THE COMBINATORICS OF INTERPRETED LANGUAGES

Marcus Kracht

Department of Linguistics
UCLA

3125 Campbell Hall

405 Hilgard Avenue

Los Angeles, CA 90095—-1543

kracht@humnet.ucla.edu

§1. Standard Formal Language Theory

@ An alphabet A is a finite set of letters.

@ A (finite) set C of categories, with a distinguished member (typi-
cally S).

@ A language is a subset L C A",
@ A grammar is a finite set of functions on A* X C.

Abstractly : F a finite set, Q : FF — N a signature. A (Q2-)grammar

is a pair G = (€2, J), where for every f € F:
If) 1 (A* x O — A* x C

(f : A =< B means f is partial.)

§2. Generated Language
We define S (G) to be the minimal set closed under under all functions
of G. (Alternatively, it the set of all denotations of zeroary terms of the

clone.) Then

L(G) :={X:(X,S) € S(G)}

§3. Example: Boolean Formulae
A ={(),p,0,1,1,Vv,A}. ~is concatenation. In CFG format:
(Ind) =& | (Ind) 0 | (Ind)"1
(Var) —»p~{Ind)
(Form) —(Var) | ("~ " (Form)") | (" (Form) A" (Form)")
| ("(Form) v~ (Form) ")
Start with the symbol (Form) and do step by step string replacement.

Rephrased in a bottom up fashion.

~ 29

“If £ and y are formulae then so is ("X A"Y").

§4. Bottom Up Version (Informal)
C :={l,V, F}. Designated category F. S 1s minimal s.t.

® (g, 1) e S.

Q@ If(xX,I) € S then (X 0,])eS and (X" 1,I) € S.
@ If (X, Iy e S then{(p~X,V)eS.

@ If(X,V)e S then (X, F)eS.

® If(X,F)e S then{(("-~"x),F)eS.

® If (X, F),(y,F) € S then((C XAy),F)eS§ as well as
(CXVvy),F)es.

L={xX:(X,F)eS}.

§5. Bottom Up Version (Formal)

Let F := {fo’flsz’f3?f4’f59f6’f7}s
Q: fO = O;flafZ’f3af4 = 1;f5af6 - 2.

I(f0)O =(&, D)
JDUX D) == (X0, 1)
IR D) = (X1, 1)
JIHUXD) = (P X V)
IR, V)) == (X, F)
IfS)KXF)) :=(C~"X), F)
J(fX F), (V. F)) :=(CX Ay, F)
JDUX,),V F)) == (CX V), F)

§6. Bottom Up Version (Categoriless)

We can drop the categories. Define language in the wide sense:
L™ :={X:thereisc € C:{X,c) € S}
v¢ (Ind) consists of all ¥ € L* such that ¥ € {0, 1}*.
v¢ (Var) consists of all X € L* of the form p~X, X an index.
v¢ (Form) contains all the other strings of L™.
So: L* is the least set containing /p/ and & such that
@ If ¥e (Ind) then ¥ ® € L" and X"1 € L™.
@ If ¥ € (Ind) thenp~X¥ e L.
@ If ¥ € (Form) then (C~"X") € L*.

@ If X,y € (Form) then ("X"A"y") € L* and C X" v y) € L™,

§7. Categoriless Version

J(f4) 1s now empty. (Var) is not needed.

If0)O =€

X0 if ¥ € (Ind)
A =

undefined else

X if ¥ € (Ind
IR@D =1 e dnd)

undefined else

(C="x) if ¥ € (Form)
J(fs)(X) := 1

undefined else

. CxXAy) if Xy € (Form)
J(f6)(X,¥) = |

undefined else

§8. Categories Partially Encode Derivations

Consider
S—L|R

L —-alaL
R — a|Ra

The categoriless grammar has more derivations! (It conflates the cate-

gories L and R.)

§9. Part 2: Interpreted Languages
Let M be a set (“meanings”). An interpreted language is a subset of
A* X M (a many-to-many relation between strings and meanings).
An interpreted grammar is a pair G = (€2,J), where Q : ' — Nis

a signature and for every f € F:

If) 1 (A x M) — A*x M

§10. Boolean Logic
Strings as before. Valuation: a function g : {Ind) — {0, 1}. Val the set

of all valuations.
(X, %) : ¥ € (Ind)}
U(X, {B : B(X) = 1}) : X € (Form)}

(Need to have some meaning for indices!) This language is called
Bool.

§11. A Grammar

J(fo)O = (&, &)

I DX, m)) 2= 5

I(HEX,m)) = 5

I(f5H)X, m)) 2= 5

I f)(Rom), (Fon)) 1=

(¥"0,m0) if X € (Ind)

undefined else

(p %, (B: B(X) = 1)) if ¥ (Ind)

undefined else

((C="x),Val-m) if ¥ € (Form)

undefined else

(CXAy),mnn)y if X,y e (Form)

undefined else

§12. Two Grammars
Let ¥ € {L,0}" be a binary string, and n(X) its associated number (eg
n(LOLLL) = 23). How to generate this language? Left to right:

J(f0)O :=(0,0)

IO =L, 1)
J(ao)((¥, ny) :=(X"0,2n)
J(a1)({(®,ny) :=(XL,2n + 1)

§13. Right to Left

I(fo)() :=(0,0)

()0 =(L, 1)
J(po){X,n)) :=(0"X, n)
J(p)(E, nY) :=(L" %, n + 2

(Function on the meanings is dependent on the length of the string!)

