objective modalities’ in that the former may be at odds with Leibniz’
Principle of substituting equivalent descriptions. Belief, for example, is
highly problematic in this respect. Even if the axioms of the natural
numbers imply that Fermat’s conjecture is true, one may believe the first
but not the second. On these grounds it seems that the attempt to model
belief via possible worlds is highly problematic. Jaakko Hintikka [78]
confronts the problem with the notion of implicit belief, but that is not
helpful since it fails to analyse the notion we are after, namely that of
belief, and substitutes it with a different notion.

In a similar vein, talk of objects and counterparts is not simply prob-
lematic as such. If we talk about time and space, the notion of an object
seems to be clear even to those who reject the notion of modality. How-
ever, even if there is (seemingly or not) no talk of modality, the questions
about the nature of objects do not disappear, they just take a different
form. For example, why is this cat today the same as that cat yesterday?
The answer might go like this. There is a continuous function from the
location of that cat yesterday to the location of this cat today, and at ev-
ery instance between these time points, this function yields the location
of an object at that time point, and this object was a cat. (See [156] for a
discussion.) However implausible it is to expect from anyone to really go
by this definition (rather than just checking whether this cat looks or acts
the same as that cat yesterday, supposing that our memory and percep-
tions are infallible etc.), the question is whether this answer always works.
Consider, for example, artefacts, such as cars or bicycles. They can be the
same even though some parts have been exchanged. It is not immediately
clear how to apply the previous definition in the case where you give your
bicycle to a mechanic and get it back tomorrow with some parts being
exchanged. (Suppose your bicycle gets totally disassembled—you have to
say that it disappeared at that moment.) If we accept that the bicycle you
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get back today is the same as the one you handed in yesterday, you are
additionally in for a Sorites type argument (see [57]). However this mat-
ter can be resolved, the answers to the questions of identity across time
do not seem to be less challenging than those of identity across worlds
in general [175, 7, 173]. Additionally, the verificationist answer we gave
before does not even work in principle. Notice that if quantum physics is
correct, there is no way to check the continuity of the movement of any
object, not just elementary particles (compare also [38]). There is, more-
over, no object as such: there is just a vector in an infinite Hilbert space,
of which the object is but one aspect (and the de Broglie wave another).
Below the uncertainty threshold just about any monstrosity can happen
(creating and destroying particles, for example). This means, at least in
theory, that it is impossible in principle to track the exact movement of
that cat yesterday until it becomes this cat today.
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