§14. Bigrammars
A bigrammar is a triple B = (Q,J%,J#), where Q : F — Nisa

signature and for every f € F:

JE(f) 1 (A" x M) — A*
JHF) : (A" x M) — M

B is autonomous if for every f there is ¢ : (A*)®*) < A* such that

for all m;:

TE(f)Keo, mo), - -+, {eqcr)-1. Macr)-1)) = fi(eo, -+ ,eqr)-1)

B is compositional if for every f there is ¥ : M**) < M such that

for all ¢;:

TH(F)Keos mo), -+ s {eqi -1, Map)-1)) = &x(mo, -+ ,ma(r)-1)

§15. Remarks

@ The notions of autonomy and compositionality can be formulated

also for grammars.

@ The equations can be read in the weak sense (if both sides exist
then they are equal) or in the strong sense (if one side exists so

does the other and they are equal).

§16. Unavoidable Ambiguity
L is ambiguous if there are e, m and m’ such that m # m’ and (e, m), (e, m’) €
L. Put

e’ :={m:{e,m) e L)
The functional transform L5:

L} :={{e,e°) : e € g[L])

Given a grammar for L, can we construct a grammar for L>?

§17. Unbracketed Boolean Expressions I
The language UBool. Let F' := {fy, f1, f>, 3, f4. 5. fo» f7}s
Q:fo=0,f1, 2 fa L fs, fo = 2.

I(f0)O =(&, D)
JDUX D) = (X0, 1)
IR D) = (X1, 1)
JIHUXD) = (P X V)
JfDUX, V) == (X, F)
IfHUXF)) = (27X F)
J(f(X, F), 3V, F)) := (X A"V, F)
JDUE F), (3, F)) == (X V7Y, F)

§18. Unbracketed Boolean Expressions 11

Theorem 1 The language UBool has a compositional context free gram-

mar.

Theorem 2 The language UBool® has no compositional context free

grammar.

For a proof look at expressions of the form

poV pi(Vp1)V pa(Vp2) -V Pri2(VPui2) V Pris

§19. Adjunction
A 2-context is a triple (i, V, w). A locale is a set of 2-contexts. An
adjunction rule is a pair p = ({(X,¥), A), where A is a locale.

We write p —, ¢ if there is a (i, V, W) € A such that p = #Vw and
g = uxvyw. An adjunction grammar is a pair (C, R) where C is a set
of strings, and R a set of adjunction rules.

A compositional interpreted adjunction bigrammar is a bigram-
mar in which all syntactic functions are adjunction rules and the se-
mantic functions are independent of the strings.

Tree adjunction grammars are similar, except that adjunction may

only be to constituents and is only determined by the syntactic label.

§20. Adjunction Grammars
There 1s a compositional CF bigrammar for Bool in which all semantic

functions are total.

Theorem 3 There is no compositional interpreted tree adjunction bi-

grammar for Bool in which all semantic functions are total.

I have not been able to determine what happens when the semantic

functions may be partial.

Problem 4 Is there a compositional interpreted adjunction bigrammar
for Bool?

§21. Predicate Logic

Let Rel be a finite set of relation symbols with signature 7.
(1) A:={x,0,1,A,1,v,3} URel

Let L be the language of predicate logic over Rel, L, the n variable
fragment of L. A model structure is a pair .# = (M, I) such that
I(R) € M™®_ For a formula ¢, [¢]., denotes the set of satisfying

assignments.

2 lelz =B (A.B)E ¢}

If the ¢ € L, then we may think of [¢] , as an n-ary relation on M.

§22. A Grammar
Add a type of expression, variable, and let 57 : 8 — B(y).

L(A) = {{x,5):x € Var}
Ul<e, [¢l.z) = ¢ € L}

3)

Proposition 5 L(_#) has a compositional context free grammar.

§23. Alphabetical Innocence
Let <p> be the meaning of ¢. The semantics <> is alphabetically

innocent if for all injective s : Var — Var and all x; € Var:
D «@*> = <>
® <P N Xj = Xpp = <>
® <@ A x; = x> = <[x;/xj]¢>

Standard semantics for predicate logic is not alphabetically innocent.

(Sets of assignments are sensitive to the names of variables.)

§24. Construction
Let R, R” € M" be relations. Then R’ ~ R if

@® R’ = n[R], m a permutation of n;

@ R =RX M; or

@ R ={{ap,"* ,ap-1,an-1) : (@0, " ,an-1) € R}
~ 1s the reflexive transitive closure of ~.

Definition 6 A concept is a set of relations of the form [R] := {R’ :
R’ ~ R}.

Let ¢(xg, - - - , X,—1) denote an n-ary relation [¢(xg, - - , X,—1)]» on the
set M. Then

<<()0(an) xn—1)>> = [[[QO(XOa) xn—l)]]]

§25. Concept based predicate logic
Fix a model structure .# over M. The language LC,(.#) (LC(.#)) is
defined by

Ko, <p>) e ly) (K@, <@>z) @ € L))

Theorem 7 For every n and every model structure .# the language

LC,(A) has a compositional grammar.

Problem 8 Does LC(.#') have a compositional grammar?

§26. Proof of Theorem ??.
Let f map concepts to formulae such that ¢ = <f(¢)> 4. f delivers for

every concept a formulae defining it.

I(f)Ke,my) :=(C~"e™), «M>" - [f(m)]«]
Given ¢, let the type of ¢ be

W) = {n: M & o n(f(<p>4))}

Let m be a permutation.

I e, m), (€', m'))
(Cene™), ILf)]z N allf(m)].11)

= ifrom =m,m €te), m €t(e)

undefined else

§27. Conclusion

© The combination of expression and meaning introduces more struc-

ture. Some grammars become more natural than others.

® Negative results are difficult to obtain, however. We need new

combinatorial 1deas.

©® Benefit: Plenty of open problems!

§28. Thank You!

